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• We provide investors access to yield-
enhancement and hedging 
opportunities in the options market.

• Our insights based on experience and 
active research and our customized 
technology applications are applied to 
pursue client’s goals.
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▪ How does my machine answer the question “Where am I?”

▪ Data driven description of Market Micro-Structure & its Time-Aggregation

▪ Non-Parametric Optimal Hedging Strategy

▪ Option Strike-Term Dependent Expected P&L and Residual-Risk Asymmetry

▪ Pursuit of Risk-Controlled-Yield and Carry-Controlled-Serendipity

http://www.volariscapital.com/


Where am I?

Does it matter? 

Are there temporal 
rhythms or rhymes 
embedded in the market 
returns?

Is White-Noise a plausible 
stochastic description of 
the market?
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Standard Deviation of S&P 500 Index Return



Where am I?                    Not Always in Kansas!

Does it matter?       Yes

Are there temporal 
rhythms or rhymes in the 
market returns?      Yes

Is White-Noise a plausible 
stochastic description of 
the market?             No

S&P 500 Index Daily Return
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Market Rythms & Rhymes

S&P 500 Index return 
magnitude has significant 
temporal memory
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Market Rythms & Rhymes

S&P 500 Index return sign 
exhibit much less 
temporal memory than 
its return magnitude
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Market Rythms & Rhymes

S&P 500 Index return sign 
leads the return 
magnitude
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Lead-Lag and Cross-Correlation Function at Different Lags
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Stochastic Market Model

Everything should be made as simple as 
possible, but not simpler.
Albert Einstein

Takes Two to Tango
Al Hoffman & Dick Manning

Sometimes it takes three to tango
Anonymous

Economics ended up with the theory of 
rational expectations, which maintains that 
there is a single optimum view of the future, 
that which corresponds to it, and eventually all 
the market participants will converge around 
that view.  This postulate is absurd, but it is 
needed in order to allow economic theory to 
model itself on Newtonian Physics.
George Soros

Goals
▪ incorporate data-driven lead-lag 

relation among market direction, 
return magnitude, & a related variable

▪ impart realistic term structure of return 
skewness and kurtosis

▪ make available description of ensemble 
of outcomes consistent with long term 
and recent market behavior



Stochastic Market Model

stochastic model of 
underlying

conditioning 
information

conditional realizations of underlying

data on underlying and related variable

Real-World Asset Model
▪ Model return magnitude and related variable as 

functions of autoregressive processes – classical jointly 
Gaussian with explicitly specifiable covariance structure

➢ Base period Non-Gaussian nature captured by empirically defined 
functions

▪ Autocorrelation of return magnitude process controls 
the modeled term structure of return kurtosis

▪ The return sign is modeled employing a threshold on an 
autoregressive stochastic process

▪ The cross-correlation of return magnitude and return 
sign process controls the term structure of return 
skewness



Stochastic Market Model
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Stochastic Market Model: Unconditional Results
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Stochastic Market Model: Conditional Results

S&P 500 conditional realizations with low volatility conditioning information
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Stochastic Market Model: Conditional Results

S&P 500 conditional realizations with high volatility conditioning information
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Non-Parametric Optimal Hedging Strategy

And for every problem that is muddled by 
over-complexity, a dozen are muddled by 
over-simplifying.
Sydney J. Harris

The eternal mystery of the world is its 
comprehensibility…The fact that it is 
comprehensible is a miracle. 
Albert Einstein

Recognizing reflexivity has been sacrificed to 
the vain pursuit of certainty in human 
affairs, most notably in economics, and yet 
uncertainty is the key feature of human 
affairs.
George Soros



Non-Parametric Optimal Hedging Strategy
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Non-Parametric Optimal Hedging Strategy: Sample Results
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Median total P&L sample path hedge performance from 
OHMC analysis of sell-hedge 42 day 95% strike SPX put 
in high volatility regime

The hedging strategy is cognizant of transaction costs and is 
conditioned on the trailing 10 day realized volatility.  The 
hedging strategy also seeks to maintain an expected P&L over 
each hedging interval to achieve a target Sortino-Ratio of 1.  

The attempted replication is full of slips even in this relatively 
benign outcome.  The risk-premium charged by the seller-
delta-hedger towards the goal of maintaining a Sortino-Ratio 
of 1 every day is fulfilled insofar as the total P&L at the end of 
42 days slightly exceeds the initially expected P&L in pricing 
the put.  The P&L outcome is of course uncertain, and can be 
far less favorable if the underlying moves sharply.



Non-Parametric Optimal Hedging Strategy: Sample Results

Hedge P&L Distribution of a 38 day 97.5% 
strike SPX Put in a Low Volatility Regime

P&L Variance Optimal Hedge Ratio:        26.5%

Expected cost of hedging:                        $10.53

Standard deviation of cost of hedging:   $ 9.36

Downside deviation of cost of hedging: $12.30

Bid – Ask:                                                      $21.2  - $21.6
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Non-Parametric Optimal Hedging Strategy: Term Dependence

Low-Volatility Regime

tenor 

(days)
std dev                  

(x avg hedge cost)

neg std dev              
(x avg hedge cost)

skewness kurtosis

10 15.5 21.6 -23 1061

21 4.5 6.1 -6.1 113

42 1.85 2.56 -3.8 42

High-Volatility Regime

tenor 

(days)
std dev                  

(x avg hedge cost)

neg std dev              
(x avg hedge cost)

skewness kurtosis

10 1.23 1.72 -3.8 38

21 0.79 1.07 -2.9 30

42 0.59 0.77 -2.4 18
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Term-dependence of residual risk for a seller-optimal-hedger of a 95% strike put



Non-Parametric Optimal Hedging Strategy: Strike Dependence

Strike-dependence of residual risk for a seller-optimal-hedger of a 21-day put

Low-Volatility Regime

strike 
(% spot)

std dev                  
(x avg hedge cost)

neg std dev              
(x avg hedge cost)

skewness kurtosis

85 147 200 -168 41086

95 4.5 6.1 -6.1 113

100 0.58 0.74 -2.3 19

High-Volatility Regime

strike
std dev                  

(x avg hedge cost)

neg std dev              
(x avg hedge cost)

skewness kurtosis

85 2.8 3.8 -5.5 91

95 0.79 1.1 -2.9 30

100 0.42 0.55 -2.4 21
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Risk Neutral Tautology Real World Interpretation

Option 
Price

=

Unique Hedging Cost
=

negative P&L incurred while 
hedging

Option 
Price

Expected Hedging Cost
=

expected negative P&L incurred while 
hedging

Risk Premium
=

compensation for irreducible hedge-
slippage that drives margin/risk-

capital

=

➢ Sponsored by OTC derivatives sales to book day 1 
P&L

➢ Aided and abetted by academics to show off 
martingale mathematics

➢ Inconsistent with the slowly decaying term 
structure of real return kurtosis – hedging error is 
the norm and not the exception and is at least 
leading order

➢ Intended to help risk-takers understand risk-
return

➢ Aided and abetted by hedgers and those bearing 
residual risks

➢ Attempt to discern absolute risk return consistent 
with realistic stochastic behavior of market



Machine Learning in Options: Opportunities

▪ Stochastic Models Capable of Capturing Real-World Term-
Structures
➢ exploit cross-sectional information
➢ swarms of heterogeneous agents with behavioral plausibility

o analytical approaches for model specification

▪ Risk-Preference in the Face of Asymmetry
➢ how much of an expected gain is needed to compensate 

adverse asymmetry?
o What is the underpinning of a risk premium?

▪ High Performance Computing
➢ solving Variational-Calculus problems in unbounded domains
➢ MC simulation with long memories

“For Machine Learning to gain credibility in investment management it must supplement its 
forecasts with an error bar that reflects the markets, the current environment, and the 
forecast horizon” Anonymous



Machine Learning in Options: Dead Ends 

▪ Option Price = Expected Payoff Under Risk Neutral Measure
➢ this is a vacuous tautology

- hedge slippage is at least of the same order of magnitude as average hedge cost
- highly asymmetric hedge slippage distribution 

➢ irresponsible from perspective of provider of risk capital  (buyside client = investor)
- inconsistent with obligations of fiduciary

➢ used to recognize OTC derivative P&L by invoking immaculate replication 
- accounting naiveté and poor risk-capital regimes can fuel “creativity” in derivatives



Machine Learning in Options: Dead Ends
▪ Slow Scripting Language(s)

➢ machine learning for options is not a trivial problem
➢ dense-inner loops are everywhere
➢ nonlinear constraints require iteration
➢ slow-glue is a recipe for retardation

➢ machine learning needs thinkers, authors, and doers and 
not software copycats
➢ time-to-code is not the limiting ingredient !
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