
IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 43 | P a g e

Code Clone Detection Using Various Approaches

Simranjeet Kaur1, Er. Rupinder Singh2

1Computer Science Department, Chandigarh University, Gharuan, Punjab
2Assistant Professor, Computer Science Department, Chandigarh University, Gharuan, Punjab

Abstract - In the last few decades many techniques for

software clone detection have been investigated by various

researchers to detect the duplicated code in programs but all of

these techniques have different merits and demerits. However,

after a decade of this research there has been a lack of

progress in understanding where to fit these techniques into

the maintenance process and to detect the evolution of

software clones. Code clones are basically identical fragments

of code that occur at various locations in a program source
code. There is great necessity to understand various

approaches of clone detection as it provides useful

information for the maintenance, reengineering, program

understanding and reuse. After comparison of text based,

token based and tree based approach it has been analyzed tree

based approach is very fast to detect the efficient clones and

one of the major area in which code can be semantically and

syntax wise checked.

I. INTRODUCTION

Copying of code fragments and either reuse the same code

by pasting it in different portions of source code or pasting it

with minor modifications .Software cloning is a perception in

which source code is duplicated. This type of reuse approach

of existing code is called cloning and pasted code fragment

(with or without modifications) is called a clone of the

original. Code clones do not occur in software systems by

themselves but occurs due to different reuse and programming

approach. Code cloning is found to be more serious problem

in software development activities and processes as cloning
increases the probability of inconsistencies in update. Clones

increased the probability of bug propagation, introducing a

new bug, bad design, difficulty in system

improvement/modification increased maintenance cost,

increased resource requirements. Therefore, there is a great

need to detect the code clones by using various different

approaches and prevent their introduction by constantly

monitoring and parsing the source code during its evolution as

detection is also necessary to find the place where a change

must be replicated to monitor the development and to use the

refactoring tool which improves the structure of object
oriented programs while preserving their external behavior.

Refactoring tool is a direct way to improve the quality of the

source code; there are several other benefits and applications

of detecting clones. A clone detector fined pieces of source

code which are similar on the basis of text or functionality.

II. DRAWBACKS OF CODE DUPLICATION
1

Code Clones can have severe impacts on the quality,

reusability and maintainability of a software system.

 Increased probability of bug propagation: If a code

fragment contains a bug and that code fragment is used by

another fragments then bug propagates.

 Increased probability of introducing a new bug: If the

structure of the fragment is reused not the code,

probability of introduction of new bugs.

 Increased probability of bad design: It leads to bad

inheritance structure, abstraction and maintainability of

the software.

 Increased difficulty in system improvement: Difficult to

understand the existing code implementation and to add

new functionality in the system.

1 Copying a code fragment and reusing it by pasting with or without minor

modifications is a common practice in software development is known as

code duplication.

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 44 | P a g e

 Increased maintenance cost: When maintaining or

enhancing a piece of code, duplication multiples the work

to be done hence lead to increased maintenance cost.

 Increased resource requirements: While system size may

not be a big problem for some domains while

telecommunication switch or compact devices may

require costly hardware upgrade with a software upgrade.

III. IMPORTANCE OF CLONE DETECTION

 Detects library candidates: Usability proves by multiple
times use of copied code fragments. [1, 2]

 Helps in program understanding: When we have a piece

of code managing memory we know that all files which

contain a copy must implement a data structure with

dynamically allocated space [1, 2]

 Detects malicious software: Clone detection helps in

finding malicious software and by comparison of

malicious software it is possible to find the matching

parts of both the software’s [1, 2]

 Detects plagiarism and copyright infringement: code

detection also help in detection of plagiarism and
copyright infringements.

IV. CLONE TERMINOLOGIES

The tools which detect the clones give report in the form of

Clone Pairs (CP) or Clone Classes (CC) or both The similarity

relation between the cloned fragments is the equivalence

relation (i.e., a reflexive, transitive, and equivalence relation)

[1, 2].Different definitions of similarity has different kinds and
degrees of clones [3].Sequences are sometimes original

character strings, strings without whitespace, sequences of

token type, transformed token sequences and so on. Following

clone pair and clone class are defined in the terms of clone

relation:

Fig.1: Clone pair and Clone class

Clone Pair: A clone pair is a pair of code fragments or portion

if there exist a clone relation between them, i.e., a clone pair is a

pair of code fragments which are identical or similar to each

other. For the threecodefragments,Fragment1(F1),Fragment

2(F2),Fragment 3(F3) of figure 1,we can get five clone pairs

,<F1(a),F2(a)>,<F1(b),F2(b)>, <F2 (b), F3 (b), <F2(c), F3 (b)>
and <F1 (b), F3(a)>.

Clone Class: A clone class is a maximal set of code fragments

in which any two fragments is a clone pair. For the three code

fragments of figure1,we get a clone class <F1(b),F2(b),F3(a)>

where the three code fragments F1(b),F2(b) and F3(a) form

clone pairs with each other. A clone class is simply the union of

all clone pairs that have clone fragments in common.

Clone Class Family: The groups of all clone classes that have a

same domain are called a class family [1, 2] or super clone [2].

Example of domains is files, functions, classes and packages.

Code Fragment: Any sequence of code lines which may or may

not have comment lines is called code fragment [1]. Code
fragments may have any type of granularity level, e.g., function

definition, begin block, or sequence of statements. A CF is

identified by its file name and begin-end line numbers.

Clone Types: Code fragments are similar in two ways.

Fragments are similar based on program text or functionality.

There are four types of clones. Type1 to type3 clones are based

on text whereas type4 clone is function based [1, 2, and 3]

Type1:Type1 clones are exact copy or identical code fragments

except for variations in whitespace, layouts and comments.

Type2:Type2 clones are syntactically identical fragments except

for variation in identifiers, literals, types, whitespace, layout and
comments.

Type3:Type3 clones are basically the copied fragments with

further modifications such as changed, added or removed

statements, in addition to variations in identifiers, literal, type,

whitespaces, layout and comments.

Type4:Type4 clones are those in which two or more code

fragments that perform the same computation but implemented

through different syntactic variants.

V. OVERVIEW OF CLONE DETECTION TECHNIQUES:

The detection of code clones is a two phase process which

consists of a transformation and a computation phase. In the first

phase we use the source text which is transformed into an
internal format which allows the use of more efficient

comparison algorithm. In the second comparison phase the

actual matches are detected. So it is necessary to classify the

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 45 | P a g e

detection techniques according to their internal format [4]. The

overview of code clone detection techniques are as follows:

A. String Based

String based approach uses these two phases i.e., transformation

and comparison algorithms which makes the string based

approach independent of the programming language [4].String

based approach is known as text based technique which use no

transformation or normalization on the source code before the

actual comparison [3]. String based comparison are of two

types:

1. Simple line Matching: In this simple line matching

technique only minor transformations are done using string

manipulations operations .Typical transformations are

removal of white spaces and empty lines. During the

comparison phase all lines are compared with each other

using string matching algorithm. Before comparing all the

lines, large search space which is reduced using hashing

buckets as all the lines are hashed into one of n possible

buckets then all pairs in the same bucket are compared.

2. Parameterized Line matching: This is another technique

for comparison of strings which detects both identical as
well as similar code fragments. Identifier-names and literals

may change when cloning a code fragment; this change is

considered as changeable parameters. To perform such

parameterization, the set of transformations is extended with

an additional transformation that replaces all identifiers and

literals with one, common identifier symbol like “$”. Due to

this additional substitution the comparison becomes

independent of the parameters.

B. Token Based

Token Based techniques use transformation algorithm2 by

constructing a token stream from the source code, so lexical
analysis is done. Lexical approaches begin by transforming the

source code into a sequence of lexical “tokens” using compiler-

style lexical analysis. The sequence is then scanned for

duplicated subsequences of tokens and the corresponding

original code is returned as clones. This technique helps to find

type1 and type2 clones. As syntax is not taken into account,

clones found by token-based techniques may overlap different

syntactic units [2].Efficient token-based clone detection is based

on the suffix tree which is a representation of a string as a

ordered tree data structure that is used to store an array where

keys are strings [3].

Parameterized Matching With Suffix Trees

2 Transformations are done by using Pretty printing (reorganization) of the

source code of different layouts, removal of comments, spaces, tokenization,

parsing, generating PDG, and normalizing identifiers.

It consists of three consecutive steps manipulating a suffix

tree as internal representation. Firstly, a lexical analyzer passes

over the source text transforming identifiers and literals in

parameter symbols. One symbol always refers to the same

identifier, literal or structure. This transformed source text is

known as parameterized string or p-string. Secondly, when the
p-string is constructed, it is checked whether the two sequences

in the p-string are a parameterized match or not by using some

criterion. Two strings are parameterized match if one can be

transformed into the other by applying a one-to-one mapping

renaming the parameter symbols. An additional encoding is

necessary to verify this above criterion .In this encoding, each

first occurrence of a parameter symbol is replaced by a 0. All

later occurrences are replaced by the distance since the previous

occurrence of the same symbol. So it is observed that when the

two sequences have the same encoding, they are same except for

a systematic renaming of the parameters symbols. When the

lexical analysis is done, a data structure called a parameterized
suffix tree also called as p-suffix tree which helps in more

efficient detection of maximal, parameterized matches. Thirdly,

find the maximal paths in the p-suffix tree that are longer than a

predefined character length [4].

C. Tree Based

In the tree-based approach a program is converted into a

parse tree or abstract syntax tree (AST) with the help of any

language parser to yield syntactic clones [1]. The parse tree

contains the complete information about the source code. In this

approach similar sub trees are the searched in the tree with some
tree matching techniques and the corresponding source code of

the similar sub trees are returned as a clone pairs and clone

classes. To find the clones by using abstract syntax tree we

compare each sub tree to each other sub tree. For comparison of

sub trees use a hash function3.The similarity metrics measures

the fraction of common nodes of two trees [3]. To find the

syntactic units, perform the decomposition of resulting type-

1/type-2 token sequence from the serialized AST. The serialized

AST is generated by parsing the program. There is a new

approach similar to AST for finding the syntactic differences

between two versions of the same programs by generating a

parse tree for both the versions of the programs. AST based
approach disregards the information about identifiers, ignores

data flows. This limitation of AST based approach is improved

by the PDG based approach by considering the semantic

information of the source and it also contains the control and

data flow information of the program.

VI. CONCLUSION

Software clone is a phenomenon in large software system. It
is usually caused by programmer’s copy and paste activities.

The reason for the existence of clones in the source code is that

3 Hash function partitions the AST into similar sub trees.

IJRECE VOL. 2 ISSUE 4 OCT-DEC 2014 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 46 | P a g e

making a copy of code fragment simpler and faster than writing

it from the scratch. Sometimes programmers does not

understand the program and re-implement the same

functionality. Another reason for code cloning is a time limit

that is assigned to the developer to finish the project in that case

programmer copy and paste the code and update it according to
the new requirements.

Although it seems to be simple and effective method these

duplication activities is usually weak documentation that causes

a number of negative effects on the quality of the software

system and increases the amount of code to be maintained.

Duplication also increases the defect probability and resource

requirements. Code clone detection is an active research area

with plenty of work in detecting and removing the clones from

the software system.

After analyzing various code clone detection techniques i.e.,

string based, token based and tree based it is concluded that

these techniques helps us to remove the complexity and big
structure of the software system. The analysis based token-suffix

trees offers several advantages over other techniques. It scales

very well because of its linear complexity in both time and

space. Token based analysis is more reliable and independent of

the layouts, yields syntactic clones. AST is more expensive than

generation of a token sequence as AST nodes are visited many

times both in the comparison within a partition and across

partitions because the same node could occur in a sub tree

subsumed by a larger clone contained in a different partition.

This review paper is focused on the technique that helps to

check and evaluate the code thoroughly so that unusable
(duplicate) code can be reduced.

VII. REFERENCES
[1] Chanchal Kumar Roy and James R. Cordy.(2007,September).A

Survey on Software Clone Detection Research.In Natural

Sciences and Engineering Research Council .

[2] Basit,H.A.,&Jarzabek,S.(2007,September).Efficie--nt token

based clone detection with flexible tokenization.In Proceedings

of the 6th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on the

foundations of software engineering(pp.513-516).ACM.

[3] Koschke,R, Falke,R., & Frenzel,P. (2006, October). Clone

Detection using abstract syntax suffix trees. In Reverse

Engineering, 2006 .WCRE’06.13th working Conference on

(pp.253-262).IEEE.

[4] Gahlot, Manisha .Comparative Analysis of Tree-Based and

Text-Based Technique for Code Clone Detection. International

Journal for Advance Research In Engineering and Technology,

Vol.2, Issue II, Feb, 2014.

[5] Rysselberghe, F.V., & Demeyer,S.(2004, September).

Evaluating clone detection techniques .In Proceedings of the

19th IEEE international conference on Automated software

engineering (pp.336-339).IEEE Computer Society.

 [6] Smith,R.,& Horwitz,S .Detecting and measuring similarity in

code clones.In Proceedings of the International workshop on

Software Clones(IWSC).

 [7] Bari,M.A.,& Ahamad,S.(2011).Code Cloning: The Analysis,

Detection and Removal.International Journal of Computer

Applications, 20.

