
IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1063 | P a g e

Malware Detection Techniques and it’s Classification: A

Survey
1Mahendra Deore, 2U V Kulkarni

1Dept of Computer Engineering, Cummins College of Engineering for Women, Pune-41152.
2Dept of Computer Science & Engineering, SGGS Institute of Engineering & Technology, Nanded-431066

Abstract-A recent cyber security industry report says that

nearly 20% of enterprise computers are hosting some type

of malware. It has become the need of time to mitigate

malware. With improvisation in malware design, mutation

characteristics like polymorphism and metamorphism are

introduced, because of which there is enormous growth in

the different malware sample variants. Antivirus software

prevents damage from known malware families, having

signatures. Different malware classes might have different

actions associated to remove or prevent the malware. Hence,

family or class of the malware should be correctly

identified. However, the new malware variants do not have

recognized signatures. Thus, we need to classify it based on

some features. Machine learning, which is an ever growing

field in computer science, can be effectively used here.

Based on the behavioral patterns and previously observed

traits in any malicious code, similarities can be identified by

means of machine learning algorithms. Malwares can be

categorized into classes by different classification

algorithms. To classify malware, there are different types of

analyzing techniques like static, dynamic and hybrid

analysis approaches. Work related to all three approaches is

surveyed thoroughly in the paper. In the end, we have our

proposed system where we intend to classify malware into

their respective classes using feature extraction and

classification algorithms like Random forest, Support vector

machine, XGBoost.

Keyword-Malware;Classification; Static analysis; Dynamic

analysis; Machine learning; Obfuscation;Hybrid analysis.

I. INTRODUCTION

Cyber threat increases every year. There was a security

incident in the past year reported by some respondents to the

2015 survey of US State of cybercrime [1] by PwC. In

2015, more than 700 million data records were jeopardized

as reported by Gemalto [2]. According to the Crime survey

of 2011 by PwC [3], cyber crime has risen eventually to

become a major threat.

A malware is software that disrupts the computer

or different operations. It can gather sensitive data from the

computer. Gaining access to private computers or displaying

unwanted advertisements is another possible functionality of

malwares. Intentions of malware can be stealing or spying

on computer users without them knowing. It might also be

designed to sabotage payments. Malware can be disguised

as a benign file or might be embedded in non-malicious

programs.

A recent example of a malware attack experienced

worldwide is the WannaCry crypto worm ransomware

attack in May 2017. WannaCry spread rapidly across a

number of computer networks over 150 countries

worldwide according to [4]. Microsoft Windows was the

operating system that was targeted and data encryption was

done followed by demanding ransom payments using Bit

coin.

Enormous amounts of malware variants are generated daily

because of advancements in malware creation techniques.

Techniques like environmental awareness can detect

underlying environment and execute only if the

environment is some real environment and not a virtual one.

So, it might be able to bypass cuckoo sandbox. Some

malwares execute only when the system clock timing

matches a certain time. The timing is hardcoded in the

executable. Some malwares bypass the malware blacklists

of common antivirus software’s [5]. Other malwares are

created by techniques like obfuscation which hides

implementation details of the whole malware file by

obfuscating. Polymorphism and metamorphism create

malwares in bulk.

To eradicate the threat from malware, an analysis is required

to understand the behavior of such malicious files and how

this behavior differs from the normal or benign files.

Malware detection is a technique in which, based on the

behavioral differences, files with malicious intent can be

identified. Since traditional signature-based malware

detection approaches [6] fail to detect packed or obfuscated

malware, features of the malware samples collected using

behavior analysis are used. Also, because of the similarities

in the behavior or attacking patterns of certain malware,

they are grouped into families. Classification is a technique

by which malware samples can be classified to their

respective family for easier analysis. Some of these families

are Kelihos [7], Ramnit [8], Tracur [9], Vundo [10],

Lollipop [11], Gatak [12], etc. Malware classification can be

using various machine learning algorithms.

II. LITERATURE SURVEY

Malware samples can be analyzed and classified using a

signature-based approach or anomaly-based approach.

Either of these approaches can be implemented to analyze

malware using Dynamic, Static or Hybrid analysis.

In dynamic analysis, we analyze the file that

contains malware by executing it in a real or virtual

environment and identifying the patterns and the way the

malware has affected the system. Mamoun Alazab et al

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1064 | P a g e

[13], malware is detected by the dynamic analysis of the

samples where they have considered the frequency of API

calls as their feature. The proposed system unpacks malware

and disassembles the binary executable so that it can

retrieve the assembly code. The assembly program is further

used to pull out the API calls from the code and also some

relevant machine code is extracted. These features are used

in combination. Finally, they have mapped API calls with

MSDN library to analyze the malicious code. Based on the

features they have used Similarity-based detection methods

for identifying unknown malware and classifying them into

their respective families. The classification is carried out by

utilizing 8 robust classifiers viz. Naive Bayes Algorithm,

Sequential Minimal Optimization Algorithm with 4

different kernels:SMO– PolyKernel, SMO - Normalized

PolyKernel, SMO – Puk, and SMO- Radial Basis Function,

k−Nearest Neighbor Algorithm,Backpropagation Neural

Networks Algorithm and J48 decision tree. Their

experimental result has attained the accuracy of 98.5%. The

approach detects zero-day malware attacks [14]

successfully.

However, another approach using API calls in [15] uses

extraction of API call features from executables and

applying pattern recognition to differentiate between

malicious and benign files by using an automated tool

running in a virtual environment. Their detection is based on

detection based on behavioral feature analysis. They have

extracted both malware and clean ware binary files to

classify into malware and clean warm and further

classification of malware into its families. The 4

classification algorithms namely SVM, Random forest,

Decision table and IBI were used for classification. The

methodology proposed for distinguishing malware from

clean ware using a 2-class classification model had an

accuracy of 97.3% and their malware family classification

model attained the accuracy of 97.4%. This method

provides an effective defense against zero-day attacks.

But the major disadvantage of dynamic analysis is that it

increases overhead because of execution time for every data

sample. Thus, with an increase in the size of the data set

there is decrease in efficiency in terms of time complexity.

This can be overcome using static analysis. Static analysis is

a type of analysis done by examining the executable file

without actually having to execute it. Visual inspection is

used to scrutinize the code eliminating the need to execute

it.

In [16], Deguang Kong et al. use static analysis for

classification of malware. During their training phase, to

obtain the structural information from a malware program

they disassembled the code to extract the function call graph

as a feature. The more emphasis was given on function call

graph because it represents the calling relationship among

the functions, gives an overall idea about the structure of

malware program. Each vertex of function call graph

represents a local function and for each one of them, they

have extracted 6 attributes such as Opcode, API, memory,

IO, Register, and Flag. After the feature vector was created

the automated classification was done. Automated

classification of malware requires the computation of the

distance between the malware instances. Based on the pair

wise malware distance the ensemble of classifiers undergoes

the learning process. They are trained on this basis so that

they can classify the new malwares correctly. The

classification algorithms were k nearest neighbor, Support

Vector Machine and their system claims the accuracy to be

improvised due to the use of the ensemble learning.

The system proposed by X. Hu et al. [17] is an approach to

classify malware based on their static features. Before

feature extraction, the data was pre-processed where they

have reconstructed the PE headers. The features such as

machine instructions and AV label were extracted and an

aggregated feature vector was created using these. They

have trained and optimized their model and have compared

the classification algorithms such as a Weighted nearest

neighbor, Logistic regression, and Support Vector Machine

and Random forest. The best accuracy for their datasets was

obtained by Random forest classifier. They have also used a

combination of hashing kernel that helped in reducing the

dimensionality of the feature vector which ensured

scalability and accuracy. Their experimental results state an

accuracy of 99.8% using five-fold cross-validation with a

log loss (performance metrics measure) value of 0.0258.

Whereas [18] is a work by Kevadia Kaushal, which uses

static analysis approach to detect metamorphic malware. It

does not use the signature-based method for malware

detection. Their proposed system extracts API calls from the

executable and statically analyzes them. The frequency

count of API calls is used to generate the feature vector.

This method of API call’s frequency count is called SAVE.

In this method, the signature of malware is determined from

the API call sequence. Each sequence is denoted by a

vector. Their method includes 4 stages. In the first stage, the

binary executables are disassembled and assembly code is

retrieved. It is one with the help of IDA Pro Dissembler

[19]. It also automatically recognizes API calls for various

compilers. In the second stage, the features are extracted. In

the third stage, the frequency is calculated. In the fourth

stage, a similarity measurement is done for unknown binary

executable. And with the help of similarity measurement,

the malware is detected.

Hassan Takabi et al.[20] Proposed a heuristic method for

malware detection. They used a unique structure in PE files

i.e. Dynamic-link library dependency tree. Firstly

dependency trees are extracted from benign as well as

malicious PE files which are then converted into string

encoding formats. After that with the help of closed frequent

trees, feature vectors are constructed. And the classifier used

is Random forest classifier.

Static analysis is a more thorough approach and is cost-

efficient. However, a subtle flaw or vulnerability can get too

complicated for static analysis alone to reveal which is why

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1065 | P a g e

*

e

it is often used in conjunction with dynamic analysis. This

approach is called hybrid analysis.

Elhadi et al.[21] Proposed the hybrid analysis is used for

the classification of malware. Firstly they’ve undergone

dynamic analysis and then the static features are also

examined. The file which is suspected of having malware is

executed in the safe and controlled environment and then

API calls are extracted using kernel hooking. If the file is

packed then it is unpacked first. The static part includes

construction of call graphs with the help of the API calls

extracted and the resources of the OS used by these API

calls. The nodes in the graph represent: 1. API calls 2.

Operating system resource. This graph is decreased by

removing some nodes. Only those API calls which are used

by the majority of malware and others are removed which

results in decreasing the sizes of the constructed graphs.

Databases are created using nodes on the graph. And then

with the help of similarity algorithms, two graphs are

compared and malware is classified.

One more method of hybrid analysis for malware

classification was given by Taegyu Kim et al. [22]. This

system is divided into three parts i.e. Analyzer, Converter

and Resource Manager. Convertor does the task of

unpacking, decompiling and structuring and converts the

input binaries into SCFSs. These modified SCFSs are

passed on to the analyzer. It is the analyzer which detects

whether the code is malicious by measuring set similarities

with the already existing samples of malware in databases.

Similarity measurement is done with the help of SCFSs

obtained from converter. The analyzer includes three

components: malware databases, C2C matcher, and I-filter.

All three of them work together in the detection of malware.

VMs are used by convertors and analyzers for performing

their functions. Each VM does the conversion and

analyzing. However, their workloads change situation-wise.

It is the job of the resource manager to allocate resources.

III. MALWARE CREATION TECHNIQUES

For generating malware, the attackers use different ways

varying from writing a small piece of code to complex

algorithms that adversely affect the machines to create

various kinds of malware such as polymorphic,

metamorphic malware, obfuscated malware. The malware

that are created by using these basic techniques can be

recognized easily by extracting basic features and

characteristics. The major techniques that attackers use to

create malware are polymorphism [23], metamorphism [24]

and obfuscation [25].

In polymorphic malware, there is a malware code

whose syntax mutates itself with each iteration but the

semantic remains the same. Various common methods to

create polymorphic malware are using encryption, data

appending/ pretending but the limitation that the decrypted

code essentially remains the same makes the polymorphic

malware easy to detect using memory-based signature

detection. Nur Syuhada Selamat et al. [26] Has given a

method to detect polymorphic malwares using based on files

dropped by malware. They have used dynamic tool for

behavior analysis.

Metamorphic malware is rewritten with each iteration. Each

succeeding code version is different from the preceding one.

This malware automatically codes them each time they are

distributed or propagated. Methods to create metamorphic

malware are by adding the varying length of NOP

instructions, permuting the registers that are already in use,

adding additional unnecessary instructions in the code,

adding irrelevant loops that acts as dead piece of code and

does nothing, reordering the functions that are written in the

code, static data structure modification. The metamorphic

malware was detected by automated code identification and

analysis of memory snapshots. Duaa Ekhtoom et al. [27]

Uses a compression based approach to identify the

metamorphic malware on the basis of its similarity

measurement with respect to the other malware variants

taken from 13 different families.

Obfuscated malware includes the combination of both

polymorphic and metamorphic malware technique. It is used

to generate multiple variants of code, with indistinguishable

functions. The obfuscated code has identical functions but

different morphs (smallest constituent). Identifying

obfuscated code is a very difficult task. Some of the

techniques to generate obfuscations are appending garbage

code (adding futile instructions), register renaming

(replacing the register in use with the register which is not

in use), subroutine reordering (change the order of

subroutines), dead code insertion (adding some code which

accomplish nothing), substitution of equivalent instruction

(replacing xor eax, ebx with sub eax, ebx), code

transportation (adding the unconditional jump statements in

the program). Remote execution of these different types of

malware is done by the attacker to achieve their intentions.

Malware obfuscation has made it very difficult for the

signature-based antivirus software’s. In Scott Treadwell et

al. [28] has proposed a heuristic based approach to detect

the obfuscated malware. They have analyzed certain

features such as section names, entry point location, import

functions count, DLL characteristics, PE characteristics and

various other features as well. They have generated the risk

score by performing static analysis on Windows PE file.

Based on the threshold value which has been decided and

the risk score obtained the actions to be performed are

justified.

IV. MALWARE DETECTION AND

CLASSIFICATION TECHNIQUES

The steps to be followed for malware detection are:

I. Analyze the executable to detect if it has malicious code

present or not (feature extraction) II. If it has a malicious

code, then assign most appropriate malware family it

belongs to (classification mechanism)

4.1 Malware detection

 Malware are detected using two major techniques:

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1066 | P a g e

A. Signature-based detection

B. Anomaly-based detection

 4.1.1 Signature-based detection

Signature-based detection is an old technology which used

to be popular in the 1990s, and is extremely effective in

identifying previously known threats. Signature of the

malware is a code string or a pattern of actions

corresponding to a known attack. There is a database

maintained of such signatures against which network traffic

and files (also known as blacklists) are checked to see if any

of the known threats are present in them. An alert is issued

if there are any threats present and the mitigation process is

triggered. The problem with this detection which is based on

knowledge entirely is that it cannot detect the malicious

codes that do not have any signature like new malware

variants created in bulk by advance techniques and the scale

of this threat makes it harder to keep count and list of such

signatures up to date. A signature-based detector uses

distinct signatures for every malware variant, thus leading to

an exponential increase in the size of the database of

signatures.

Abhay Kumar Sahoo et al. [29] Proposes a system that

detects malware present in unstructured data in the Hadoop

Distributed file system. The system uses map reduces to

detect malware in data stored in HDFS. Mila Dalla Preda et

al. [30] Explains how signature based malware detection

approach is syntactical and thus is not feasible for

obfuscated malware. Thus, making semantic behavior based

approach an alternative.

4.1.2 Anomaly-based detection

This detection uses two phases.

1) Training phase: During this phase, the detector learns

the normal or usual program behavior. The detector

might learn behavior of the PUI or the host or a

combination of both.

2) Testing phase: Based on the learned behavior, the

programs that violate the normal execution flow are

considered to be anomalous and are identified as

malicious.

It’s advantageous to use anomaly-based approach because

of its ability of detecting zero-day attacks i.e attacks that are

not known by the malware detector previously. However,

there can be a possibility, where a program can exhibit

unseen behavior but, does not have any malicious intent,

thus raising false positives. This technique was used by R.

Sekar et al. [31] in which a Finite State Automata was

created to detect anomaly. Program counter in the PUI is

represented by nodes that are created in FSA. Transitions in

the automata are given by system calls. Another approach

by K. Wang et al. [32], a payload based (PAYL) anomaly

detection approach is presented. The model computes byte

distribution for normal traffic. The new packet’s payload is

checked for similarity with its corresponding model. Large

distance from the normal model will mark the packet as an

anomaly.

The above techniques can apply any one of the following

three approaches.

Static analysis, In static analysis the actual execution of

program is not required. Various information obtained using

static methods are Opcode sequences (extracted from

disassembling the binary file), byte code sequence n-grams,

control flow graphs, syntactic library calls. Such feature sets

are used in combination or individually for detecting

malware.

Table.1: A summary of systems that employed static malware analysis

Dynamic analysis, In the dynamic analysis, the

behavior of the program is monitored based on analyzing

the API calls to know how the program interacts with the

operating system. In dynamic analysis, one is supposed to

execute the program most probably in a virtual

environment. Information like registry changes, file system,

memory writes, API calls, system calls, system change

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1067 | P a g e

detection, process monitoring are obtained from dynamic analysis.

Table.2: A summary of systems that employed dynamic malware analysis

Hybrid analysis, It is the combination of both static

and dynamic analysis. It uses features from both the

methods and tries to identify the malicious code present in

the system.

Table.3: A summary of systems that employed hybrid malware analysis

4.2 Malware classification techniques

Classification is done using various machine learning

algorithms [43] which takes the training data and based on

that data it builds a classifier. Once the classifier is built the

testing data is given to it for classification. Based on how

correctly the testing data is classified the accuracy of the

model is determined. Some of the major classification

algorithms are given below

4.2.1 Logistic Regression

Logistic regression [44] is a method based on statistics to

analyze the data set. Outcome of this model is determined

by one or more independent variables. Only two possible

outcomes can be there i.e. is it a binary classifier. It is also

called as log it regression or log it model. The output of

logit model can take only two values, 0 and 1, which

represents pass or fail respectively. The aim is finding a

model which describes relationship between characteristics

of interest and independent variables in the best way. The

formula to predict logit transformation where,

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1068 | P a g e

p - probability of presence of the required characteristic is

given by:

The logged odds are given by:

Thus, logit(p) is given by:

4.2.2 Naive Bayes

The Naive Bayes classification algorithm [45] is based on

the Bayesian theorem. Bayes theorem states the relationship

as below

This relationship can be simplified as

Thus, Naive Bayes classifier predicts probability which tells

if the given record or data point belongs to some class for

each class i.e. the probability that given record or data point

belongs to a particular class. The class with maximum

probability is the most likely class. Naive Bayes is called a

naive approach because it assumes that all the features being

used are unrelated to each other.

4.2.3 Random Forest

Random forest employs ensemble learning for classification

which uses decision trees. The decision trees are constructed

during training phase. The modal class of the classes or

regression of individual trees is returned as result. Random

forest algorithm is like the bootstrapping algorithm with

Decision tree model. The Random Forests approach uses the

construction of multiple decision trees [46]. The only

difference is that instead of using Gini index[47] and

information gain[48] parameters, the root node selection is

done randomly forming a forest of multiple decision trees.

The more the number of trees in the forest, the more

accurate are the results obtained.

4.2.4 Support Vector Machine (SVM)

Support vector machine [49] is a type of supervised learning

approach. In SVM, every data item is plotted in an n-

dimensional space as a point. Every axis is labeled with a

feature. Classification Fourth step, applying similarity

measurement for unknown binary executable: is performed

by the hyper plane that differentiates both the classes very

well, the dimensions of this hyperplane being n-1 for n-

dimensional space. There can be many such hyperplanes

possible. The basic rule to select the best hyperplane is the

one that has the maximum margin and best differentiates

between the elements belonging to two different classes. For

a linear classifier identified by the set of pairs (w,b),

identifying w,b which satisfies the following equation will

give the optimum hyperplane.

4.2.5 k-Nearest Neighbor (kNN):

A lot of training data is fed to this algorithm in the learning

phase where the kNN algorithm [50] plots the data samples

according to their classes in an n-dimensional space.

Whenever test data samples are given to the algorithm, the

algorithm plots the samples in the same n-dimensional space

and searches for its nearest k neighbors from the training

samples based on distance measures like Euclidean distance

given as

In this algorithm the selection of k plays a very important

role.

4.2.6 XGBoost

XGBoost [51], i.e. Extreme Gradient Boosting is an

algorithm which is used for supervised learning problems. It

is based on tree ensemble learning using CART [52]

(Classification and Regression Trees). Multiple trees are

used here because a single tree might not always yield the

best results. Every leaf node of this tree is one of the distinct

classes, that the data is supposed to be classified into and

has a prediction score (probability that the given data

sample belongs to this class). Since, there are multiple such

trees, sum of the prediction score of every tree is calculated

and final score is assigned to every leaf node. This is same

as random forest algorithm. However, the difference is that

boosted trees are trained differently.

Gradient Boosting starts with a not very deep tree and will

model the original target. After the first round of

predictions, errors are found out and passed as a target to the

second tree. The second tree will model errors from the first

tree, find out new errors and pass those as a target to the

third tree and the process will continue.

The tree ensemble model can be mathematically written as:

Where,

f - Functional space F contains function f

F - It is a set of all the possible classification and regression

trees(CARTs)

K - Number of trees.

V. PROPOSED SYSTEM

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1069 | P a g e

Based on the study of the different classification methods

and features, our proposed system uses static analysis

technique to classify the malware samples. The dataset

consisting of malware samples considered for classification

is from the Kaggle BIG 2015 challenge [53].

In this approach, the emphasis is given to the effective

selection of features so as to decrease the additional

computational overhead. This makes it beneficial for

handling huge amounts of data. Only the most relevant

features are considered. There are two stages. Firstly, the

essential features like metadata, symbols, Opcode, registers,

sections, entropy, data define and control flow graph are

extracted and a feature vector is created..This feature vector

is given to the classifier which uses xgboost, random forest

and other machine learning algorithms to classify the

samples in their 9 major malware families shown in fig1.

We are currently working on building this system.

Fig.1: The system architecture of proposed system.

VI. CONCLUSION

Advances in malware creation techniques like

polymorphism, metamorphism, and obfuscation pose a

threat to networked organizations and individuals. The

signature-based approach for malware classification can

prove to be inefficient to identify new malware variants

created by the above techniques because of having

unrecognized signatures. Hence, research is being done in

behavior-based analysis of the executable file samples. The

analysis can be carried out either statically or dynamically,

or using the hybrid approach which uses both the

approaches that is static analysis and the dynamic analysis

in conjunction. The performances of each of all these

methods are compared and evaluated in this paper. Research

works related to all of the above approaches are surveyed in

the paper. Based on the research, we also propose a system

to classify the malware samples using static analysis with

optimum features to increase accuracy of classification for

Big Data.

Future scope of the proposed model can be classifying the

misclassified malware samples using dynamic approach:

Misclassified files if any can be fed to a dynamic classifier

and can be classified based on the behavioral analysis. Also,

the Distributed programming can be used to enhance the

speed of operation: If the computation is distributed across a

network, the high-performance system will be achieved for

even huge datasets (Big Data).

REFERENCES
[1] https://www.pwc.com/us/en/increasing-it-

effectiveness/publications/assets/2015-us-cybercrime-

survey.pdf

[2] https://www.gemalto.com/press/pages/gemalto-releases-

findings-of-2015-breach-level-index.aspx

[3] https://www.pwc.com/gx/en/economic-crime-

survey/pdf/GlobalEconomicCrimeSurvey2016.pdf

[4] https://www.tripwire.com/state-of-security/security-data-

protection/the-four-most-common-evasive-techniques-used-

by-malware/

[5] http://malware.wikia.com/wiki/WannaCry

[6] https://pdfs.semanticscholar.org/646c/8b08dd5c3c70785550e

ab01e766798be80b5.pdf

[7] https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?Name=Back

door:Win32/Kelihos.F

[8] https://www.symantec.com/security_response/writeup.jsp?do

cid=2010-011922-2056-99

[9] https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?Name=Win 32%2FTracur

https://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2015-us-cybercrime-survey.pdf
https://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2015-us-cybercrime-survey.pdf
https://www.pwc.com/us/en/increasing-it-effectiveness/publications/assets/2015-us-cybercrime-survey.pdf
https://www.gemalto.com/press/pages/gemalto-releases-findings-of-2015-breach-level-index.aspx
https://www.gemalto.com/press/pages/gemalto-releases-findings-of-2015-breach-level-index.aspx
https://www.pwc.com/gx/en/economic-crime-survey/pdf/GlobalEconomicCrimeSurvey2016.pdf
https://www.pwc.com/gx/en/economic-crime-survey/pdf/GlobalEconomicCrimeSurvey2016.pdf
http://malware.wikia.com/wiki/WannaCry
https://pdfs.semanticscholar.org/646c/8b08dd5c3c70785550eab01e766798be80b5.pdf
https://pdfs.semanticscholar.org/646c/8b08dd5c3c70785550eab01e766798be80b5.pdf
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Back
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Back
https://www.symantec.com/security_response/writeup.jsp?docid=2010-011922-2056-99
https://www.symantec.com/security_response/writeup.jsp?docid=2010-011922-2056-99
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1070 | P a g e

[10] https://www.symantec.com/security_response/writeup.jsp?do

cid=2004-112111-3912-9

[11] https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?Name=Adware:Win32/Lollipop

[12] https://www.symantec.com/security_response/writeup.jsp?do

cid=2012-012813-0854-99

[13] Mamoun Alazab et al., “Zero-day Malware Detection based

on Supervised Learning Algorithms of API call Signatures”,

2011, Australian Computer Society, vol. 121, 2011.

[14] https://en.wikipedia.org/wiki/Zero-day_(computing)

[15] Ronghua Tian et al. “Differentiating Malware from

Cleanware Using Behavioural Analysis”, Malicious and

Unwanted Software (MALWARE), 5th International

Conference, 2010.

[16] Deguang Kong et al. ,”Discriminant Malware Distance

Learning on Structural Information for Automated Malware

Classification”, 19th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp.

1357-1365, 2013.

[17] X. Hu et al., ”Scalable malware classification with

multifaceted content features and threat intelligence”, IBM

Journal of Research and Development, vol. 60, issue 4,

2016.

[18] Kevadia Kaushal et al., ”Metamorphic Malware Detection

Using Statistical Analysis”, International Journal of Soft

Computing and Engineering ISSN: 2231-2307 (Online), vol.

2, issue 3, 2012.

[19] https://www.hex-rays.com/products/ida/

[20] Hassan Takabi et al., “DLLMiner: structural mining for

malware detection”, Security and Communication Networks

vol. 8,issue 8,pp 3311-3322, 2015.

[21] Ammar Ahmed E. Elhadi et al., “Malware Detection Based

on Hybrid Signature Behaviour Application Programming

Interface Call Graph”, American Journal of Applied

Sciences, vol. 9, pp. 283-288 , 2016.

[22] Taegyu Kim et al., “Malfinder: Accelerated Malware

Classification System through Filtering on Manycore

System”, Information Systems Security and Privacy, 2015.

[23] https://www.vadesecure.com/en/polymorphic-malware/

[24] https://www.blackhat.com/presentations/bh-usa-

08/Hosmer/BH_US_08_Hosmer_Polymorph

ic_Malware.pdf

[25] https://blog.malwarebytes.com/threat-

analysis/2013/03/obfuscation-malwares-best-friend/

[26] Nur Syuhada Selamat et al.,“Polymorphic Malware

Detection”, IT Convergence and Security (ICITCS), 6th

International Conference, 2016.

[27] Duaa Ekhtoom et al. “A Compression-Based Technique to

Classify Metamorphic Malware”, Computer Systems

and Applications (AICCSA), 2016

[28] Scott Treadwell et al.,”A heuristic approach for detection of

obfuscated malware”, Intelligence and Security Informatics,

2009.

[29] Abhay Kumar Sahoo et al.,”Signature based malware

detection for unstructured data in Haddop”, Advances in

Electronic, Computers, Communications (ICAECC)

International Conference, 2014.

[30] Mila Dalla Preda et al., “A Semantics-Based Approach to

Malware Detection”, Volume 42 Issue 1, pp. 377-388,

January 2007.

[31] R. Sekar et al. “A fast automaton-based approach for

detecting anomalous program behaviors”, In IEEE

Symposium on Security and Privacy, 2001.

[32] K. Wang et al., “Anomalous payload-based network

intrusion detection”, in Proceedings of the 7th International

Symposium on (RAID), pages 201–222, September 2004.

[33] Nir Nissim et al., ”Novel active learning methods for

enhanced PC malware detection in windows”, Elsevier,

Expert Systems with Applications, vol. 41, Issue 13, pp

5843-5857, 2014.

[34] Masoud Narouei et al., “DLLMiner: structural mining for

malware detection”, Security and Communication Networks,

vol. 8, issue 18, 2015.

[35] Mehadi Hassen et al.,”Malware classification using static

analysis based features”, Computational Intelligence (SSCI),

2017.

[36] M. Shankarapani et al., ”Kernel Machines for Malware

Classification and Similarity Analysis”,Neural Networks

(IJCNN),The International Joint Conference,2010.

[37] Mohammad Imran et al.,”Using Hidden Markov Model for

Dynamic Malware Analysis: First Impressions”, Fuzzy

Systems and Knowledge Discovery (FSKD), 12th

International Conference, 2015.

[38] Andrii Shalaginov et al.,”Automated intelligent multinomial

classification of malware species using dynamic behavioural

analysis”,Privacy, Security and Trust (PST),14th Annual

Conference,2016.

[39] Oscar Somarriba et al.,”A Collaborative Framework for

Android Malware Detection using DNS & Dynamic

Analysis”, Central America and Panama Convention

(CONCAPAN XXXVll), 2017.

[40] Mohamad Fadli et al.,, ”An Approach for Malware Behavior

Identification and Classification”,Computer Research and

Development (ICCRD), vol.1, 2011.

[41] R. J. Mangialardo et al., “ Integrating Static and Dynamic

Malware Analysis Using Machine Learning”, IEEE Latin

America Transactions ,vol. 13, issue 9, 2015..

[42] Sean Kilgallon et al., ”Improving the Effectiveness and

Efficiency of Dynamic Malware Analysis with Machine

Learning”, Resilience Week (RWS), 2017.

[43] https://www.toptal.com/machine-learning/machine-learning-

theory-an-introductory-primer

[44] https://www.medcalc.org/manual/logistic_regression.php

[45] http://dataaspirant.com/2017/02/06/naive-bayes-classifier-

machine-learning/

[46] https://dataaspirant.com/2017/01/30/how-decision-tree-

algorithm-works/https://www.kaggle.com/c/malware-

classification/

[47] http://www.learnbymarketing.com/481/decision-tree-flavors-

gini-info-gain/

[48] https://en.wikipedia.org/wiki/Information_gain_in_decision_

trees

[49] https://www.analyticsvidhya.com/blog/2017/09/understaing-

support-vector-machine-example-code/

[50] https://en.wikipedia.org/wiki/K-

nearest_neighbors_algorithm

[51] http://xgboost.readthedocs.io/en/latest/

[52] https://machinelearningmastery.com/classification-and-

regression-trees-for-machine-learning/

[53] https://www.kaggle.com/c/malware-classification/data

https://www.symantec.com/security_response/writeup.jsp?docid=2004-112111-3912-9
https://www.symantec.com/security_response/writeup.jsp?docid=2004-112111-3912-9
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Lollipop
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Lollipop
https://www.symantec.com/security_response/writeup.jsp?docid=2012-012813-0854-99
https://www.symantec.com/security_response/writeup.jsp?docid=2012-012813-0854-99
https://en.wikipedia.org/wiki/Zero-day_(computing)
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5655114
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5655114
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5655114
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5288520
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7523342
https://www.hex-rays.com/products/ida/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7504796
https://www.vadesecure.com/en/polymorphic-malware/
https://www.blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf
https://www.blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf
https://www.blackhat.com/presentations/bh-usa-08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf
https://blog.malwarebytes.com/threat-analysis/2013/03/obfuscation-malwares-best-friend/
https://blog.malwarebytes.com/threat-analysis/2013/03/obfuscation-malwares-best-friend/
https://www.sciencedirect.com/science/journal/09574174
https://www.sciencedirect.com/science/journal/09574174/41/13
https://onlinelibrary.wiley.com/journal/19390122
https://onlinelibrary.wiley.com/toc/19390122/8/18
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
https://www.medcalc.org/manual/logistic_regression.php
http://dataaspirant.com/2017/02/06/naive-bayes-classifier-machine-learning/
http://dataaspirant.com/2017/02/06/naive-bayes-classifier-machine-learning/
https://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/
https://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/
https://www.kaggle.com/c/malware-classification/
https://www.kaggle.com/c/malware-classification/
http://www.learnbymarketing.com/481/decision-tree-flavors-gini-info-gain/
http://www.learnbymarketing.com/481/decision-tree-flavors-gini-info-gain/
https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
http://xgboost.readthedocs.io/en/latest/
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://www.kaggle.com/c/malware-classification/data

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1071 | P a g e

BIOGRAPHY OF AUTHORS

Mahendra Deore is working as an Asst. Professor in Computer Engineering Department at

MKSSS’s Cummins College of Engineering for Women, Pune, India. He was awarded his

Master of Technology Degree from Bharati Vidyapeeth Deemed University College of

Engineering, Dhankawadi, Pune. He is a research scholar at SGGS Institute of Engineering and

Technology, under SRMTUN University Nanded. His areas of interest are Bigdata, Security and

Computer Network.

Dr. Uday Kulkarni is working as a Professor, Head in the Department of Computer Science and

Engineering at SGGS Institute of Engineering and Technology, Nanded India. He received

doctoral degree from Swami Ramanand Teertha Marathwada University, Indian 2002. He is a

recipient of a national level gold medal in the Computer Engineering Division for his research

paper “Fuzzy Hyper sphere Neural Network Classifier‟ published in the journal of Institution of

Engineers in 2004. He has published more than forty research papers in the field of Neural

Networks, Fuzzy Logic and hybrid computing systems in the reputed journals and conferences.

.

