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Abstract-A recent cyber security industry report says that 

nearly 20% of enterprise computers are hosting some type 

of malware. It has become the need of time to mitigate 

malware. With improvisation in malware design, mutation 

characteristics like polymorphism and metamorphism are 

introduced, because of which there is enormous growth in 

the different malware sample variants. Antivirus software 

prevents damage from known malware families, having 

signatures. Different malware classes might have different 

actions associated to remove or prevent the malware. Hence, 

family or class of the malware should be correctly 

identified. However, the new malware variants do not have 

recognized signatures. Thus, we need to classify it based on 

some features. Machine learning, which is an ever growing 

field in computer science, can be effectively used here. 

Based on the behavioral patterns and previously observed 

traits in any malicious code, similarities can be identified by 

means of machine learning algorithms. Malwares can be 

categorized into classes by different classification 

algorithms. To classify malware, there are different types of 

analyzing techniques like static, dynamic and hybrid 

analysis approaches. Work related to all three approaches is 

surveyed thoroughly in the paper. In the end, we have our 

proposed system where we intend to classify malware into 

their respective classes using feature extraction and 

classification algorithms like Random forest, Support vector 

machine, XGBoost. 

 

Keyword-Malware;Classification; Static analysis; Dynamic 

analysis; Machine learning; Obfuscation;Hybrid analysis. 

 

I. INTRODUCTION 

Cyber threat increases every year. There was a security 

incident in the past year reported by some respondents to the 

2015 survey of US State of cybercrime [1] by PwC. In 

2015, more than 700 million data records were jeopardized 

as reported by Gemalto [2]. According to the Crime survey 

of 2011 by PwC [3], cyber crime has risen eventually to 

become a major threat. 

A malware is software that disrupts the computer 

or different operations. It can gather sensitive data from the 

computer. Gaining access to private computers or displaying 

unwanted advertisements is another possible functionality of 

malwares. Intentions of malware can be stealing or spying 

on computer users without them knowing. It might also be 

designed to sabotage payments. Malware can be disguised 

as a benign file or might be embedded in non-malicious 

programs.  

A recent example of a malware attack experienced 

worldwide is the WannaCry crypto worm ransomware 

attack in May 2017. WannaCry spread rapidly across a 

number of computer networks over 150 countries 

worldwide according to [4]. Microsoft Windows was the 

operating system that was targeted and data encryption was 

done followed by demanding ransom payments using Bit 

coin. 

Enormous amounts of malware variants are generated daily 

because of advancements in malware creation techniques. 

Techniques like environmental awareness can detect 

underlying environment and execute only if the 

environment is some real environment and not a virtual one. 

So, it might be able to bypass cuckoo sandbox. Some 

malwares execute only when the system clock timing 

matches a certain time. The timing is hardcoded in the 

executable. Some malwares bypass the malware blacklists 

of common antivirus software’s [5]. Other malwares are 

created by techniques like obfuscation which hides 

implementation details of the whole malware file by 

obfuscating. Polymorphism and metamorphism create 

malwares in bulk. 

To eradicate the threat from malware, an analysis is required 

to understand the behavior of such malicious files and how 

this behavior differs from the normal or benign files. 

Malware detection is a technique in which, based on the 

behavioral differences, files with malicious intent can be 

identified. Since traditional signature-based malware 

detection approaches [6] fail to detect packed or obfuscated 

malware, features of the malware samples collected using 

behavior analysis are used. Also, because of the similarities 

in the behavior or attacking patterns of certain malware, 

they are grouped into families. Classification is a technique 

by which malware samples can be classified to their 

respective family for easier analysis. Some of these families 

are Kelihos [7], Ramnit [8], Tracur [9], Vundo [10], 

Lollipop [11], Gatak [12], etc. Malware classification can be 

using various machine learning algorithms. 

II. LITERATURE SURVEY 

Malware samples can be analyzed and classified using a 

signature-based approach or anomaly-based approach. 

Either of these approaches can be implemented to analyze 

malware using Dynamic, Static or Hybrid analysis.  

In dynamic analysis, we analyze the file that 

contains malware by executing it in a real or virtual 

environment and identifying the patterns and the way the 

malware has affected the system.  Mamoun Alazab et al 
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[13], malware is detected by the dynamic analysis of the 

samples where they have considered the frequency of API 

calls as their feature. The proposed system unpacks malware 

and disassembles the binary executable so that it can 

retrieve the assembly code. The assembly program is further 

used to pull out the API calls from the code and also some 

relevant machine code is extracted. These features are used 

in combination. Finally, they have mapped API calls with 

MSDN library to analyze the malicious code. Based on the 

features they have used Similarity-based detection methods 

for identifying unknown malware and classifying them into 

their respective families. The classification is carried out by 

utilizing 8 robust classifiers viz. Naive Bayes Algorithm, 

Sequential Minimal Optimization Algorithm with 4 

different kernels:SMO– PolyKernel, SMO - Normalized 

PolyKernel, SMO – Puk, and SMO- Radial Basis Function, 

k−Nearest Neighbor Algorithm,Backpropagation Neural 

Networks Algorithm and J48 decision tree. Their 

experimental result has attained the accuracy of 98.5%. The 

approach detects zero-day malware attacks [14] 

successfully. 

However, another approach using API calls in [15] uses 

extraction of API call features from executables and 

applying pattern recognition to differentiate between 

malicious and benign files by using an automated tool 

running in a virtual environment. Their detection is based on 

detection based on behavioral feature analysis. They have 

extracted both malware and clean ware binary files to 

classify into malware and clean warm and further 

classification of malware into its families.  The 4 

classification algorithms namely SVM, Random forest, 

Decision table and IBI were used for classification. The 

methodology proposed for distinguishing malware from 

clean ware using a 2-class classification model had an 

accuracy of 97.3% and their malware family classification 

model attained the accuracy of 97.4%. This method 

provides an effective defense against zero-day attacks. 

But the major disadvantage of dynamic analysis is that it 

increases overhead because of execution time for every data 

sample. Thus, with an increase in the size of the data set 

there is decrease in efficiency in terms of time complexity. 

This can be overcome using static analysis. Static analysis is 

a type of analysis done by examining the executable file 

without actually having to execute it. Visual inspection is 

used to scrutinize the code eliminating the need to execute 

it. 

In [16], Deguang Kong et al. use static analysis for 

classification of malware. During their training phase, to 

obtain the structural information from a malware program 

they disassembled the code to extract the function call graph 

as a feature. The more emphasis was given on function call 

graph because it represents the calling relationship among 

the functions, gives an overall idea about the structure of 

malware program. Each vertex of function call graph 

represents a local function and for each one of them, they 

have extracted 6 attributes such as Opcode, API, memory, 

IO, Register, and Flag. After the feature vector was created 

the automated classification was done. Automated 

classification of malware requires the computation of the 

distance between the malware instances. Based on the pair 

wise malware distance the ensemble of classifiers undergoes 

the learning process. They are trained on this basis so that 

they can classify the new malwares correctly. The 

classification algorithms were k nearest neighbor, Support 

Vector Machine and their system claims the accuracy to be 

improvised due to the use of the ensemble learning.  

The system proposed by X. Hu et al. [17] is an approach to 

classify malware based on their static features. Before 

feature extraction, the data was pre-processed where they 

have reconstructed the PE headers. The features such as 

machine instructions and AV label were extracted and an 

aggregated feature vector was created using these. They 

have trained and optimized their model and have compared 

the classification algorithms such as a Weighted nearest 

neighbor, Logistic regression, and Support Vector Machine 

and Random forest. The best accuracy for their datasets was 

obtained by Random forest classifier. They have also used a 

combination of hashing kernel that helped in reducing the 

dimensionality of the feature vector which ensured 

scalability and accuracy. Their experimental results state an 

accuracy of 99.8% using five-fold cross-validation with a 

log loss (performance metrics measure) value of 0.0258. 

Whereas [18] is a work by Kevadia Kaushal, which uses 

static analysis approach to detect metamorphic malware. It 

does not use the signature-based method for malware 

detection. Their proposed system extracts API calls from the 

executable and statically analyzes them. The frequency 

count of API calls is used to generate the feature vector. 

This method of API call’s frequency count is called SAVE. 

In this method, the signature of malware is determined from 

the API call sequence. Each sequence is denoted by a 

vector. Their method includes 4 stages. In the first stage, the 

binary executables are disassembled and assembly code is 

retrieved. It is one with the help of IDA Pro Dissembler 

[19]. It also automatically recognizes API calls for various 

compilers. In the second stage, the features are extracted. In 

the third stage, the frequency is calculated. In the fourth 

stage, a similarity measurement is done for unknown binary 

executable. And with the help of similarity measurement, 

the malware is detected. 

Hassan Takabi et al.[20] Proposed a heuristic method for 

malware detection. They used a unique structure in PE files 

i.e.  Dynamic-link library dependency tree. Firstly 

dependency trees are extracted from benign as well as 

malicious PE files which are then converted into string 

encoding formats. After that with the help of closed frequent 

trees, feature vectors are constructed. And the classifier used 

is Random forest classifier. 

Static analysis is a more thorough approach and is cost-

efficient. However, a subtle flaw or vulnerability can get too 

complicated for static analysis alone to reveal which is why 
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it is often used in conjunction with dynamic analysis. This 

approach is called hybrid analysis.  

Elhadi et al.[21] Proposed  the hybrid analysis is used for 

the classification of malware. Firstly they’ve undergone 

dynamic analysis and then the static features are also 

examined. The file which is suspected of having malware is 

executed in the safe and controlled environment and then 

API calls are extracted using kernel hooking. If the file is 

packed then it is unpacked first. The static part includes 

construction of call graphs with the help of the API calls 

extracted and the resources of the OS used by these API 

calls. The nodes in the graph represent: 1. API calls 2. 

Operating system resource. This graph is decreased by 

removing some nodes. Only those API calls which are used 

by the majority of malware and others are removed which 

results in decreasing the sizes of the constructed graphs. 

Databases are created using nodes on the graph. And then 

with the help of similarity algorithms, two graphs are 

compared and malware is classified.  

One more method of hybrid analysis for malware 

classification was given by Taegyu Kim et al. [22]. This 

system is divided into three parts i.e. Analyzer, Converter 

and Resource Manager. Convertor does the task of 

unpacking, decompiling and structuring and converts the 

input binaries into SCFSs. These modified SCFSs are 

passed on to the analyzer. It is the analyzer which detects 

whether the code is malicious by measuring set similarities 

with the already existing samples of malware in databases. 

Similarity measurement is done with the help of SCFSs 

obtained from converter. The analyzer includes three 

components: malware databases, C2C matcher, and I-filter. 

All three of them work together in the detection of malware. 

VMs are used by convertors and analyzers for performing 

their functions. Each VM does the conversion and 

analyzing. However, their workloads change situation-wise. 

It is the job of the resource manager to allocate resources.  

 

III. MALWARE CREATION TECHNIQUES 

For generating malware, the attackers use different ways 

varying from writing a small piece of code to complex 

algorithms that adversely affect the machines to create 

various kinds of malware such as polymorphic, 

metamorphic malware, obfuscated malware. The malware 

that are created by using these basic techniques can be 

recognized easily by extracting basic features and 

characteristics. The major techniques that attackers use to 

create malware are polymorphism [23], metamorphism [24] 

and obfuscation [25]. 

In polymorphic malware, there is a malware code 

whose syntax mutates itself with each iteration but the 

semantic remains the same. Various common methods to 

create polymorphic malware are using encryption, data 

appending/ pretending but the limitation that the decrypted 

code essentially remains the same makes the polymorphic 

malware easy to detect using memory-based signature 

detection. Nur Syuhada Selamat et al. [26] Has given a 

method to detect polymorphic malwares using based on files 

dropped by malware. They have used dynamic tool for 

behavior analysis. 

Metamorphic malware is rewritten with each iteration. Each 

succeeding code version is different from the preceding one. 

This malware automatically codes them each time they are 

distributed or propagated. Methods to create metamorphic 

malware are by adding the varying length of NOP 

instructions, permuting the registers that are already in use, 

adding additional unnecessary instructions in the code, 

adding  irrelevant loops that acts as dead piece of code and 

does nothing, reordering the functions that are written in the 

code, static data structure modification. The metamorphic 

malware was detected by automated code identification and 

analysis of memory snapshots. Duaa Ekhtoom et al. [27] 

Uses a compression based approach to identify the 

metamorphic malware on the basis of its similarity 

measurement with respect to the other malware variants 

taken from 13 different families. 

Obfuscated malware includes the combination of both 

polymorphic and metamorphic malware technique. It is used 

to generate multiple variants of code, with indistinguishable 

functions. The obfuscated code has identical functions but 

different morphs (smallest constituent). Identifying 

obfuscated code is a very difficult task. Some of the 

techniques to generate obfuscations are appending garbage 

code (adding futile instructions), register renaming 

(replacing the register in use with the register which is not 

in use), subroutine reordering (change the order of 

subroutines), dead code insertion (adding some code which 

accomplish nothing), substitution of equivalent instruction 

(replacing xor eax, ebx with sub eax, ebx), code 

transportation (adding the unconditional jump statements in 

the program). Remote execution of these different types of 

malware is done by the attacker to achieve their intentions. 

Malware obfuscation has made it very difficult for the 

signature-based antivirus software’s. In Scott Treadwell et 

al. [28] has proposed a heuristic based approach to detect 

the obfuscated malware. They have analyzed certain 

features such as section names, entry point location, import 

functions count, DLL characteristics, PE characteristics and 

various other features as well. They have generated the risk 

score by performing static analysis on Windows PE file. 

Based on the threshold value which has been decided and 

the risk score obtained the actions to be performed are 

justified.  

 

IV. MALWARE DETECTION AND 

CLASSIFICATION TECHNIQUES 

The steps to be followed for malware detection are: 

I. Analyze the executable to detect if it has malicious code 

present or not (feature extraction) II. If it has a malicious 

code, then assign most appropriate malware family it 

belongs to (classification mechanism) 

4.1 Malware detection 

 Malware are detected using two major techniques: 
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A. Signature-based detection 

B. Anomaly-based detection 

 4.1.1 Signature-based detection 

Signature-based detection is an old technology which used 

to be popular in the 1990s, and is extremely effective in 

identifying previously known threats. Signature of the 

malware is a code string or a pattern of actions 

corresponding to a known attack. There is a database 

maintained of such signatures against which network traffic 

and files (also known as blacklists) are checked to see if any 

of the known threats are present in them. An alert is issued 

if there are any threats present and the mitigation process is 

triggered. The problem with this detection which is based on 

knowledge entirely is that it cannot detect the malicious 

codes that do not have any signature like new malware 

variants created in bulk by advance techniques and the scale 

of this threat makes it harder to keep count and list of such 

signatures up to date. A signature-based detector uses 

distinct signatures for every malware variant, thus leading to 

an exponential increase in the size of the database of 

signatures. 

Abhay Kumar Sahoo et al. [29] Proposes a system that 

detects malware present in unstructured data in the Hadoop 

Distributed file system. The system uses map reduces to 

detect malware in data stored in HDFS.  Mila Dalla Preda et 

al. [30] Explains how signature based malware detection 

approach is syntactical and thus is not feasible for 

obfuscated malware. Thus, making semantic behavior based 

approach an alternative.  

 

4.1.2 Anomaly-based detection 

This detection uses two phases.  

1) Training phase: During this phase, the detector learns 

the normal or usual program behavior. The detector 

might learn behavior of the PUI or the host or a 

combination of both. 

2) Testing phase: Based on the learned behavior, the 

programs that violate the normal execution flow are 

considered to be anomalous and are identified as 

malicious.  

It’s advantageous to use anomaly-based approach because 

of its ability of detecting zero-day attacks i.e attacks that are 

not known by the malware detector previously. However, 

there can be a possibility, where a program can exhibit 

unseen behavior but, does not have any malicious intent, 

thus raising false positives. This technique was used by R. 

Sekar et al.  [31] in which a Finite State Automata was 

created to detect anomaly. Program counter in the PUI is 

represented by nodes that are created in FSA. Transitions in 

the automata are given by system calls. Another approach 

by K. Wang et al. [32], a payload based (PAYL) anomaly 

detection approach is presented. The model computes byte 

distribution for normal traffic. The new packet’s payload is 

checked for similarity with its corresponding model. Large 

distance from the normal model will mark the packet as an 

anomaly. 

The above techniques can apply any one of the following 

three approaches.  

Static analysis, In static analysis the actual execution of 

program is not required. Various information obtained using 

static methods are Opcode sequences (extracted from 

disassembling the binary file), byte code sequence n-grams, 

control flow graphs, syntactic library calls. Such feature sets 

are used in combination or individually for detecting 

malware.  

 

Table.1: A summary of systems that employed static malware analysis 

 
Dynamic analysis, In the dynamic analysis, the 

behavior of the program is monitored based on analyzing 

the API calls to know how the program interacts with the 

operating system. In dynamic analysis, one is supposed to 

execute the program most probably in a virtual 

environment. Information like registry changes, file system, 

memory writes, API calls, system calls, system change 
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detection, process monitoring are obtained from dynamic analysis. 

 

Table.2: A summary of systems that employed dynamic malware analysis 

 
Hybrid analysis, It is the combination of both static 

and dynamic analysis. It uses features from both the 

methods and tries to identify the malicious code present in 

the system.  

 

Table.3: A summary of systems that employed hybrid malware analysis 

 
 

4.2 Malware classification techniques   

Classification is done using various machine learning 

algorithms [43] which takes the training data and based on 

that data it builds a classifier. Once the classifier is built the 

testing data is given to it for classification. Based on how 

correctly the testing data is classified the accuracy of the 

model is determined. Some of the major classification 

algorithms are given below  

4.2.1 Logistic Regression 

Logistic regression [44] is a method based on statistics to 

analyze the data set. Outcome of this model is determined 

by one or more independent variables. Only two possible 

outcomes can be there i.e. is it a binary classifier. It is also 

called as log it regression or log it model. The output of 

logit model can take only two values, 0 and 1, which 

represents pass or fail respectively.  The aim is finding a 

model which describes relationship between characteristics 

of interest and independent variables in the best way. The 

formula to predict logit transformation where, 
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p - probability of presence of the required characteristic is 

given by: 

 
The logged odds are given by: 

 
Thus, logit(p) is given by: 

 
4.2.2 Naive Bayes 

The Naive Bayes classification algorithm [45] is based on 

the Bayesian theorem. Bayes theorem states the relationship 

as below  

 

 
This relationship can be simplified as 

 
Thus, Naive Bayes classifier predicts probability which tells 

if the given record or data point belongs to some class for 

each class i.e. the probability that given record or data point 

belongs to a particular class. The class with maximum 

probability is the most likely class. Naive Bayes is called a 

naive approach because it assumes that all the features being 

used are unrelated to each other.  

4.2.3 Random Forest  

Random forest employs ensemble learning for classification 

which uses decision trees. The decision trees are constructed 

during training phase. The modal class of the classes or 

regression of individual trees is returned as result. Random 

forest algorithm is like the bootstrapping algorithm with 

Decision tree model. The Random Forests approach uses the 

construction of multiple decision trees [46]. The only 

difference is that instead of using Gini index[47] and 

information gain[48] parameters, the root node selection is 

done randomly forming a forest of multiple decision trees. 

The more the number of trees in the forest, the more 

accurate are the results obtained.  

4.2.4 Support Vector Machine (SVM) 

Support vector machine [49] is a type of supervised learning 

approach. In SVM, every data item is plotted in an n-

dimensional space as a point. Every axis is labeled with a 

feature. Classification Fourth step, applying similarity 

measurement for unknown binary executable: is performed 

by the hyper plane that differentiates both the classes very 

well, the dimensions of this hyperplane being n-1 for n-

dimensional space. There can be many such hyperplanes 

possible. The basic rule to select the best hyperplane is the 

one that has the maximum margin and best differentiates 

between the elements belonging to two different classes. For 

a linear classifier identified by the set of pairs (w,b), 

identifying w,b which satisfies the following equation will 

give the optimum hyperplane. 

 
 

4.2.5 k-Nearest Neighbor (kNN):  

A lot of training data is fed to this algorithm in the learning 

phase where the kNN algorithm [50] plots the data samples 

according to their classes in an n-dimensional space. 

Whenever test data samples are given to the algorithm, the 

algorithm plots the samples in the same n-dimensional space 

and searches for its nearest k neighbors from the training 

samples based on distance measures like Euclidean distance 

given as 

 
In this algorithm the selection of k plays a very important 

role. 

4.2.6 XGBoost 

XGBoost [51], i.e. Extreme Gradient Boosting is an 

algorithm which is used for supervised learning problems. It 

is based on tree ensemble learning using CART [52] 

(Classification and Regression Trees). Multiple trees are 

used here because a single tree might not always yield the 

best results. Every leaf node of this tree is one of the distinct 

classes, that the data is supposed to be classified into and 

has a prediction score (probability that the given data 

sample belongs to this class). Since, there are multiple such 

trees, sum of the prediction score of every tree is calculated 

and final score is assigned to every leaf node. This is same 

as random forest algorithm. However, the difference is that 

boosted trees are trained differently.  

Gradient Boosting starts with a not very deep tree and will 

model the original target. After the first round of 

predictions, errors are found out and passed as a target to the 

second tree. The second tree will model errors from the first 

tree, find out new errors and pass those as a target to the 

third tree and the process will continue. 

The tree ensemble model can be mathematically written as:

  
Where, 

f - Functional space F contains function f 

F - It is a  set of all the possible classification and regression 

trees(CARTs) 

K - Number of trees. 

 

V. PROPOSED SYSTEM 



IJRECE VOL. 6 ISSUE 4 ( OCTOBER- DECEMBER 2018)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  1069 | P a g e  

Based on the study of the different classification methods 

and features, our proposed system uses static analysis 

technique to classify the malware samples. The dataset 

consisting of malware samples considered for classification 

is from the Kaggle BIG 2015 challenge [53].  

In this approach, the emphasis is given to the effective 

selection of features so as to decrease the additional 

computational overhead. This makes it beneficial for 

handling huge amounts of data. Only the most relevant 

features are considered. There are two stages. Firstly, the 

essential features like metadata, symbols, Opcode, registers, 

sections, entropy, data define and control flow graph are 

extracted and a feature vector is created..This feature vector 

is given to the classifier which uses xgboost, random forest 

and other machine learning algorithms to classify the 

samples in their 9 major malware families shown in fig1. 

We are currently working on building this system. 

 
 

Fig.1: The system architecture of proposed system. 

 

VI. CONCLUSION 

Advances in malware creation techniques like 

polymorphism, metamorphism, and obfuscation pose a 

threat to networked organizations and individuals. The 

signature-based approach for malware classification can 

prove to be inefficient to identify new malware variants 

created by the above techniques because of having 

unrecognized signatures. Hence, research is being done in 

behavior-based analysis of the executable file samples. The 

analysis can be carried out either statically or dynamically, 

or using the hybrid approach which uses both the 

approaches that is static analysis and the dynamic analysis 

in conjunction. The performances of each of all these 

methods are compared and evaluated in this paper. Research 

works related to all of the above approaches are surveyed in 

the paper. Based on the research, we also propose a system 

to classify the malware samples using static analysis with 

optimum features to increase accuracy of classification for 

Big Data. 

Future scope of the proposed model can be classifying the 

misclassified malware samples using dynamic approach: 

Misclassified files if any can be fed to a dynamic classifier 

and can be classified based on the behavioral analysis. Also, 

the Distributed programming can be used to enhance the 

speed of operation: If the computation is distributed across a 

network, the high-performance system will be achieved for 

even huge datasets (Big Data). 
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