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Abstract- Tensor Flow is an open-source software library 

developed by Google Brain team for carrying out high 

performance numerical computations using data flow graphs. 

It provides a great support for implementing machine learning 

and deep learning models. It was released under the Apache 

2.0 open-source license on November 9, 2015. 
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I. INTRODUCTION 

TensorFlow is an open-source software library for dataflow 

programming across a range of tasks. It is a symbolic math 

library, and is also used for machine learning applications 

such as neural networks. Tensor Flow is flow of data(or 

tensor) in a computational graph. We can say tensors are 

multi-dimensional arrays that allows you to represent data 

having higher dimensions (features of dataset) and the flow 

means series of operations, that a neural network performs on 

that data(or tensor).Example: Matrix multiplication can be 

considered as a numerical computation in which matrix of any 

dimension refer to as a tensor or data and flow is the operation 

(multiplication ) performed on that tensor. 

1. TENSOR(MATRIX) 

2 4 3 

0 9 5 

1 6 7 

Now in computational graph, this tensor act as an edge and 

operation(multiplication) act as a node and thus in this data 

flow various algorithms can be applied to compute the 

problem. 

2. Why we use it? 

Now everyone should question “ why should we use tensor 

flow”when we have so many better frameworks available 

which focus especially on machine learning models only like - 

• Caffe 

• MXNet 

• Theano 

• Torch 

The reason is TensorFlow’s flexible system architecture that 

allows computation with high performance on any GPU or 

CPU, be it a desktop, a server or even a mobile device, 

irrespective of their computation powers. 

- Also it allows you to write your frontend in java, c++ or 

python. It then takes your code and computes it using its 

distributed engine and then you are able to run it anywhere.  

-It offers advantage over advanced support on threads and 

asynchronous computations. 

- It offers monitoring for training processes of the models and 

visualization (Tensor-board). 

Now we know why should we use tensor flow but one should 

also know what is machine learning and how can we 

implement it. 

Machine learning is an application of artificial intelligence 

(AI) that provides systems the ability to automatically learn 

and improve from experience without being explicitly 

programmed. Machine learning focuses on the development of 

computer programs that can access data and use it learn for 

themselves. 

 

II. TYPES OF MACHINE LEARNING 

Types of machine learning are: 

1. Supervised Learning 

2. Unsupervised Learning 

3. Reinforcement Learning 

1. Supervised learning : algorithm can apply what has 

been learned in the past to new data using labeled examples to 

predict future events. E.g.: Regression , Classification 

,Decision tree,Random forest. 

2.  Unsupervised learning : The model learns through 

observation and finds structures in the data. Once the model is 

given a dataset, it automatically finds patterns and 

relationships in the dataset by creating clusters in it. E.g. 

Clustering, Association analysis. 

3.  Reinforcement learning: It is the ability of an agent 

to interact with the environment and find out what is best 

outcome. It follows the concept of hit and trial method. Now 

we have some basic perception about machine learning so 

let’s implement it using tensor flow. 

 
Fig.1: How Machine learning Works 
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III. TENSORFLOW TOOLKIT 

TensorFlow provides a variety of different toolkits that allow 

you to construct models at your preferred level of abstraction. 

You can use lower-level APIs to build models by defining a 

series of mathematical operations. Alternatively, you can use 

higher-level APIs (like estimator) to specify predefined 

architectures, such as linear repressors’ or neural networks. 

 
We will be using Estimators for now because using estimator 

dramatically lowers the number of lines of code. It is 

generally much easier to create models with Estimators than 

with the low-level TensorFlow APIs. Estimator is a high-level 

TensorFlow API that greatly simplifies machine learning 

programming. They simplify sharing implementations 

between model developers. For users who just want to use the 

common models, TensorFlow provides pre-made estimators 

or “Canned Estimators” which refer to implementations of 

common machine learning models. Estimators encapsulate the 

following actions: 

• training 

• evaluation 

• prediction 

• export for serving 

We will be discussing on creating estimators later but for now 

lets understand machine learning workflow. 

 

IV. MACHINE LEARNING WORKFLOW 

To develop and manage a production-ready model, you must 

work through the following stages: 

• Source and prepare your data. 

• Develop your model. 

• Train an ML model on your data: 

• Train model 

• Evaluate model accuracy 

• Tune hyper parameters 

• Deploy your trained model.  

• Send prediction requests to your model: 

• Online prediction 

• Batch prediction 

• Monitor the predictions on an ongoing basis. 

• Manage your models and model versions. 

Before you start thinking about how to solve a problem with 

ML, take some time to think about the problem you are trying 

to solve and then proceed with the above steps. 

1. Source and prepare your data 

You must have access to a large set of training data that 

includes the attribute (called a feature in ML) that you want to 

be able to infer (predict) based on the other features. For 

example, assume you want your model to predict the sale 

price of a house. Begin with a large set of data describing the 

characteristics of houses in a given area, including the sale 

price of each house. 

Data analysis 

After sourcing the data, you must analyze and understand the 

data and prepare it to be the input to the training process.  

• Identify features in your data. Features comprise the subset 

of data attributes that you use in your model. 

• Clean the data to find any anomalous values caused by errors 

in data entry or measurement. 

2. Code your model 

In this step, you will develop your model and train it on your 

data using Estimator API. 

To do this, you need to perform these following steps: 

• Build your Estimator model. 

Define how data is fed into the model for both training and 

test datasets (often these definitions are essentially the same). 

• Define training and evaluation specifications (TrainSpec and 

EvalSpec) to be passed to Estimator API. The EvalSpec can 

include information on how to export your trained model for 

prediction (serving). 

Create an Estimator - 

- Estimators, which represent a complete model. The 

Estimator API provides methods to train the model, to judge 

the model's accuracy, and to generate predictions. 

- Datasets for Estimators, which build a data input pipeline. 

The Dataset API has methods to load and manipulate data, 

and feed it into your model. The Dataset API meshes well 

with the Estimators API. 

Create input functions : 

You must create input functions to supply data for training, 

evaluating, and prediction. An input function is a function that 

returns a tf. data. Dataset object which outputs the following 

two-element tuple: 

• Features - A Python dictionary in which each key is the 

name of a feature. 

• Label - An array containing the values of the label for every 

example. 

def input_evaluation_set(): 

features = {'SepalLength': np.array([6.4, 5.0]), 

'SepalWidth': np.array([2.8, 2.3]), 

'PetalLength': np.array([5.6, 3.3]), 

'PetalWidth': np.array([2.2, 1.0])} 
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labels = np.array([2, 1]) 

return features, labels 

def train_input_fn(features, labels, batch_size): 

"""An input function for training""" 

# Convert the inputs to a Dataset. dataset = 

tf.data.Dataset.from_tensor_slices((dict(features), labels)) # 

Shuffle, repeat, and batch the examples. Return 

dataset.shuffle(1000).repeat().batch(batch_size) Here features 

represent the properties of flowers containing data about them 

in a numpy array and label is the variable you want to predict. 

so firstly, we have shown the implementation of input 

function and then it is defined for training. 

Define the feature columns: A feature column is an object 

describing how the model should use raw input data from the 

features dictionary. When you build an Estimator model, you 

pass it a list of feature columns that describes each of the 

features you want the model to use. 

Instantiate an estimator: TensorFlow provides several pre-

made classifier Estimators, including: 

tf.estimator.DNNClassifier for deep models that perform 

multi-class classification. 

• tf.estimator.DNNLinearCombinedClassifier for wide & 

deep models. 

• tf.estimator.LinearClassifier for classifiers based on linear 

models. 

You can instantiate using any of the above classifier. Next 

step is to train and evaluate the model. 

Train the model: Train the model by calling the Estimator’s 

train method as follows: 

# Train the Model. 

classifier.train(input_fn=lambda:iris_data.train_input_fn(train

_x, train_y, args.batch_size), steps=args.train_steps) Here we 

wrap up our input_fn call in a lambda to capture the 

arguments while providing an input function that takes no 

arguments, as expected by the Estimator. The steps argument 

tells the method to stop training after a number of training 

steps. Define training and evaluation specifications We just 

need to define the TrainSpec and EvalSpec used by 

tf.estimator.train_and_evaluate. These specify not only the 

input functions, but how to export our trained model; that is, 

how to save it in the standard SavedModelformat, so that we 

can later use it for serving.First, we’ll define the TrainSpec, 

which takes as an arg train_input: train_spec = 

tf.estimator.TrainSpec (train_input, max_steps=1000) For our 

EvalSpec, we’ll instantiate it with something additional – a list 

of exporters, that specify how to export (save) the trained 

model so that it can be used for serving with respect to a 

particular data input format. exporter = 

tf.estimator.FinalExporter('census', json_serving_input_fn) 

eval_spec =  tf.estimator.EvalSpec(eval_input, steps=100, 

exporters=[exporter], name=‘census-eval') We now have a 

trained model that produces good evaluation results. You can 

also tune the model by changing the operations or settings that 

you use to control the training process, such as the number of 

training steps to run. This technique is known as hyper 

parameter tuning. 

 

V. MODEL TESTING 

During training, you apply the model to known data to adjust 

the settings to improve the results. When your results are good 

enough for the needs of your application, you should deploy 

the model to whatever system your application uses and test it. 

To test your model, run data through it in a context as close as 

possible to your final application and your production 

infrastructure. 

Tensor flow in use : 

1. RankBrain : Rankbrain is a google’s algorithm learning 

artificial intelligence system.google uses rankbrain algorithm 

to better its search result. 

2. Deep speech : Deep speech is introduced by Mozilla. Deep 

speech algorithm is used for automatic speech recognition, 

which aims to make speech technologies and trained models 

openly available to developers. 

3. SmartReply : SmartReply is introduced by google. It is used 

to automatically generate email response. 
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