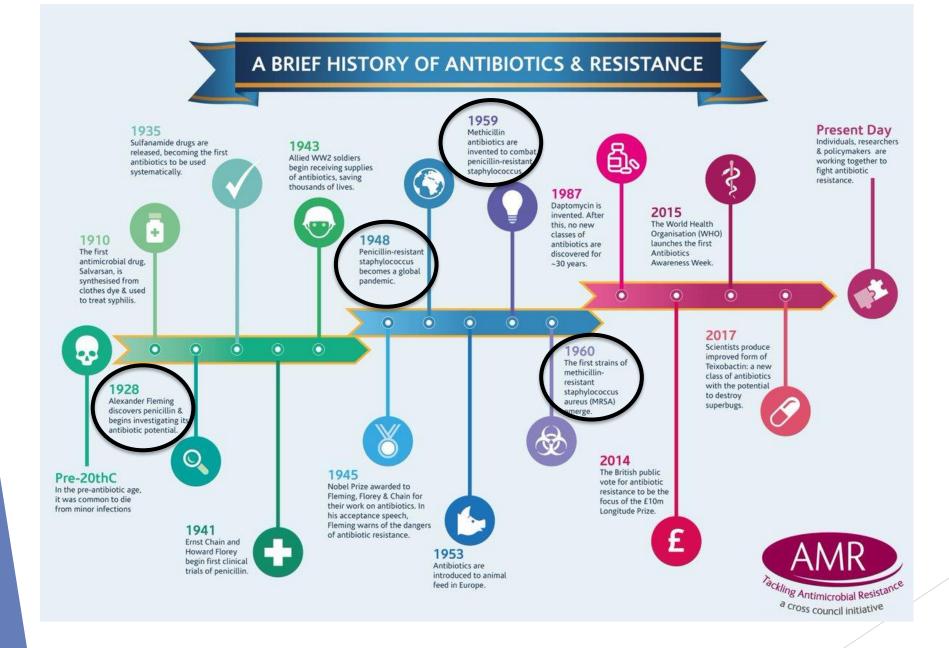
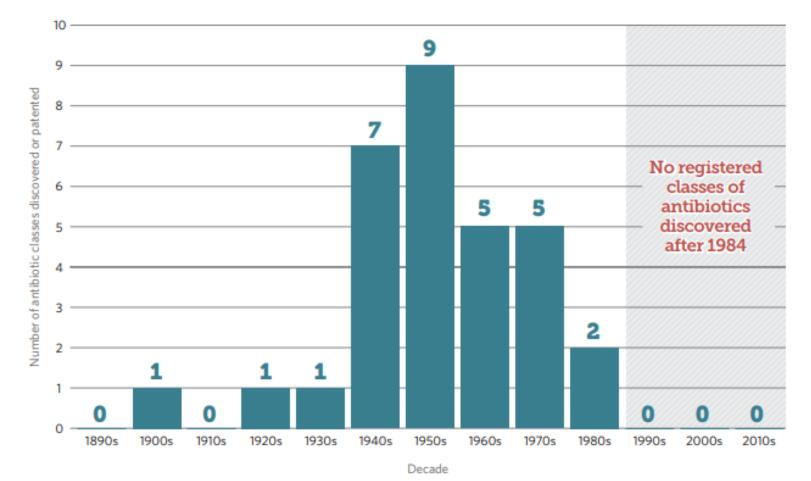
Antimicrobial stewardship


Rachael Lee, MD

University of Alabama at Birmingham

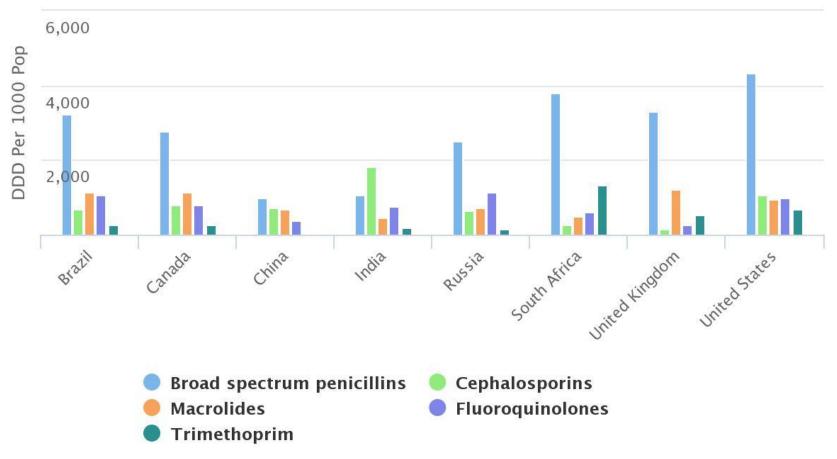
ralee@uabmc.edu


Objectives

- > Discuss timeline of antimicrobials as they relate to antibiotic resistance
- Define antimicrobial stewardship
- Present real world cases of antimicrobial stewardship

Age of antibiotics

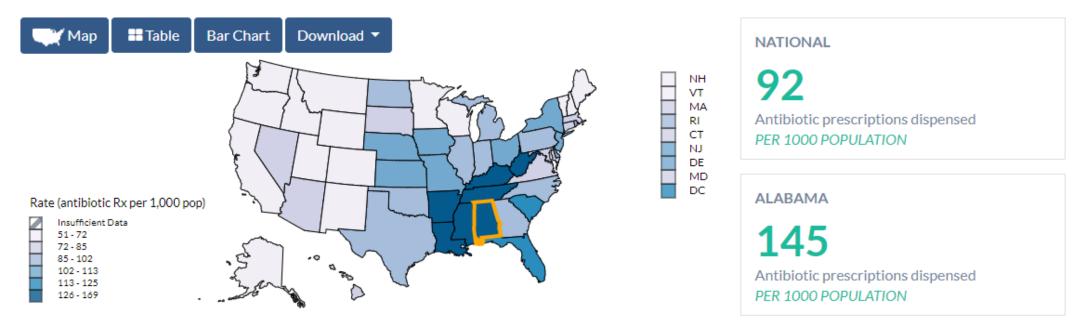
More than 30-Year Void in Discovery of New Types of Antibiotics


New antibiotics since 2010:

- Omadcycline (2018)
- Eravacycline (2018)
- Plazomicin (2018)
- Meropenem/vaborbactam (2017)
- Ceftazidime/avibactam (2015)
- Dalbavancin (2014)
- Oritavancin (2014)
- Tedizolid (2014)
- Ceftolozane/tazobactam (2014)
- Televancin (2013)
- Bedaquiline (2012)
- Fidaxomicin (2011)
- Ceftaroline (2010)

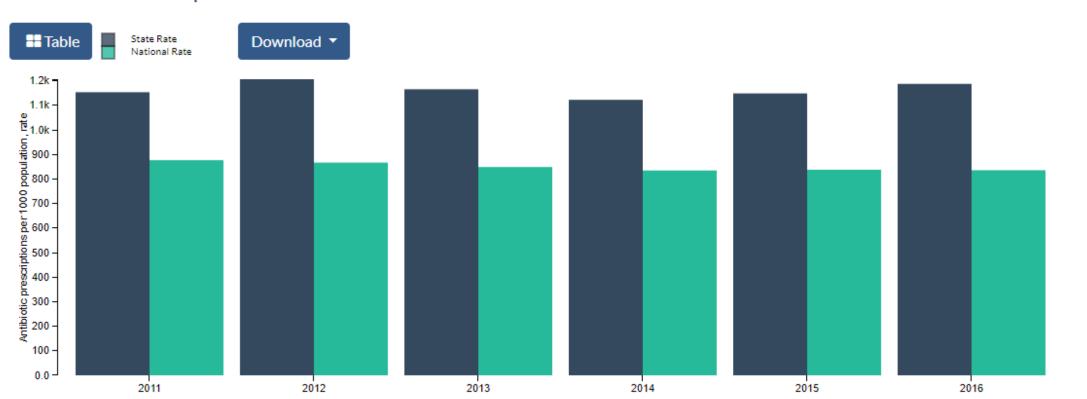
Antibiotic use in the United States

Antibiotic Use in 2015

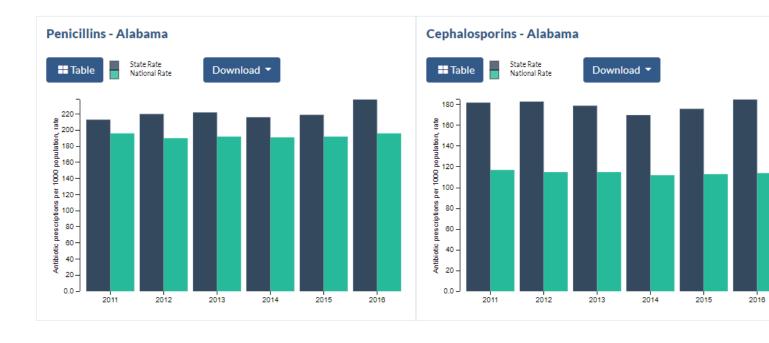

Source: IQVIA

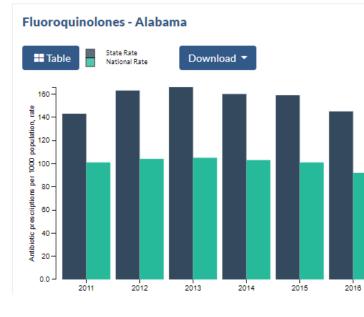
Center for Disease Dynamics, Economics & Policy (cddep.org)

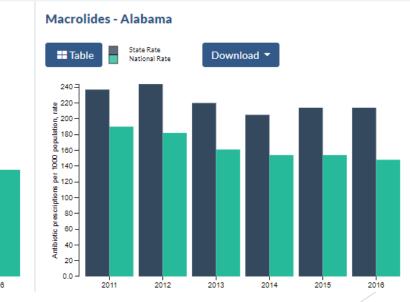
Antibiotic Prescriptions per 1000


Antibiotic Prescriptions Dispensed in U.S. Community Pharmacies Per 1000 Population | Fluoroquinolones | 2016

Alabama Antibiotics Dispensed in U.S. Community Pharmacies Per 1000 Population


https://gis.cdc.gov/grasp/PSA/AUMapView.html


Alabama Antibiotics Dispensed in U.S. Community Pharmacies Per 1000 Population



All Antibiotic Classes | Over Time

https://gis.cdc.gov/grasp/PSA/AUMapView.html

https://gis.cdc.gov/grasp/PSA/AUMapView.html

*bacteria and fungus included in this report

Estimated minimum number of illnesses and death due to *Clostridium difficile* (*C. difficile*), a unique bacterial infection that, although not significantly resistant to the drugs used to treat it, is directly related to antibiotic use and resistance:

At least 250,000 illnesses,

WHERE DO INFECTIONS HAPPEN?

Antibiotic-resistant infections can happen anywhere. Data show that most happen in the general community; however, most deaths related to antibiotic resistance happen in healthcare settings, such as hospitals and nursing homes.

U.S. Department of Health and Human Services Centers for Disease Control and Prevention More recent evidence suggests >153,000 deaths related to MDROs annually in the United States

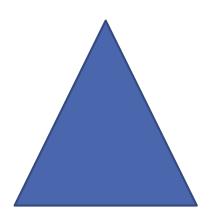
Why does antibiotic prescribing matter?

	MBINT	KINT	EINT	MCFINT
Amikacin	R		1	
Ceftazidime	R		1	
Ciprofloxacin	R		9	
Gentamicin	R		9 P	
Imipenem	R		9	
Meropenem	R			
Tobramycin	R			
Cefepime	10 S	R	6 9	
Piperacillin/Tazobactam	S	R	S	
Ceftazidime/Avibactam	S		R	
Ceftolozane/ Tazobactam			R	
Colistin*	2 S		S	Rc

Klebsiella pneumoniae #2			
	MUINT	EINT	MDIL
Amikacin	R		
Ampicillin	R		
Cefepime	R		
Ceftazidime	R		
Ceftriaxone	R		
Cephalothin	R		
Ciprofloxacin	R		
Gentamicin	R		
Imipenem	R		
Meropenem	R		
Nitrofurantoin	R		
Piperacillin/Tazobactam	R		
Trimethoprim/Sulfa	R		
Tobramycin	R		
Ceftazidime/Avibactam		R	
Ceftolozane/ Tazobactam		R	
Colistin*			>4 c

Antibiotic prescriptions in hospitals

- >50% of patients in the hospital receive an antibiotic
 - Most common: pneumonia (22%), UTI (14%), suspected drug resistant infections (17%)
- Some doctors prescribe 3 times as many antibiotics as doctors in other hospitals
- Antibiotic use has well known unintended consequences
 - Clostrioides difficile infection (affects 500,000 patients with 15,000 deaths)
 - Reducing high use antibiotics by 30% can lower CDI by 26%
 - Drives antimicrobial resistance

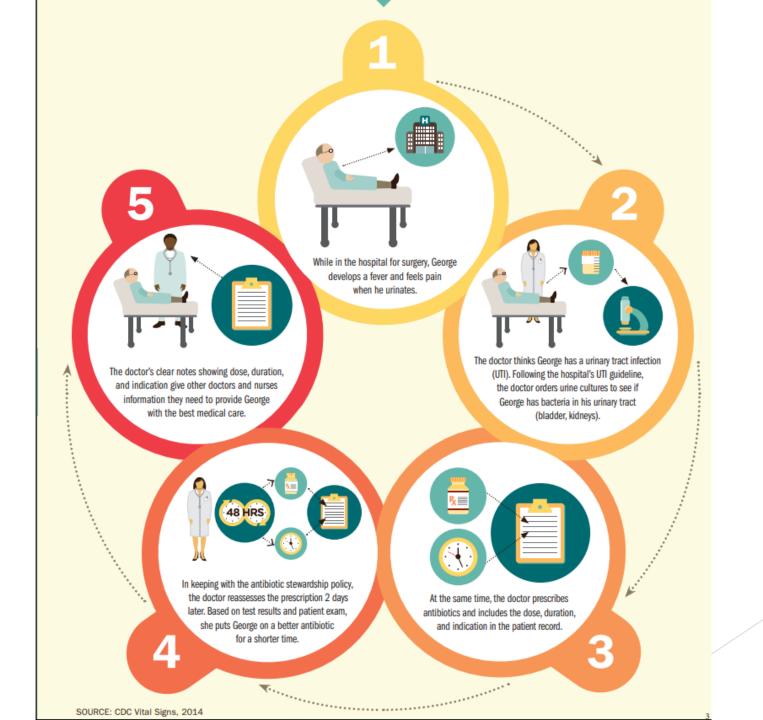

Critical balance of antibiotic use

Infection Prevention and Antimicrobial Stewardship

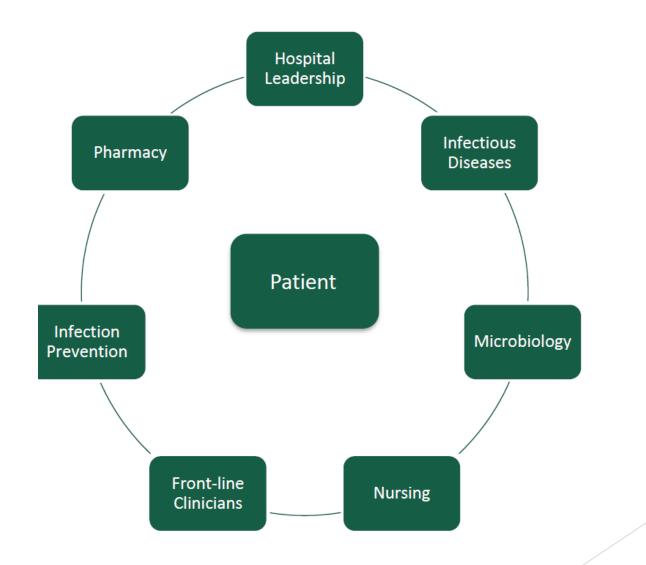
Importance of appropriate empiric therapy Effect of broad spectrum therapy on resistance

Mortality increases when initial therapy is inappropriate

Resistance increases when broad-spectrum agents are overused.


Resistance has negative impact on outcomes

Common Misuses of Antibiotics


- Prolonged empiric treatment without evidence of infection
- Treatment of a positive clinical culture in the absence of disease
- Failure to narrow antimicrobial therapy when a causative organism is identified
- Prolonged prophylactic therapy
 - Ex. Until removal of surgical drains
 - excessive use of certain antimicrobials
 - Creates selective pressure

What is Antimicrobial stewardship?

- Anything and Everything intended to improve patient outcomes and minimize the negative effects of antimicrobial use
- Antibiotics have a critical characteristic that makes them unique among all drugs...they suffer from transmissible loss of efficacy over time..." Brad Spellberg MD

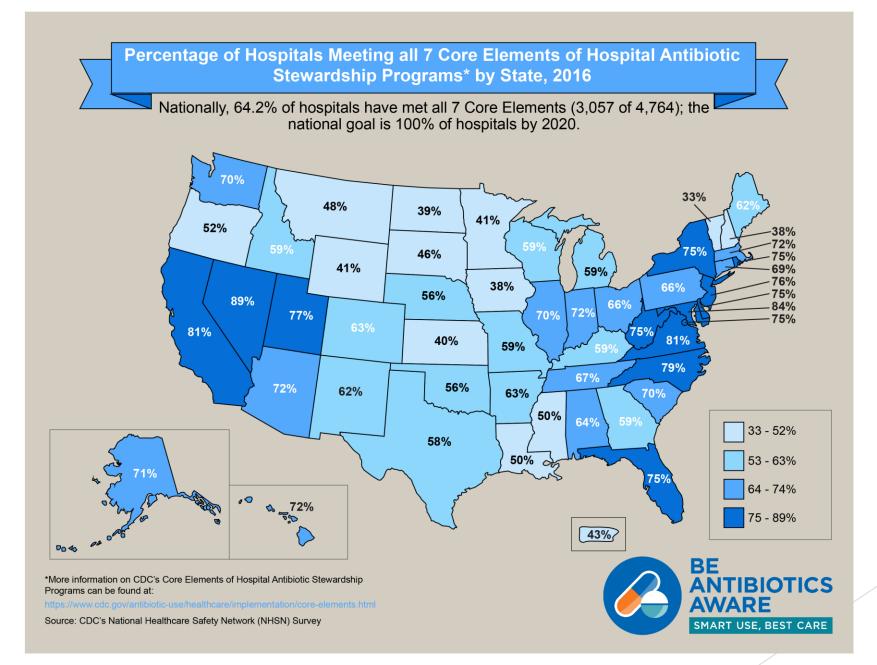
Antimicrobial Stewardship Programs

Core Elements

Core Elements of Antimicrobial Stewardship

Leadership Commitment – dedicating necessary human, financial, and IT resources

Accountability – leader responsible for program outcomes


Drug Expertise – pharmacist responsible for working to improve antibiotic use

Action – implementing recommended interventions to improve antibiotic use

Tracking – routinely monitoring data and metrics

Reporting – regular communication of data and metrics

Education – educating clinicians, staff, patients, etc. about appropriate antibiotic use

Stewardship in action

- Core strategies
 - Preauthorization
 - Prospective audit and feedback
- Supplemental strategies
 - Clinical pathways and guidelines
 - Dose optimization or adjustment
 - De-escalation or streamlining
 - IV to PO conversion
 - Education

Preauthorization

- Restrict the use of certain agents in a facility in order to prevent misuse
 - Daptomycin (cost)
 - Meropenem (prevent resistance)

Prospective audit and feedback

- Most beneficial in real time
 - Typically driven by pharmacy
 - Usually performed at 48-72 hours
 - Ensure appropriate therapy for the type of infection
 - Can assist in de-escalation
 - ► Can assist in $IV \rightarrow PO$ conversion
 - Ex unasyn to augmentin

Guidelines and Education

- Guidelines from National Societies
- In house guidelines
 - What criteria to start treatment?
 - What to use?
 - ► How long?
 - Tailor to targeted population
 - Antibiogram

Antibiograms

- Laboratory report that displays overall susceptibility profile of a bacterial isolate to a variety of antibiotics
- Cumulative reports give percent of isolates susceptible to a variety of antibiotics over a period of time
 - Used to guide empiric therapy
 - Used to identify emergence of resistance over time

		_	_	_	_		_	_	_		1						
Gram Positive Bacteria	No. of Isolates	Ampicillin	Oxa cillin (e)	Penicillin	Ceftria xo ne	Vancomycin	Tetracycline	Erythromycin	Clindamycin	Trimethoprim/Sulfa	Gentamicin 500	Daptomycin(f)	Linezolid	Nitrofurantoin(*)	Fluconazole	Voriconazole	Micafungin
Staphylococcus aureus (MSSA)	569		100	22		99	93	56	71	100		99	99				
Staphylococcus aureus (MRSA)	653					99	90	15	61	96		98	98				
Staphylococcus lugdunensis	64		69	36		100	92	65	80	97		100	100				
Staphylococcus capitis	52		58	13		100	90	38	49	90		96	100				
Staphylococcus epidermidis	377		28	8		98	84	25	46	46		99	99				
Enterococcus faecalis (a)	499	98		98		95	28	23			76	99	95	99			
Enterococcus faecium (a)	216	13		13		26	15	2			91	74	87	44			
Streptococcus pneumoniae (b)	56			91	95	100	73	33	73								
GBS (Strep. agalactiae) (c)	41			98		100	19	32	51								
Viridans group streptococci	254			62	92	99	56	44	77								
Yeasts																	
Candida albicans	138														99	99	99
Candida glabrata (d)	74														88		99
Candida krusei	5														0 g	100	100
Candida parapsilosis	21														100	100	100
Candida tropicalis	16														75	81	100

Key ways to be an antibiotic steward

- 1. disease prevention through vaccination
 - Fewer infections = fewer antimicrobials needed
 - >20 vaccine preventable illnesses
 - Prevent 2-3 million deaths yearly

- Cross-reactivity <2%
- Most people outgrow PCN allergy @ rate of 10% per year
- 99% of patients found not to be TRULY allergic after testing
- Carrying a "PCN allergy" label on your EHR leads to:

 - \uparrow use of broad-spectrum abx (with \uparrow \$\$\$)
 - ↑ antimicrobial resistance
 - ↑ rates C.diff, VRE
 - PCN Avoidance \rightarrow suboptimal treatment

Key ways to be an antibiotic steward

- 2. Allergy history taking and documentation
 - > 9/10 people reporting penicillin allergies are not truly allergic, cross reactivity <2%
 - Up to 80% of those who were allergic lose their allergy after 10 years, 99% of patients found to not be truly allergy after testing
 - Prevent unnecessary use of second-line agents
 - Perform or refer for skin testing
- Carrying a "PCN allergy" label on your EHR leads to:
 - ► ↑ morbidity & mortality
 - ↑ healthcare costs
 - \blacktriangleright \uparrow hospital length of stay
 - ▶ \uparrow use of broad-spectrum abx (with \uparrow \$\$\$)
 - ▶ ↑ antimicrobial resistance
 - ↑ rates C.diff, VRE
 - ▶ PCN Avoidance \rightarrow suboptimal treatment

Key ways to be an antibiotic steward

- ► 3. Comprehensive medication review
 - Right drug at right dose for right infection
 - Narrowest spectrum possible
- 4. Patient counseling on appropriate antibiotic use
- ▶ 5. Advocate for appropriate antibiotic use

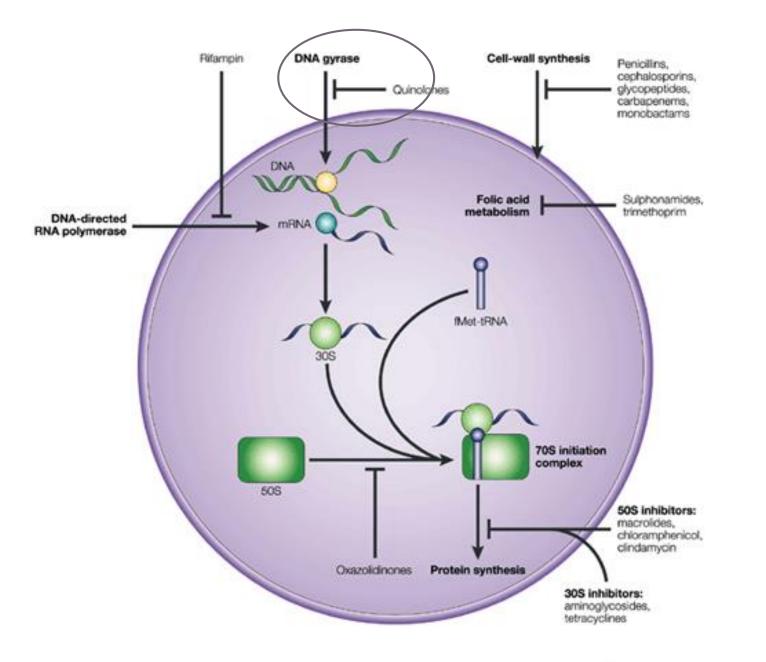
Stewardship: Shorter = Better

Diagnosis	Short (d)	Long (d)	Result		
САР	3 or 5	7, 8, or 10	Equal		
HAP	7	10-15	Equal		
VAP	8	15	Equal		
Pyelo	7 or 5	14 or 10	Equal		
Intra-abd	4	10	Equal		
Gram Neg Bacteremia	7	14	Equal		
AECB	<u><</u> 5	<u>></u> 7	Equal		
Cellulitis	5-6	10	Equal		
Osteo	42	84	Equal		
Neutropenic Fever	AF x 72 h	+ANC > 500	Equal		
			1		

15

Stewardship in specialty areas

Emergency Department


- High volume, quick throughput
- Challenge of follow up (patients and results)
- Selection of appropriate drug, dose, route, duration
- Long term care facilities
 - Antibiotic overuse, suboptimal use, extended duration
 - Initial steps are least costly and intrusive
 - Monitor antibiotic use and resistance
 - Education of providers
 - Upfront guidelines
- ICU
 - Correct choices and durations (sepsis guidelines)
 - De-escalation, re-assessment, rapid testing, prevention

Stewardship in Action

Fluoroquinolone example

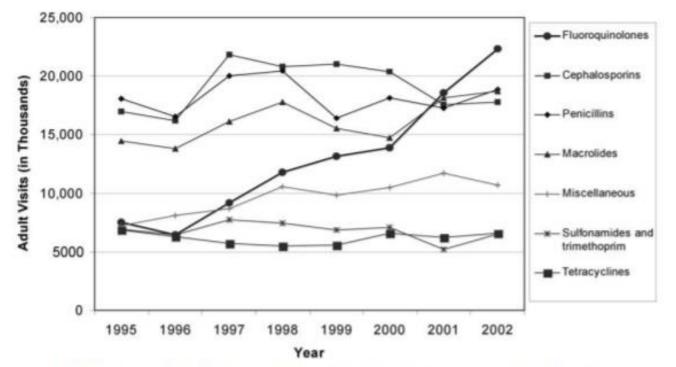
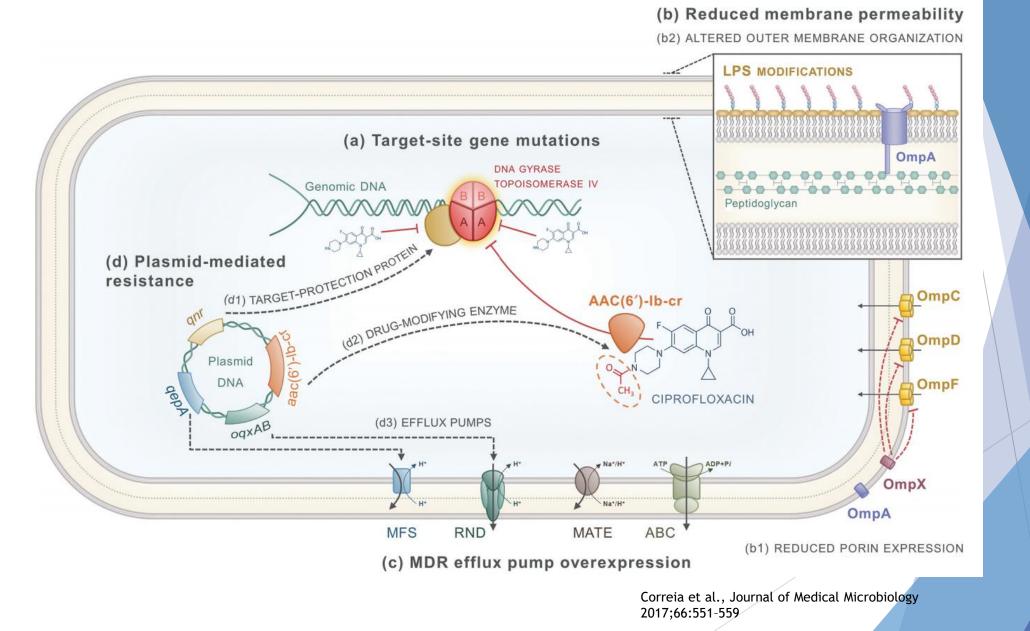
Fluoroquinolones

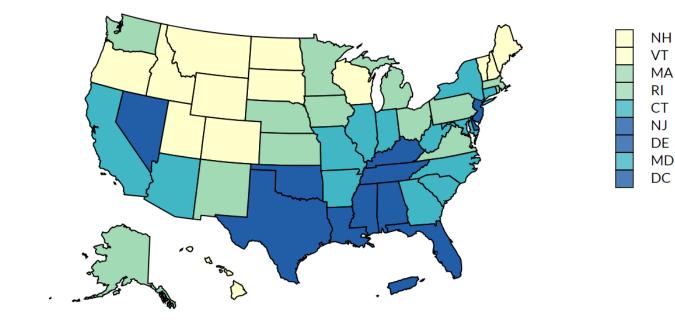
- Introduced in 1962
- Active against a wide variety of gram negative and gram-positive pathogens
- Good oral absorption and systemic distribution
- Broad clinical application
 - Lower respiratory tract infections
 - Skin and soft tissue infections
 - Sexually transmitted diseases
 - Urinary tract infections

Nature Reviews | Drug Discovery

Fluoroquinolone Prescribing Practices

Fluoroquinolone (FQ) prescribing has increased threefold since the 1990s

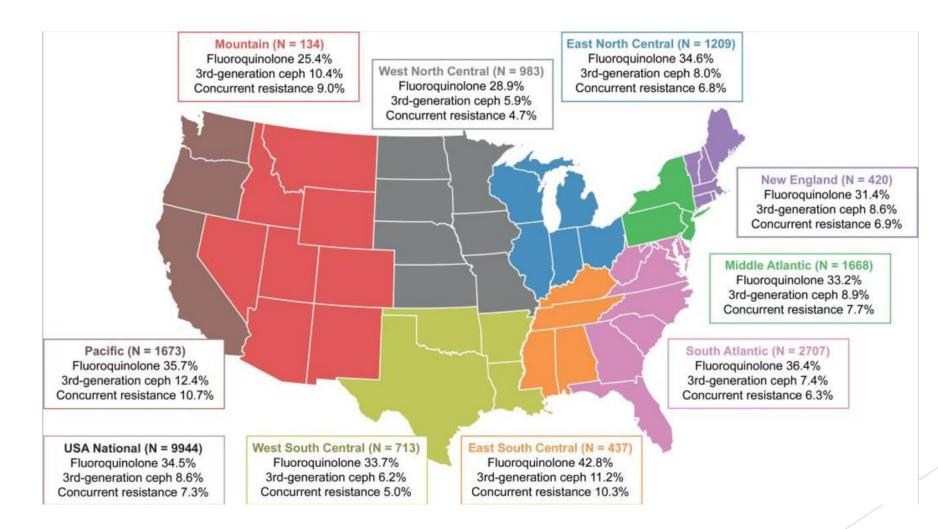




Figure 1 Antibiotic prescribing to adults in the United States: 1995 to 2002.

1. Linder JA, Huang ES, Steinman MA, Gonzales R, Stafford RS. Fluoroquinolone prescribed in the United States 1995 to 2002. Am. J. Med. 2005;118:259-268

Fluoroquinolone resistance

Fluoroquinolone resistant E. coli, Healthcare associated infections



% RESISTANT

Not Defined Insufficient D 12.1 - 23 24.5 - 31.1 31.5 - 35 35.3 - 50.5

National resistance rate is 33%

Urinary Escherichia coli Isolates Percent Resistance

1. Bidell MR, Palchak M, Mohr J, Lodise T: Fluoroquinolone and third generation-cephalosporin resistance among hospitalized patients with urinary tract infections due to *Escherichia coli*: do rates vary by hospital characteristics and geographic region?. *Antimicrob. Agents Chemother*. 2016;60:3170-3173.

Prior authorization of antimicrobials

- Common intervention employed by stewardship programs
- Fluoroquinolone restriction was implemented at UAB Hospital in October 2006 by Division of Infectious Diseases and Department of Pharmacy
- Hospital formulary consolidated to ciprofloxacin and moxifloxacin only
- All physicians required ID approval for inpatient FQ use outside set guidelines
 - Pharmacy regulated
 - ► EMR alert

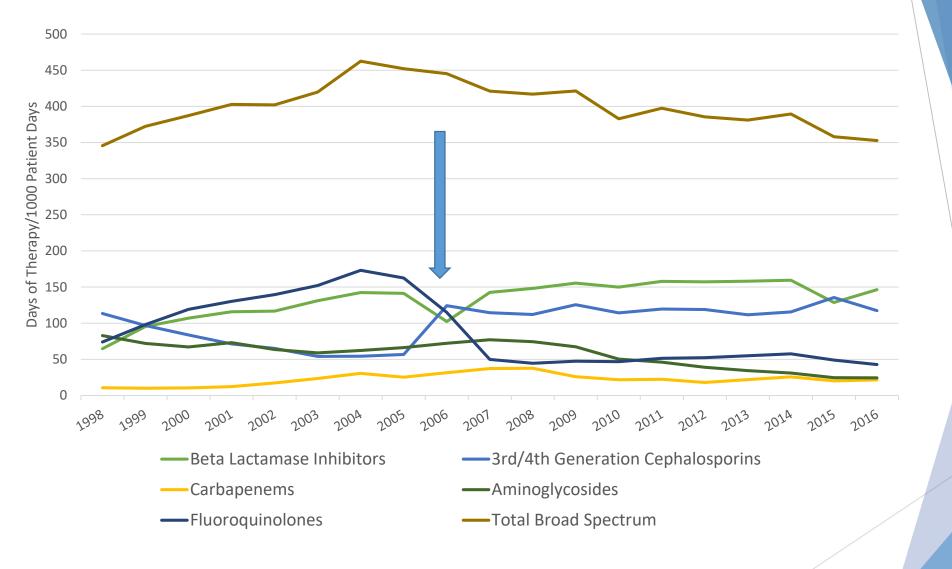
Hypothesis

Requiring prior authorization for inpatient fluoroquinolone prescriptions will improve gram-negative bacteria fluoroquinolone susceptibility rates

Methods

Organism	2003	2004	2005	2006
CIPROFLOXACIN Susceptibility	%	%	%	%
Acinetobacter baumannii	42	30	35	47
Citrobacter freundi	74	73	67	70
Citrobacter koseri	86	98	90	96
Enterobacter aerogenes	81	80	85	79
Enterobacter cloacae	54	48	55	59
Escherichia coli	88	80	71	69
Klebsiella oxytoca	86	72	71	76
Klebsiella penumoniae	90	85	80	89
Morganella morganii	66	77	69	75
Proteus mirablils	70	74	69	66
Providencia stuartii	38	39	13	29
Pseudomonas aeruginosa	60	54	50	56
Serratia marcescens	81	80	85	80

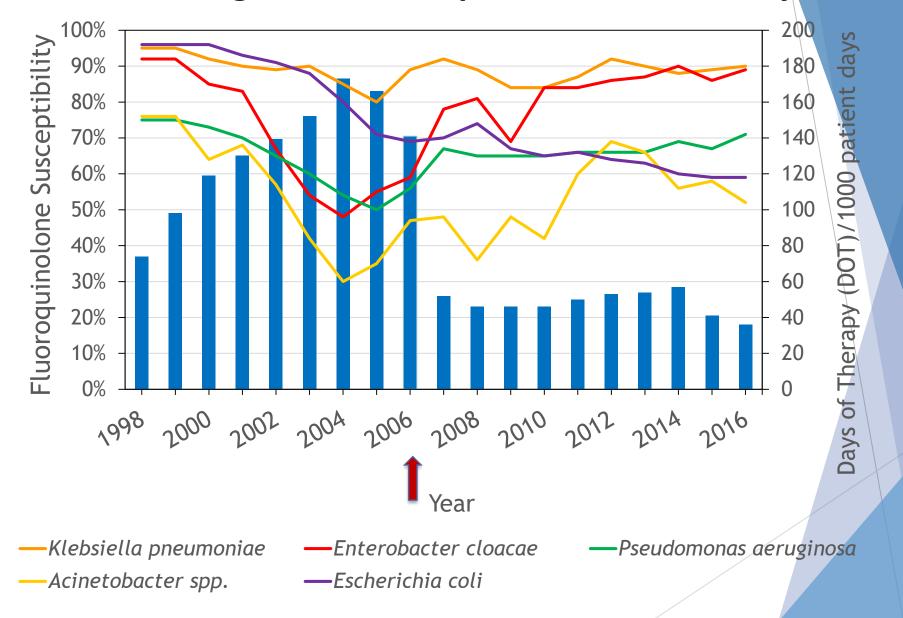
Methods

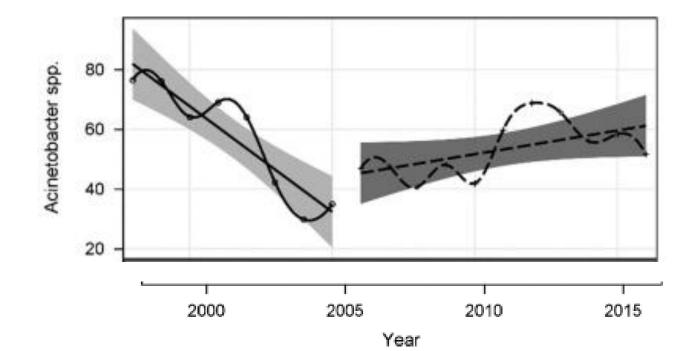

- Collected MIC data for clinical isolates from all body sites on 5 gram negative bacteria from 1998-2016
 - ► Escherichia coli
 - ► Klebsiella pneumoniae
 - Acinectobacter baumannii/haemolyticus
 - Pseudomonas aeruginosa
 - Enterobacter cloacae
- Pre-intervention: 1998-2005
- Post-intervention: 2006-2016

Statistical analysis

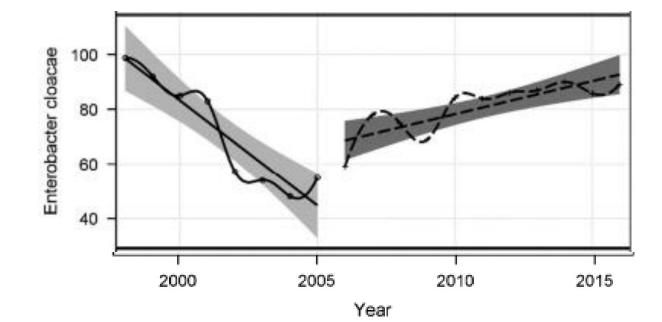
- To determine whether the annual trends in susceptibility were different in the periods prior to and following implementation of the stewardship program, we utilized Poisson regression
 - Calculated rate ratios (RRs) and associated 95% confidence intervals (CIs) for the annual rate of change in susceptibility for each of the 2 time periods.

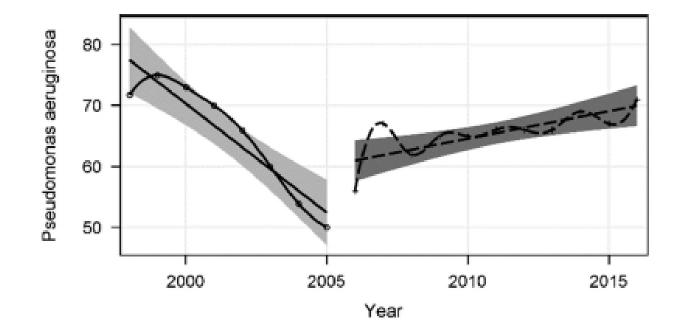
Results

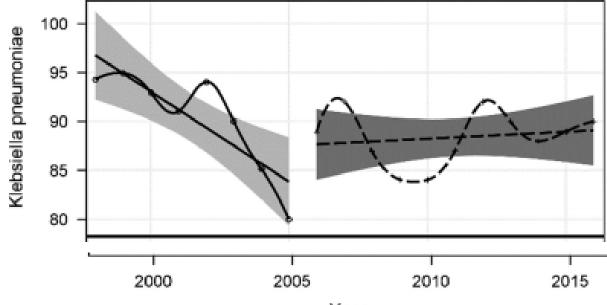

Days of Therapy at UAB per 1000 patient days



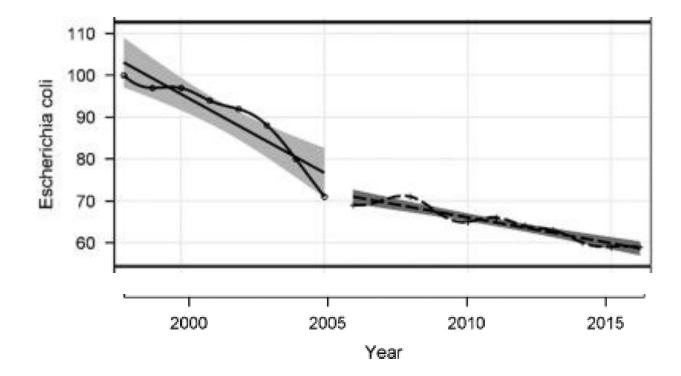
Knowledge that will change your world


Gram Negative Fluoroquinolone Sensitivity


Acinetobacter species


Enterobacter cloacae

Pseudomonas aeruginosa



Klebsiella pneumoniae

Year

E. coli

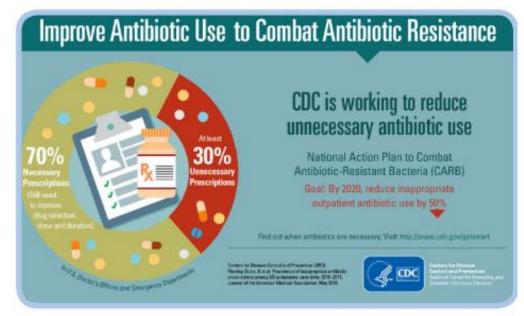
Results

- Fluoroquinolone Use
 - Peaked 173 days of therapy (DOT)/1000 patient days in 2004
 - Largest drop 2006-2007
 - ▶ 141 to 52 DOT/1000 patient days
- Fluoroquinolone Susceptibility
 - Enterobacter cloacae largest improvement: 42% to 89% susceptible
 - Pseudomonas aeruginosa improved: 54% to 71% susceptible
 - Klebsiella pneumonia halted downward trend: remained above 84%
 - Acinectobacter spp. Improved: 30% to 69% susceptible
 - > 2012 began to decline again to 52% susceptible
 - E. coli did not improve but continued to have declining sensitivity

		Preintervention						Postintervention												
Organism		1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Acinetobacter spp	Isolates	<u>62/</u> 81	<u>135/</u> 177	<u>106/</u> 165	<u>83/</u> 120	<u>109/</u> 170	<u>95/</u> 225	<u>87/</u> 291	<u>157/</u> 449	<u>115/</u> 245	<u>98/</u> 205	75/ 184	78/ 162	<u>149/</u> 355	<u>181/</u> 302	<u>128/</u> 186	<u>121/</u> 184	<u>74/</u> 132	<u>66/</u> 113	<u>45</u> / 87
	%	76	76	64	69	64	42	30	35	47	48	36	48	42	60	69	66	56	58	52
Enterobacter cloacae	Isolates	<u>25</u> / 25	<u>291/</u> 316	<u>216/</u> 254	<u>216/</u> 260	<u>184/</u> 322	<u>162</u> / 300	<u>126/</u> 262	<u>206/</u> 375	<u>155/</u> 262	<u>266/</u> 341	<u>258</u> / 344	<u>187/</u> 271	<u>276/</u> 328	<u>293</u> / 349	<u>340</u> / 395	<u>325</u> / 374	<u>279/</u> 310	<u>280/</u> 326	<u>319</u> / 358
	%	99	92	85	83	57	54	48	55	59	78	81	69	84	84	86	87	90	86	89
Escherichia coli	Isolates	<u>85/</u> 86	<u>1,065/</u> 1,098	<u>960/</u> 990	<u>857/</u> 912	<u>846/</u> 920	<u>774/</u> 879	<u>438/</u> 547	<u>887/</u> 1,249	<u>649/</u> 941	<u>739/</u> 1,055	<u>816/</u> 1,149	<u>707/</u> 1,055	<u>752/</u> 1,157	<u>1,111/</u> 1,683	<u>1,054/</u> 1,647	<u>944</u> / 1,499	<u>884/</u> 1,473	<u>915/</u> 1,550	<u>823/</u> 1,395
	%	99	97	97	94	92	88	80	71	69	70	74	67	65	66	64	63	60	59	59
Klebsiella pneumoniae	Isolates	<u>33</u> / 35	<u>546</u> / 575	<u>502</u> / 540	<u>446</u> / 490	<u>456</u> / 485	<u>459</u> / 510	<u>298</u> / 350	<u>440</u> / 550	<u>465/</u> 523	<u>613</u> / 666	<u>614</u> / 706	<u>549</u> / 653	<u>637/</u> 758	<u>625/</u> 718	<u>934</u> / 1,015	<u>755</u> / 839	<u>673</u> / 765	<u>797/</u> 896	<u>693</u> / 770
	%	94	95	93	91	94	90	85	80	89	92	89	84	84	87	92	90	88	89	90
Pseudomonas aeruginosa	Isolates	<u>66/</u> 92	<u>666/</u> 888	<u>495/</u> 678	<u>406/</u> 580	<u>362/</u> 549	<u>399</u> / 665	276/ 512	<u>379/</u> 758	<u>444/</u> 793	<u>655/</u> 977	<u>592/</u> 955	<u>580/</u> 892	<u>590/</u> 908	<u>527/</u> 798	<u>774/</u> 1,172	<u>733/</u> 1,110	<u>619/</u> 897	<u>712/</u> 1,062	<u>692/</u> 975
	%	72	75	73	70	66	60	54	50	56	67	65%	65	65	66	66	66	69	72	75
Total isolates		319	3,054	2,627	2,362	2,446	2,479	1,962	3,381	2,564	3,244	3,338	3,033	3,506	3,850	4,415	4,006	3,577	3,947	3,585

Effect of Community Antibiotic Use

- Multiple studies demonstrate E. coli FQ resistance is correlated to community use and not hospital use
- Mixed success with other stewardship programs
 - Improvement in susceptibility often small
 - UK study with improved susceptibility was noted to include stewardship in long term care facilities as well as concurrent community decreasing FQ use ¹.
- Focus on community prescribing may be needed to improve E. coli susceptibility


1. Sarma JB, Marshall B, Cleeve V, Tate D, Oswald T, Woolfrey S. Effects of fluoroquinolone restriction (from 2007 to 2012) on resistance in Enterobacteriaeceae: interrupted time-series analysis. *J Hosp Infect*. 2015;91:68-73.

Implications

- Limited antibiotic choice vs. approval policy
 - Levofloxacin induces resistance faster than Cipro
- Decrease in FQ use consistently obtained
- Contribution of unrelated antimicrobials
- Role of community prescribing practices
- Importance of long-term data
- Evaluation of stewardship efforts

Key Take Home Points for Stewardship

Reduce inappropriate antibiotic use

PERCENT OF ANTIBIOTIC PRESCRIPTIONS THAT WERE UNNECESSARY

	All conditions*	Acute respiratory conditions**
0-19 year olds	29%	34%
20-64 year olds	35%	70%
≥65 year olds	18%	54%
All ages	30%	50%

*All conditions included acute respiratory conditions, urinary tract infections, miscellaneous bacterial infections, and other conditions.

**Acute respiratory conditions included ear infections, sinus infections, sore throats, pneumonia, acute bronchitis, bronchiolitis, upper respiratory infections (i.e., common colds), influenza, asthma, allergy, and viral pneumonia.

Reduce inappropriate antibiotic use

- In 2014, 266.1 million courses of antibiotics are dispensed to outpatients in U.S. community pharmacies. This equates to more than 5 prescriptions written each year for every 6 people in the United States
- At least 30% of antibiotics prescribed in the outpatient setting are unnecessary, meaning that no antibiotic was needed at all.
- Total inappropriate antibiotic use, inclusive of unnecessary use and inappropriate selection, dosing and duration, may approach 50% of all outpatient antibiotic use.
- Local outpatient prescribing practices contribute to local resistance patterns.
- Outpatient antibiotic prescribing is greatest in the winter months.
- ▶ The majority (>60%) of antibiotic expenditures are associated with the outpatient setting.
- An estimated 80-90% of the volume of human antibiotic use occurs in the outpatient setting.
- > Azithromycin and amoxicillin are among the most commonly prescribed antibiotics.

Outpatient stewardship

Condition	Epidemiology	Diagnosis	Management
Acute rhinosinusitis	1/8 adults (12%) 98% of rhinosinusitis cases are viral	 Acute bacterial: Severe (>3-4 days) fever, purulent drainage Persistent (>10 days) Worsening (3-4 days) 	 Watchful waiting Amoxicillin/ augmentin is first line Macrolides not recommended
Acute bronchitis	Cough is the most common symptom for seeing a primary care doctor	 Evaluation should rule out pneumonia Colored sputum does not indicate bacterial infection 	 Antibiotics not recommended Symptomatic treatment only
Upper respiratory infection	>200 viruses can cause common cold	• Cold symptoms include fever, cough, rhinorrhea, nasal congestion	DecongestantsNSAIDs
Pharyngitis	Group A streptococcus is the only infection requiring antibiotics Only 5-10% of adult sore throat are caused by GAS	 Clinical features cannot distinguish Centor criteria 	Amoxicillin is first line
Acute uncomplicated cystitis	Usually caused by E. coli	 Dysuria, frequency, urgency 	Nitrofurantoin Bactrim fosfomycin

Questions?