# TÜV Rheinland (India) Pvt. Ltd.

Plant Inspection & Testing Report of 1 MW Solar PV Plant Of

**TUV Report No: 02154711** 

Bangalore, February 2015



# Report No: 02154711

On

# Plant Inspection & Testing Report of 1 MW Solar PV Plant for

| Client           | : | D-85, Phase VII, Indl Area, S A S. Nagar, Mohali<br>(Punjab) -160055 INDIA.                                        |
|------------------|---|--------------------------------------------------------------------------------------------------------------------|
| TUV Quotation No | : | TUVRI / BANG / IS/ 217 / 12-2014                                                                                   |
| Order No         | : | TC/Barwala/PO/01/Feb/14-15                                                                                         |
| Examiners        | : | Sridhara C.K<br>Senior Manager- PV Power Plants<br>E-Mail: <u>sridhara.ck@ind.tuv.com</u><br>M: +91 9538998628     |
|                  |   | Prabhu M<br>Project Engineer – PV Power Plants<br>E-Mail: <u>prabhu.m@ind.tuv.com</u><br>M: +91 8884889993         |
|                  |   | Harshavardhan.U<br>Project Engineer – PV Power Plants<br>E-Mail: <u>harsha.vu@ind.tuv.com</u><br>M: +91 9620588864 |
| Department       | : | Industrial Services - PV Power Plants                                                                              |
| No of Pages      | : | 38                                                                                                                 |



### **Content s**

| 1  | E    | xecutive Summary                               | 5  |
|----|------|------------------------------------------------|----|
| 2  | D    | escription of the Inspected Plant Elements     | 5  |
|    | 2.1  | System Description                             | 5  |
|    | 2.2  | PV Modules                                     | 6  |
|    | 2.3  | Inverter                                       | 6  |
|    | 2.4  | Transformer                                    | 6  |
|    | 2.5  | Module mounting structure                      | 7  |
|    | 2.6  | String Monitoring Unit                         | 7  |
|    | 2.7  | Cables                                         | 7  |
|    | 2.8  | Earthing                                       | 7  |
|    | 2.9  | Surge / Lightning Protection                   | 7  |
|    | 2.10 | Weather Monitoring Station                     | 7  |
|    | 2.11 | HT Panel                                       | 8  |
|    | 2.12 | Plant Monitoring                               | 8  |
| 3  | In   | spection and Testing                           | 8  |
|    | 3.1  | Visual Inspection                              | 8  |
|    | 3.2  | Inspection Checklist as per the IEC/EN 62446   | 13 |
|    | 3.3  | Modules String IV Curve Measurement            | 15 |
| 4  | Si   | ite Photos                                     | 17 |
| 5  | St   | tring Insulation Resistance Measurement        | 18 |
| 6  | Tl   | hermograph of the Plant Components             | 19 |
|    | 6.1  | Modules failure details                        | 19 |
| 7  | Eı   | nergy Yield                                    | 20 |
|    | 7.1  | Uncertainty Analysis                           | 27 |
|    | 7.2  | Degradation and Energy Yield Probability       | 29 |
| 8  | G    | eneration from Plant                           | 30 |
|    | 8.1  | Comparison of Estimated yield and actual yield |    |
| 9  | С    | onclusions                                     | 31 |
| 1( | ) A  | nnexure 1                                      | 34 |
| 1  | l A  | nnexture-2                                     |    |



### List of Abbreviations

| A<br>AC<br>ABT<br>CB<br>CO2<br>CUF<br>DC<br>EN<br>EPC<br>HT<br>I<br>DMT<br>IEC<br>IGBT<br>INST<br>IP<br>ISC<br>JB<br>kWh<br>kV<br>LCD<br>LT<br>MΩ<br>MCB<br>MVA<br>MWh<br>MWP<br>O & M<br>ONAN<br>PR<br>PV<br>PPA<br>PCB<br>Rp<br>Rs<br>SCADA<br>SLDC |   | Ampere<br>Alternate Current<br>Availability Based Tariff<br>Combiner Box<br>Carbon Dioxide<br>Capacity Utilization Factor<br>Direct Current<br>European<br>Engineering Procurement and Commissioning<br>High Tension<br>Current<br>Inverse Definite Minimum Time<br>International Electrotechnical Commission<br>Isolated Gate Bipolar Transistor<br>Maximum Peak Current<br>Instantaneous<br>Ingress Protection<br>Short Circuit Current<br>Junction Box<br>kilo Watt hour<br>kilo Volt<br>Liquid Crystal Display<br>Low Tension<br>Mega Ohm<br>Miniature Circuit Breaker<br>Mega Volt Ampere<br>Mega Watt Hour<br>Mega Watt Peak<br>Operation and Maintenance<br>Oil Natural Air Natural<br>Performance Ratio<br>Photo Voltaic<br>Power Purchase Agreement<br>Pre Combiner Box<br>Parallel Resistance<br>Series Resistance<br>Series Resistance |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                       | : |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SCADA<br>SLDC<br>Voc<br>V                                                                                                                                                                                                                             |   | Supervisory Control and Data Acquisition<br>State Load Dispatch Centre<br>Open Circuit Voltage<br>Volt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vmp<br>Wp                                                                                                                                                                                                                                             | : | Maximum Peak Voltage<br>Watt Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| W/m <sup>2</sup><br>XLPE                                                                                                                                                                                                                              | : | Watt per square meter<br>Cross-Linked Polyethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



#### **1** Executive Summary

has given an order to TUV Rheinland (India) Pvt. Ltd., to carry out the inspection and performance tests of their 1 MW AC / 1 MW DC Solar PV Power Plant located at Village Sarakpur, Barwala, Distt Panchkula, Haryana, India. The SPV power plant is configured with XL Energy make Poly crystalline modules with fixed tilt configuration at collector plane angle of 30.5 degree for the optimum utilization of solar energy and it was commissioned on 13th March 2012. The plant EPC was done by XL Energy and responsible for Engineering, Procurement and construction. The inverters used in the plant are santerno 500 KW. The inspection has been carried out as per EVS-EN 62446-2010 (Grid connected photovoltaic systems – Minimum requirements for system documentation, commissioning tests and inspection). All system components PV arrays, Inverters, Transformers and HT Panel were in operation. The plant is connected to 11 kV state grid.

#### Safety of Human, Installation and components

- Evaluation of the concept of the installation regarding the fulfilment of the requirements of electrical safety (operator safety and safety of installation)
- Evaluation of the suitability of the used components based on the technical data and according to the requirements.
- Visual Inspection of the PV plant
- Inspection of inverter and functionality tests Module strings.

The system was inspected and evaluated, especially the following parts:

PV Panels XL Energy make Poly crystalline 230Wp.

Inverters - Santerno 500KW

Cabling, grounding, and Connections

Module mounting structure

# **2** Description of the Inspected Plant Elements

#### 2.1 System Description

The power plant is having an overall capacity of 1 MW and connected to 11 kV grid. Each string is designed to have 20 modules connected in series and 16 strings are connected to one CB via 12A fuses and 7 CB's are connected to one 500 KW inverter, Two Inverters are connected to one 1250 KVA ONAN type 270V/11KV transformer. And Transformer O/P's are connected to 2P Structure via HT Panel.



#### 2.2 PV Modules

| Manufacturer   | Type<br>(Wp) (a) | Modules/String<br>(b) | Total No of<br>Strings (c) | Quantity<br>(Nos)<br>(d)= (b*c) | Total Capacity<br>(kW)<br>(a*d) |
|----------------|------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|
| XL Energy      | 230              | 20                    | 221                        | 4420                            | 1016.6                          |
| Total Capacity |                  |                       |                            | 1016.6                          |                                 |

| Manufacturer | Module Type | Pmax<br>(Wp) | Vmp (V) | Imp (A) | Voc (V) | lsc (A) |
|--------------|-------------|--------------|---------|---------|---------|---------|
| XL Energy    | XL 6P60G230 | 230          | 30.60   | 7.54    | 37.08   | 8.08    |

#### 2.3 Inverter

| Manufacturer | Type (a)       | Qty (Nos.) (b) | Total Capacity (kW) (a*b) |
|--------------|----------------|----------------|---------------------------|
| Santerno     | TG 610 TE 800V | 2              | 1000                      |
|              | Total capacity | 1000           |                           |

Inverter has inbuilt the following protections:

- DC Under, Over Voltage, Current and power
- AC Under, Over Voltage, Current, Frequency and power
- Phase Mismatching
- Earth fault protection

Inverter has standard display functions & Indications like:

- Indication lamp shows Inverter Operation, Earth fault and Failure
- LCD display- State of inverter
- PV Array Voltage, Current
- Output Voltage, Current, Power and Frequency
- Interface RS485

#### 2.4 Transformer

| Manufacturer    | Туре             | Capacity | Qty (Nos) | Total Capacity<br>(MVA) |
|-----------------|------------------|----------|-----------|-------------------------|
| Universal Power | ONAN, 270V/11 kV | 1.25 MVA | 1         | 1.25                    |

One 1.25 MVA ONAN type three phase 270V / 11 KV transformer are used in the plant to step up to three phase 11 KV from 270 V. Transformers are working properly. Safety fencing is done for all the transformers and earthing is done properly for all the transformers.



#### 2.5 Module mounting structure

Hot dip Structures are used for structure & structure rigidness is very good. Gap between two structures is not sufficient. Inter row shadow observed after 3pm (in summer time). Structure base part is fixed with MMS foundation. All structures & legs are aligned properly.

### 2.6 String Monitoring Unit

CB used are Thermoplastic IP 65 type, the rated insulation voltage of 1000 V and suitable for outdoor application.

All CBs are installed neatly on between the rows and earthed properly.

**Observation:** String monitoring units are not working.

#### 2.7 Cables

Proper size cable is used in plant and no discrepancy observed.

| Area                     | Cable Type and size                                   |
|--------------------------|-------------------------------------------------------|
| Modules to CB            | 6 mm <sup>2</sup> single core Copper double insulated |
| SCB to Inverter          | 95 mm <sup>2</sup> Single core Copper XLPE            |
| Inverter to LT Panel     | 800 mm2 Single core AI XLPE                           |
| LT Panel to Transformer  | 3R Three core 300 mm <sup>2</sup> Al cable            |
| Transformer to HT Panel  | 1R, 3C X185 SQ.MM 11kV, AL, Ar.<br>XLPE               |
| RMU Panel to HT Panel    | 1R, 3C X120 SQ.MM 11kV, AL, Ar.<br>XLPE               |
| HT Panel to 2P Structure | 1R, 3C X120 SQ.MM 11kV, AL, Ar.<br>XLPE               |

#### 2.8 Earthing

There are sufficient earth points in the plant. Inverters, Transformers, and HT Panels are earthed properly. Earth resistance check was done for structure, Inverter, Transformer, LT and HT panels. Earth resistance measured is less than 2 Ohms (in PV Yard earting higher than the standard value) and is less than the standard requirement of 2 Ohms.

### 2.9 Surge / Lightning Protection

Lightning arresters are installed for the Inverters area and for the switch yard.

#### 2.10 Weather Monitoring Station

Weather monitoring station is installed in the Plant for monitor following parameters

- Solar radiation
- Ambient temperature



- Module temperature
- Wind speed

Currently weather station is not working due to communication problem.

#### 2.11 HT Panel

11kV HT Panel is installed in the plant.

HT panel has all the required monitoring and safety equipment's like

- Vacuum Circuit breaker
- INST over current protection
- IDMT over current protection
- INST earth fault protection
- IDMT earth fault protection
- Reverse power protection
- Under voltage protection

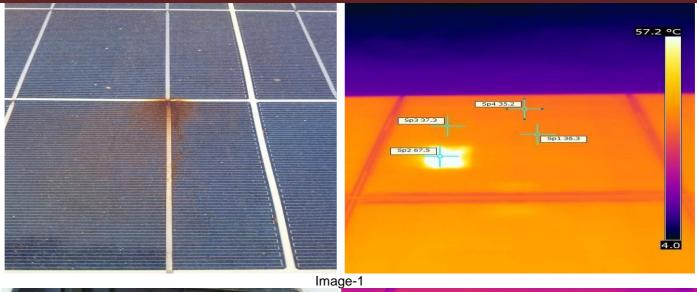
#### 2.12 Plant Monitoring

Plant SCADA for overall monitoring of the plant is not working. And needs to be rectifying the SCADA system. SCADA will give following parameters

- Irradiation Day, Month, Year and Total
- Meteorological data Ambient temperature, Module temperature, Irradiance, wind speed and wind direction
- Energy data Day, Month, Year and Total
- DC Input power
- Inverter outputs

### **3** Inspection and Testing

#### 3.1 Visual Inspection


| Area   | Observation                                                                                      | Corrective Action                                                                                                                                              |
|--------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module | Most of the modules where affected with<br>Bypass diode and cell burnt.<br>string. Refer image 1 | All faulty modules needs to be<br>replaced. For time being all faulty<br>modules needs to be removed from<br>string and can be connected as<br>separate string |
|        | Inter row shadow falling on to module from 3 pm (in summer period).                              | No Option for correction                                                                                                                                       |



|                     | Module JB burnt. Modules Need to be replaced. Refer image-2                                                                       | Modules needs to be replaced                                                                        |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Cable               | All DC and AC cable are laid without cable tag and ferrules. Needs to be use cable tag and ferrules for all cables. Refer image-3 | Cable Identification to be done                                                                     |
| Connector           | Module connector loose connection. Refer image-4.                                                                                 | Needs to be check all MC4 connectors in the plant                                                   |
| СВ                  | Dust observed inside the CB. Refer image-5                                                                                        | CB needs to be cleaned as per<br>preventive maintenance schedule                                    |
|                     | Inverter display meter Showing wrong radiation data.                                                                              | Needs to discuss with Inverter<br>supplier for correction                                           |
| Inverter            | Inverter DC disconnected switch not available.                                                                                    | Needs to discuss with Inverter<br>supplier for correction                                           |
|                     | Dust observed inside the inverter. Refer<br>image-6                                                                               | Inverter needs to be cleaned as per<br>preventive maintenance schedule to<br>avoid inverter failure |
| HT Panel            | B- Phase Indication lamp and Ammeter not working. Refer image-7.                                                                  | Needs to be corrected                                                                               |
| ACDB                | Phase indication lamp not working. Refer image-8.                                                                                 | Needs to be corrected                                                                               |
|                     | WTI and OTI indicator not working. Refer image-9.                                                                                 | Needs to be corrected                                                                               |
| Transformer         | Wood waste and paper waste in inside the cable trench. Refer image-10.                                                            | Needs to be removed and cleaned                                                                     |
| Radiation<br>sensor | Radiation sensor needs to be fixed at module plane in mid of the structure. Refer image-11.                                       | Needs to be corrected                                                                               |
| SCADA               | String monitoring unit not working.                                                                                               | Needs to be corrected                                                                               |
|                     | Weather station not working.                                                                                                      | Needs to be corrected                                                                               |
| UPS                 | Plant UPS not working. Refer image-12.                                                                                            | Needs to be corrected                                                                               |
|                     |                                                                                                                                   |                                                                                                     |

### Images





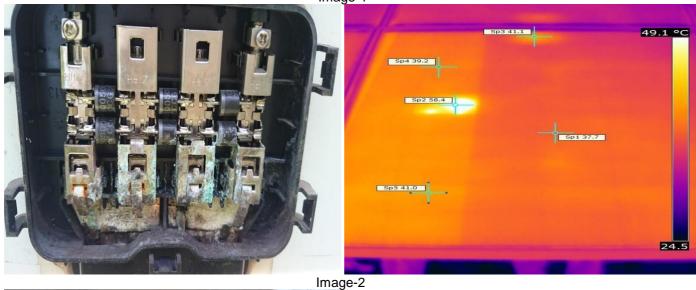





Image-3

Image-4





Image-5

Image-6



TUV Report No.:02154711





Image-11



| SI.# | Description                                                                                                                                                                                                                                                                                                                | Observation                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1    | DC system inspection                                                                                                                                                                                                                                                                                                       |                                    |
| 1.1  | The DC system has been designed, specified and installed<br>to the requirements of IEC 60364 in general and IEC 60364-<br>7-712 in particular. needs<br>PV String over current protection device<br>PV String disconnection device<br>PV Sub array disconnection device<br>PV main array disconnection device              | DC 12 A Fuse and disconnector used |
| 1.2  | All DC components are rated for continuous operation at DC<br>and at the maximum possible DC system voltage and<br>maximum possible DC fault current ( $V_{oc\ stc}$ corrected for local<br>temperature range and based on module type; and current<br>at 1,25 x $I_{sc\ stc}$ according to IEC 60364-7-712.433).          | Yes                                |
| 1.3  | Protection by use of class II or equivalent insulation adopted<br>on the DC side - yes / no (class II preferred - IEC 60364-7-<br>712.413.2:2002).                                                                                                                                                                         | Yes                                |
| 1.4  | PV string cables, PV array cables and PV DC main cables<br>have been selected and erected so as to minimize the risk<br>of earth faults and short-circuits (IEC 60364-7-<br>712.522.8.1:2002). Typically achieved by the use of cables<br>with protective and reinforced insulation (often termed<br>"double insulated").  | Double insulation cables<br>used   |
| 1.5  | Wiring systems have been selected and erected to<br>withstand the expected external influences such as wind, ice<br>formation, temperature and solar radiation (IEC 60364-7-<br>712.522.8.3:2002).                                                                                                                         | Yes                                |
| 1.6  | For systems without string over-current protective device: verify that the module reverse current rating (I <sub>r</sub> ) is greater than the possible reverse current; also, verify that the string cables are sized to accommodate the maximum combined fault current from parallel strings (IEC 60364-7-712.433:2002). | Yes                                |
| 1.7  | For systems with string over-current protective device: verify that the string over-current protective devices are fitted and correctly specified to local codes or to the manufacturer's instructions for protection of PV modules according to the note of IEC 60364-7-712.433.2:2002.                                   | Yes                                |
| 1.8  | Verify that a DC switch disconnector is fitted to the DC side of the inverter (IEC 60364-7-712.536.2.2.5:2002).                                                                                                                                                                                                            | Yes                                |
| 1.9  | If one of the DC conductors is connected to earth, verify that                                                                                                                                                                                                                                                             | Yes                                |

# 3.2 Inspection Checklist as per the IEC/EN 62446



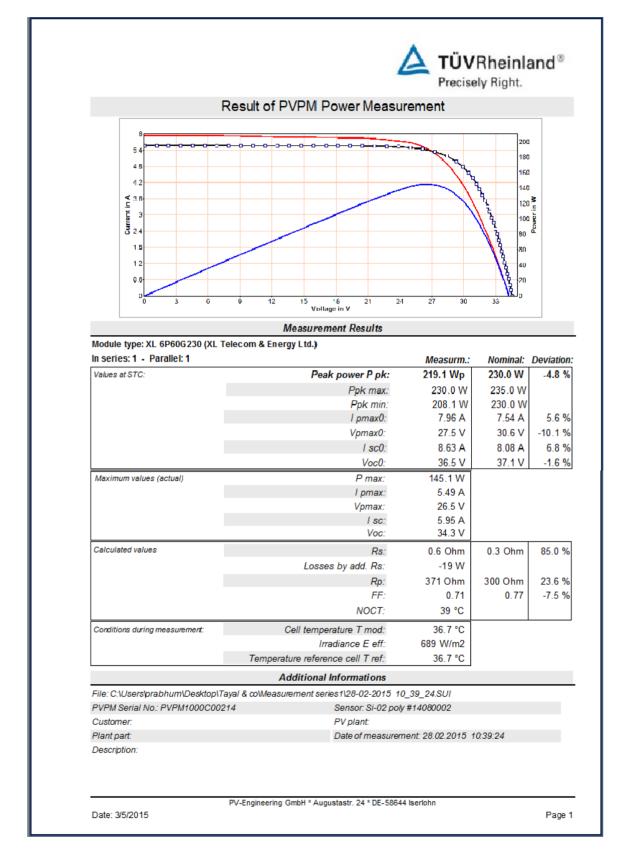
|     | r lant mspeetion Report                                                                                                                                                                                                                                                                                                           |                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|     | there is at least simple separation between the AC and DC sides and that earth connections have been constructed so as to avoid corrosion (IEC 60364-7-712.312.2:2002).                                                                                                                                                           |                                                                                                       |
| 2   | Protection against overvoltage / electric shock                                                                                                                                                                                                                                                                                   |                                                                                                       |
| 2.1 | To minimize voltages induced by lightning, verify that the area of all wiring loops has been kept as small as possible (IEC 60364-7-712.444.4:2002).                                                                                                                                                                              | Yes                                                                                                   |
| 2.2 | Verify that array frame and/or module frame protective<br>earthing conductors have been correctly installed and are<br>connected to earth. Where protective earthing and/or<br>equipotential bonding conductors are installed, verify that<br>they are parallel to, and bundled with, the DC cables (IEC<br>60364-7-712.54:2002). | Yes                                                                                                   |
| 3   | AC system                                                                                                                                                                                                                                                                                                                         |                                                                                                       |
| 3.1 | A means of isolating the inverter has been provided on the AC side;                                                                                                                                                                                                                                                               | Yes                                                                                                   |
| 3.2 | All isolation and switching devices have been connected<br>such that PV installation is wired to the "load" side and the<br>public supply to the "source" side? (IEC 60364-7-<br>712.536.2.2.1:2002);                                                                                                                             | Yes                                                                                                   |
| 4   | Labelling and identification                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| 4.1 | All circuits, protective devices, switches and terminals are suitably labelled.                                                                                                                                                                                                                                                   | Yes                                                                                                   |
| 4.2 | The main AC isolating switch is clearly labelled.                                                                                                                                                                                                                                                                                 | Yes                                                                                                   |
| 4.3 | A single line wiring diagram is displayed on site.                                                                                                                                                                                                                                                                                | No                                                                                                    |
| 5   | Safety Audit                                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| 5.1 | Security for the plant<br>a. Plant should have security and proper fencing                                                                                                                                                                                                                                                        | Plant has proper boundary<br>wall.<br>Sufficient nos. security<br>guards deployed round the<br>clock. |
| 5.2 | Emergency contact no. of responsible officer, Contact no. of<br>Fire Station and Doctor needs to be displayed in Inverter<br>rooms and control room                                                                                                                                                                               | No                                                                                                    |
| 5.3 | Emergency shutdown procedure to be displayed in inverter room and control room                                                                                                                                                                                                                                                    | No                                                                                                    |
| 5.4 | Fire Extinguisher needs to be installed near door of every inverter room and where ever applicable                                                                                                                                                                                                                                | Yes                                                                                                   |
|     |                                                                                                                                                                                                                                                                                                                                   |                                                                                                       |



| 5.5     | First Aid kit need to be kept in specified area                                                                                                  | Yes                                                                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 5.6     | All workers needs to wear shoes, needs to use hand glows<br>during working on AC/DC and tools handle should have<br>proper insulation            | No                                                                                                   |
| 5.7     | Earthing – Structure, electrical equipment, system must be<br>earthed to obtain a low resistance path for dissipation of<br>current in to earth. | Earthing done for<br>Structures, Inverters,<br>Transformers and Panels.<br>Earth resistance measured |
|         | IEEE Recommended a ground resistance value of 5 ohms<br>or less                                                                                  | is less than 2 ohms(in PV<br>Yard earting higher than the<br>standard value)                         |
| 5.8     | Protection surge/high voltages – Lightning protection needs to be provided for plant                                                             | Yes                                                                                                  |
| 5.9     | All underground cables are needs to be double insulated/Armoured                                                                                 | Yes                                                                                                  |
| a) 5.10 | All LT & HT underground cable drawn line/area needs to be properly identified/marked                                                             | Yes                                                                                                  |
| b) 5.11 | All AC and DC cables needs to be identified properly                                                                                             | Ferrule needs to be use on all cables for identification.                                            |
| c) 5.12 | Inverter and Panel area needs to be covered with rubber mat to avoid any electrical shock                                                        | Yes                                                                                                  |
| d) 5.13 | All cable trench inside and outside the building needs to be closed properly                                                                     | Yes                                                                                                  |
| e) 5.14 | Battery bank room should have proper ventilation                                                                                                 | Yes (UPS not working for battery bank charging)                                                      |
| f) 5.15 | All high voltage switch yard should have proper fencing,<br>gate with lock, Danger sign board on fencing and Co2<br>buckets                      | Yes                                                                                                  |

#### 3.3 Modules String IV Curve Measurement

Measurement done on random basis as given below


• IV Curve measurement taken for 5 strings out of 221 strings and 35 Modules.

Readings are Annexture-1.

• Module has required approval of IEC 61215 (Crystalline terrestrial photovoltaic (PV) modules - Design qualification and type approval) IEC 61730 -1 and 2 (Photovoltaic (PV) module safety qualification, Part 1- requirement for construction and part 2 - Requirement for testing)



### **IV Curve of String**





# 4 Site Photos





Module







СВ



LT Panel

Inverter



HT Panel





Lightning Arrester

Radiation Sensor

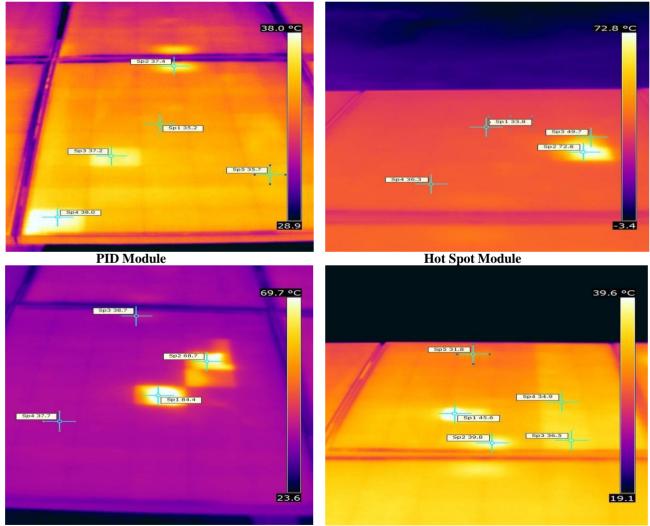
# **5** String Insulation Resistance Measurement

String and module Insulation Measurement done on random basis. Readings are in annexture-2.

Minimum values of insulation resistance: EN62446:2010

| Test method                  | System voltage<br>(V <sub>oc stc</sub> x1.25)<br>V | Test voltage<br>v | Minimum<br>insulation<br>resistance<br>Mega Ohms |
|------------------------------|----------------------------------------------------|-------------------|--------------------------------------------------|
| Test method 2                | <120                                               | 250               | 0.5                                              |
| Array positive and           | 120-500                                            | 500               | 1                                                |
| negative shorted<br>together | >500                                               | 1000              | 1                                                |

The insulation resistance of all tested samples are more than 1 M $\Omega$ .




# 6 Thermograph of the Plant Components

Infrared scanning was performed on modules, CB, Inverters & other components. Temperature rise, Hot spot, cell crack observed in the plant. List of defective modules are attached as Annexure 3.

#### 6.1 Modules failure details

| Failure Type                     | XL Energy |
|----------------------------------|-----------|
| Module Broken                    | 1         |
| Cell burnt Module                | 172       |
| Hot spot                         | 952       |
| PID                              | 54        |
| Bypass diode<br>defective module | 84        |
| Bypass diode and<br>Hot spot     | 59        |
| Total                            | 1322      |



**Cell Burnt Module** 

**Bypass Diode Failure Module** 





Inverter

### 7 Energy Yield Energy Yield Estimation

An independent energy yield calculation is done by TUVR using PVSyst software considering the following parameters.

PVSyst is the very popular software for energy yield calculation. Meteonorm data's are used for calculation & following details considered for design

- 1. Latitude : 30.5°, Longitude :77°, Altitude: 321 m
- 2. Average monthly Irradiance, Air temperature and wind velocity
- 3. Fixed tilt
- 4. Free Horizon
- 5. No shading
- 6. Losses

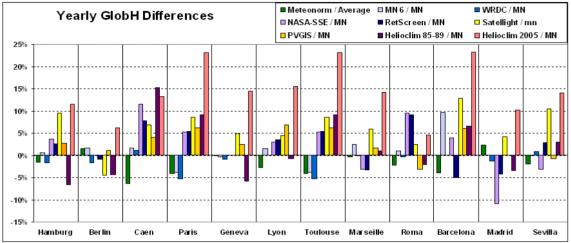


| Loss                      | Description                                                                                                                                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low irradiance            | The conversion efficiency of a PV module reduces at low light intensities - PVSyst default                                                                                                                 |
| Module temperature        | The characteristics of a PV module are determined at standard temperature conditions of 25°C. For every °C temperature rise above this, crystalline modules reduce in efficiency, generally by around 0.4% |
| Soiling                   | Losses due to dust and bird dropping. Normally 2-3% losses are considered in India. 2% loss is considered for this site.                                                                                   |
| Module quality            | Most PV modules do not match exactly the manufacturers nominal specifications In this case loss considered is 1.5 %                                                                                        |
| Module mismatch           | Losses due to mismatch are related to the fact that the real<br>modules in an array do not all rigorously present the same<br>current / voltage profiles. Considered loss is about 1.5 %                   |
| Ohmic wiring loss         | Electrical resistance in the wires between the power available<br>at the modules and at the terminals of the array gives rise to<br>ohmic losses. Standard loss considered is 1% to 2%                     |
| Inverter performance loss | Inverters convert from DC to AC with a maximum efficiency.<br>Conversion loss depends on the design.                                                                                                       |
| AC losses                 | Losses at LV/HT panel and AC wiring. Normally 1 % to 2 % is considered                                                                                                                                     |

#### Solar Resource

A variety of solar irradiation data sources are available. The datasets either make use of ground based measurement at meteorological stations or use processed satellite imagery.

**Meteonorm:** Global climatological data base and synthetic weather generator. This contains a database of ground station measurements of irradiation and temperature on hourly basis. Site resource data is interpolated from these stations and satellite data. Meteonorm data is widely used for solar resource assessment. It has 8055 stations worldwide & only data which is directly measured from weather monitoring stations. All other resource available for India other than Meteonorm and IMD is from satellite measurements.

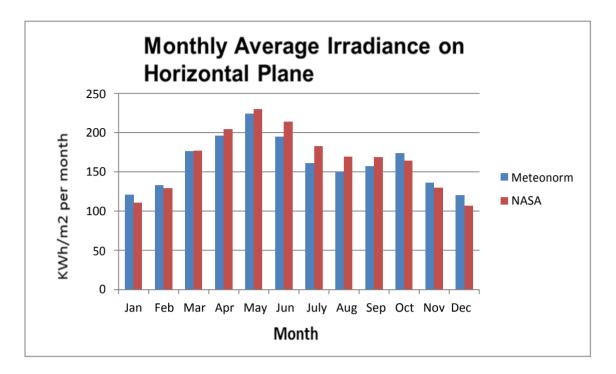

The METEONORM radiation data base is based on 10-20 year measurement periods, the other parameters mainly on 1996-2005 means. Comparisons with longer term measurements show that the discrepancy in average total radiation due to choice of time period is less than 2 % for all weather stations.

**NASA:** Surface Meteorology and solar energy data set. This holds satellite derived monthly data for a grid of 1°x1° covering the globe for ten year period (1983 - 1993).

Global comparison between all sources:



The figure shows a comparison between all available sources, for 12 locations in Europe. All values are by respect to the Meteonorm values (PVSyst internal default). Meteonorm often gives lower values than the average. This means that simulations with default values in PVSyst will be rather conservative, and give prudent results for the final yield of the customer's systems.

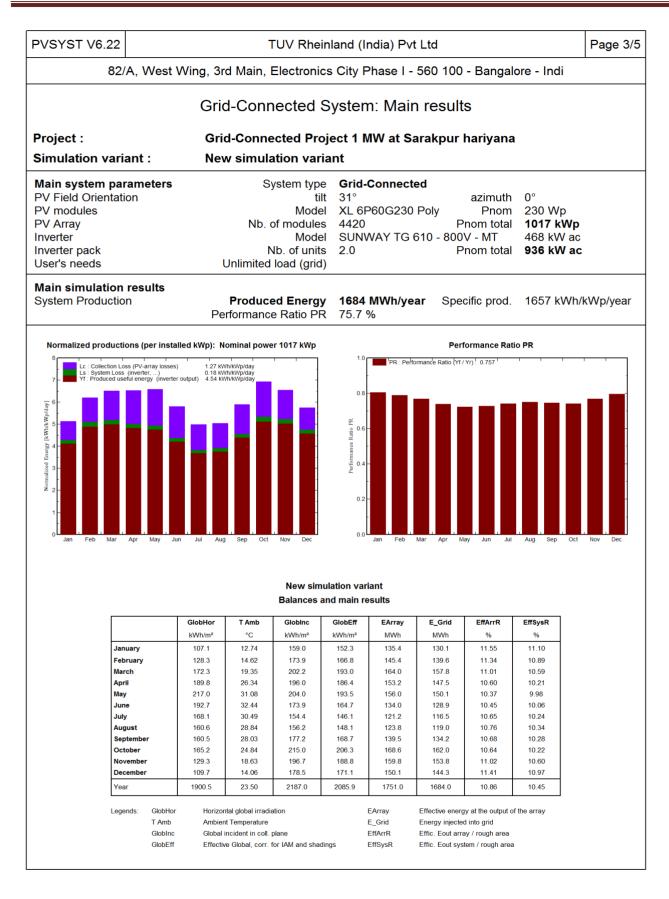



7-1: Comparison of Global Horizontal radiation from various sources

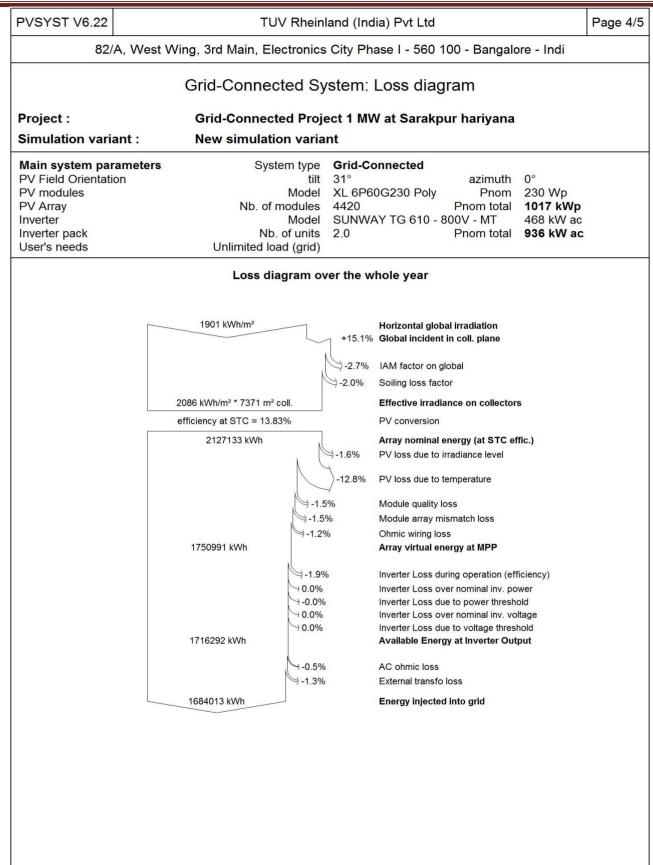
Meteonorm data is used for yield estimation because it interpolates the data of nearest measurement stations and satellite data.

| Solar<br>irradiance<br>data of Site:<br>Month | Mean Irradiance of Global<br>radiation Horizontal (kWh/m <sup>2</sup> per<br>month)- Meteonorm period 1981-<br>2000 | Mean Irradiance of Global<br>radiation Horizontal(kWh/m <sup>2</sup><br>per )- NASA period 1983-1993 |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Jan                                           | 120.5                                                                                                               | 110.7                                                                                                |  |  |
| Feb                                           | 133.1                                                                                                               | 129.1                                                                                                |  |  |
| Mar                                           | 176.3                                                                                                               | 177                                                                                                  |  |  |
| Apr                                           | 195.8                                                                                                               | 204.3                                                                                                |  |  |
| Мау                                           | 223.9                                                                                                               | 230                                                                                                  |  |  |
| Jun                                           | 194.4                                                                                                               | 213.6                                                                                                |  |  |
| July                                          | 160.7                                                                                                               | 182.6                                                                                                |  |  |
| Aug                                           | 150.3                                                                                                               | 169.3                                                                                                |  |  |
| Sep                                           | 157                                                                                                                 | 168.6                                                                                                |  |  |
| Oct                                           | 173.4                                                                                                               | 164                                                                                                  |  |  |
| Νον                                           | 136                                                                                                                 | 129.6                                                                                                |  |  |
| Dec                                           | 120                                                                                                                 | 107                                                                                                  |  |  |
| Year                                          | 1941.4                                                                                                              | 1985.7                                                                                               |  |  |






Comparison of Meteonorm and NASA data




| 13 A Real Participant Manual Inc. A Real International Control of Control | TUV Rhein                                                                            | land (India) Pvt Ltd                                | Page 1/                                                                                                                                                 |                                              |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| 82/A, West W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ing, 3rd Main, Electronics                                                           | City Phase I - 560                                  | 0 100 - Bangalo                                                                                                                                         | pre - Indi                                   |  |  |  |  |  |  |
| Gric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I-Connected System                                                                   | n: Simulation p                                     | arameters                                                                                                                                               |                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| Project : Grid-Connected Project 1 MW at Sarakpur hariyana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| Geographical Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sarakpur hariyana                                                                    |                                                     | Country                                                                                                                                                 | India                                        |  |  |  |  |  |  |
| Situation<br>Time defined as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Latitude<br>Legal Time<br>Albedo                                                     |                                                     | Longitude<br>Altitude                                                                                                                                   |                                              |  |  |  |  |  |  |
| Meteo data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sarakpur hariyana                                                                    |                                                     | orm file                                                                                                                                                |                                              |  |  |  |  |  |  |
| Simulation variant :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | New simulation varia                                                                 | nt                                                  |                                                                                                                                                         |                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Simulation date                                                                      | 05/03/15 16h19                                      |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| Simulation parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| <b>Collector Plane Orientation</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tilt                                                                                 | 31°                                                 | Azimuth                                                                                                                                                 | 0°                                           |  |  |  |  |  |  |
| Models used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transposition                                                                        | Perez                                               | Diffuse                                                                                                                                                 | Erbs, Meteonorm                              |  |  |  |  |  |  |
| Horizon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Free Horizon                                                                         |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| Near Shadings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No Shadings                                                                          |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| PV Array Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| PV module<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics<br>Total area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)                            | <b>1017 kWp</b> At o<br>544 V                       | XL Energy Ltd.<br>20 modules In parallel 221 strings<br>4420 Unit Nom. Power 230 Wp<br>1017 kWp At operating cond. 910 kWp (50°C)<br>544 V I mpp 1673 A |                                              |  |  |  |  |  |  |
| Inverter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Model                                                                                | SUNWAY TG 610                                       | - 800V - MT                                                                                                                                             |                                              |  |  |  |  |  |  |
| Characteristics<br>Inverter pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Manufacturer<br>Operating Voltage<br>Nb. of inverters                                | Santerno<br>430-760 V Unit Nom. Power 468 kW AC     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| PV Array loss factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                      |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| Array Soiling Losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11- /0                                                                               | 00.0 10//=-214                                      | Loss Fraction                                                                                                                                           |                                              |  |  |  |  |  |  |
| Thermal Loss factor<br>Wiring Ohmic Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Uc (const)<br>Global array res.                                                      | 20.0 W/m²K<br>5.5 mOhm                              | Uv (wind)<br>Loss Fraction                                                                                                                              | 0.0 W/m²K / m/s<br>1.5 % at STC              |  |  |  |  |  |  |
| Module Quality Loss<br>Module Mismatch Losses<br>Incidence effect, ASHRAE par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      | 1 - bo (1/cos i - 1)                                | Loss Fraction<br>Loss Fraction<br>bo Param.                                                                                                             | 1.5 %<br>1.5 % at MPP<br>0.05                |  |  |  |  |  |  |
| System loss factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |                                                     |                                                                                                                                                         |                                              |  |  |  |  |  |  |
| AC wire loss inverter to transfor<br>External transformer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inverter voltage<br>Wires<br>Iron loss (24H connexion)<br>Resistive/Inductive losses | 270 Vac tri<br>50 m 3x1500 mm²<br>998 W<br>1.1 mOhm | Loss Fraction<br>Loss Fraction<br>Loss Fraction                                                                                                         | 1.0 % at STC<br>0.1 % at STC<br>1.5 % at STC |  |  |  |  |  |  |











| Available energy at the plant ABT meter | 1684013 KWh |
|-----------------------------------------|-------------|
| Generation for Year 2013 (-0.8%)        | 1670541 kWh |
| Generation for Year 2014 (-0.8%)        | 1657177 kWh |

### 7.1 Uncertainty Analysis

The Uncertainty in energy prediction is challenging to quantify as it is a function of many independent factors. Solar radiation is one of the core parameter which creates maximum uncertainty in the measurement. Meteonorm data has been used for the energy yield calculation which has been generated through synthetic weather data generator. The uncertainty with irradiance has been taken 6% according to Meteonorm website. Below table shows the uncertainty parameters considered for calculation

| Sl # | Parameters                   | Uncertainty (%) |
|------|------------------------------|-----------------|
| 1    | Meteonorm data               | 6.0             |
| 2    | Module performance           | 1.0             |
| 3    | System and Grid availability | 1.0             |
| 5    | Degradation Uncertainty      | 1.0             |

Total uncertainty=  $\sqrt{6^2+1^2+1^2+1^2} = 6.24\%$ 



| TUV Rheinl                                                                       | and (India) Pvt Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Page 5/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 82/A, West Wing, 3rd Main, Electronics City Phase I - 560 100 - Bangalore - Indi |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Connected Syster                                                                 | n: P50 - P90 e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | valuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Grid-Connected Proje                                                             | ect 1 MW at Sarak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pur hariyana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| New simulation varia                                                             | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.4 (1944)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| tilt<br>Model<br>Nb. of modules<br>Model                                         | 31°<br>XL 6P60G230 Poly<br>4420<br>SUNWAY TG 610 -                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pnom total<br>800V - MT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1017 kWp</b><br>468 kW ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| obability forecast                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| -                                                                                | st for different years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is mainly depen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ear deviation from aver.                                                         | 3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| e modelling/parameters<br>Degradation uncertainty<br>lant and grid availability  | 1.0 %<br>1.0 %<br>1.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Variability<br>P50<br>P90<br>P75                                                 | 105167 kWh<br>1684013 kWh<br>1549159 kWh<br>1613113 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Probability                                                                      | distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| · · · ·                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| P90 = -<br>1500 1600                                                             | P75 = 1613 MWh<br>1549 MWh<br>1700 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                                  | , 3rd Main, Electronics<br>Connected Syster<br>Grid-Connected Projection<br>New simulation variation<br>System type<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Nb. of modules<br>Model<br>Nb. of units<br>Unlimited load (grid)<br>obability forecast<br>system production forecast<br>mulation, and depends<br>ter is also depending on se<br>modelling/parameters<br>Degradation uncertainty<br>ant and grid availability<br>Variability<br>P50<br>P90<br>P75<br>Probability<br>P90 = -<br>1500 1600 | , 3rd Main, Electronics City Phase I - 560<br>Connected System: P50 - P90 e<br>Grid-Connected Project 1 MW at Sarak<br>New simulation variant<br>System type Grid-Connected<br>tilt 31°<br>Model XL 6P60G230 Poly<br>Nb. of modules 4420<br>Model SUNWAY TG 610 -<br>Nb. of units 2.0<br>Unlimited load (grid)<br>obability forecast<br>system production forecast for different years<br>mulation, and depends on the following choir<br>Kind Not defined<br>ear deviation from aver. 3 %<br>Variance 6.0 %<br>se is also depending on some system parameters<br>a modelling/parameters 1.0 %<br>Degradation uncertainty 1.0 %<br>(c)<br>Variability 105167 kWh<br>P50 1684013 kWh<br>P90 1549159 kWh<br>P75 1613113 kWh<br>P75 1613113 kWh | Connected System: P50 - P90 evaluation<br>Grid-Connected Project 1 MW at Sarakpur hariyana<br>New simulation variant<br>System type Grid-Connected<br>tilt 31° azimuth<br>Model XL 6P60G230 Poly Phom<br>Nb. of modules 4420 Phom total<br>Model SUNWAY TG 610 - 800V - MT<br>Nb. of units 2.0 Phom total<br>Unlimited load (grid)<br>obability forecast<br>system production forecast for different years is mainly depen<br>mulation, and depends on the following choices:<br>Meteonorm file<br>Kind Not defined Year<br>ear deviation from aver. 3 %<br>Variance 6.0 %<br>se is also depending on some system parameters uncertaintic<br>a modeling/parameters 1.0 %<br>Degradation uncertainty 1.0 %<br>ant and grid availability 105167 kWh<br>P50 1684013 kWh<br>P50 1549159 kWh<br>P75 1613113 kWh<br>P75 1613113 kWh<br>P75 1613113 kWh | 3rd Main, Electronics City Phase I - 560 100 - Bangalore - Indi   Connected System: P50 - P90 evaluation   Srid-Connected Project 1 MW at Sarakpur hariyana   New simulation variant   System type Grid-Connected   131° azimuth 0°   Model XL 6P60G230 Poly Pnom total   1017 kWp Model SUNWAY TG 610 - 800V - MT   468 kW ac Nb. of units 2.0   Unlimited load (grid) Pnom total 936 kW ac   Unlimited load (grid) Weteonorm file Year   Kind Not defined Year 1995   ear deviation forecast 1.0 % Year 1995   ear deviation form aver. 3.% Year 1995   variance 6.0 % Year 1995   Year and grid availability 105167 kWh Year 1995   Yeariability 105167 kWh P90 1549159 kWh P75   Yariability 105167 kWh P90 1549159 kWh P75 1613113 kWh   Probability distribution P90 1549159 kWh P75 1613 MWh P90 1600 < |  |  |  |  |



#### 7.2 Degradation and Energy Yield Probability

Modules are warranted for 90% for first 10 years and 80% up to 25 years. Average degradation is 0.8% per year.

Probability of exceedance is considered from the point of bankability. These parameters have been arrived based on the experience and standard thumb rule and this consideration is based on a normal distribution of the expected yields. The predicted yield represents the p50 value, while p75 and p90 value means the yield exceeded with a probability of 75% and 90% with a standard deviation of 6.24 % which gives a difference of 4.18% and 7.98 % from the p50 value.

#### P50 P90 P75 Year kWh kWh kWh

#### Probability p50 and P90



| 22 | 1453047 | 1391871 | 1336689 |
|----|---------|---------|---------|
| 23 | 1442876 | 1382128 | 1327332 |
| 24 | 1432776 | 1372453 | 1318040 |
| 25 | 1422746 | 1362846 | 1308814 |

# 8 Generation from Plant

# 8.1 Comparison of Estimated yield and actual yield

| Month          | Estimated<br>Generation-<br>TUVR<br>(MWh)-P50 | Estimated<br>Generatio<br>n-TUVR<br>(MWh)-P90 | Estimated<br>Irradiation<br>kWh/m2 | Actual<br>Generat<br>ion<br>(MWh) | Deviation<br>form<br>estimated<br>yield P90 | Estimate<br>d CUF<br>(%) | Actual<br>CUF (%) | Grid and<br>Plant down<br>time |
|----------------|-----------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------|---------------------------------------------|--------------------------|-------------------|--------------------------------|
| 12-May         | 150                                           | 138                                           | 217                                | 112                               | 12%                                         | 20%                      | 15%               | 40 hrs                         |
| 12-Jun         | 129                                           | 119                                           | 193                                | 107                               | 6%                                          | 18%                      | 15%               | 44hrs46minut<br>es             |
| 12-Aug         | 119                                           | 110                                           | 161                                | 108                               | 1%                                          | 16%                      | 14%               | 22hrs24mins                    |
| 12-Sep         | 134                                           | 123                                           | 161                                | 108                               | 10%                                         | 19%                      | 15%               | 20hrs38mins                    |
| 12-Oct         | 162                                           | 149                                           | 165                                | 125                               | 14%                                         | 22%                      | 17%               | 07hrs25mins                    |
| 12-Nov         | 154                                           | 142                                           | 129                                | 103                               | 30%                                         | 21%                      | 14%               | 05hrs38mins                    |
| 12-Dec         | 144                                           | 133                                           | 110                                | 86                                | 42%                                         | 19%                      | 12%               | 11hrs35mins                    |
| Annual<br>2012 | 992                                           | 913                                           | 1135                               | 749                               | 14%                                         | 19%                      | 15%               | 113Hrs6min<br>s                |
| 13-Jan         | 130                                           | 122                                           | 107                                | 67                                | 51%                                         | 17%                      | 9%                | 06hrs50mins                    |
| 13-Feb         | 140                                           | 129                                           | 128                                | 99                                | 23%                                         | 21%                      | 15%               | 03hrs13min                     |
| 13-Mar         | 157                                           | 144                                           | 172                                | 135                               | 5%                                          | 21%                      | 18%               | 08hrs08min                     |
| 13-Apr         | 146                                           | 134                                           | 190                                | 130                               | 2%                                          | 20%                      | 18%               | 09hrs48min                     |
| 13-May         | 149                                           | 137                                           | 217                                | 123                               | 7%                                          | 20%                      | 16%               | 18hrs48min                     |
| 13-Jul         | 116                                           | 107                                           | 168                                | 95                                | 7%                                          | 16%                      | 13%               | 32hrs06min                     |
| 13-Aug         | 118                                           | 109                                           | 161                                | 84                                | 16%                                         | 16%                      | 11%               | 38hrs37min                     |
| 13-Sep         | 133                                           | 122                                           | 161                                | 111                               | 7%                                          | 18%                      | 15%               | 12hrs50min                     |
| 13-Oct         | 161                                           | 148                                           | 165                                | 102                               | 28%                                         | 22%                      | 14%               | 13 hrs 48<br>min.              |
| 13-Nov         | 153                                           | 141                                           | 129                                | 105                               | 28%                                         | 21%                      | 15%               | 37 hrs 21 min                  |
| 13-Dec         | 143                                           | 132                                           | 110                                | 97                                | 31%                                         | 19%                      | 13%               | 7hrs 49 min.                   |
| Annual<br>2013 | 1545                                          | 1422                                          | 1708                               | 1147                              | 16%                                         | 19%                      | 14%               | 189hrs18min<br>s               |
| 14-Jan         | 129                                           | 119                                           | 107                                | 80                                | 36%                                         | 17%                      | 11%               | 18 hrs 47<br>min.              |
| 14-Feb         | 138                                           | 127                                           | 128                                | 93                                | 27%                                         | 21%                      | 14%               | 7hrs 38 min.                   |
| 14-Mar         | 155                                           | 143                                           | 172                                | 129                               | 8%                                          | 21%                      | 17%               | 3hrs 13 min.                   |
| 14-Apr         | 145                                           | 133                                           | 190                                | 133                               | 0%                                          | 20%                      | 18%               | 4hrs 41 min.                   |
| 14-May         | 148                                           | 136                                           | 217                                | 125                               | 5%                                          | 20%                      | 17%               | 15hrs 11min                    |
| 14-Jun         | 127                                           | 117                                           | 193                                | 108                               | 4%                                          | 18%                      | 15%               | 9 hrs 16 min.                  |



| 14-Jul         | 115  | 106  | 168  | 97   | 5%  | 15%    | 13%    | 7 hrs 46 min.    |  |
|----------------|------|------|------|------|-----|--------|--------|------------------|--|
| 14-Aug         | 117  | 108  | 161  | 110  | -2% | 16%    | 15%    | 2 hrs 32 min.    |  |
| 14-Sep         | 132  | 121  | 161  | 107  | 9%  | 18%    | 15%    | 4 hrs 45 min.    |  |
| 14-Oct         | 160  | 147  | 165  | 107  | 24% | 21%    | 14%    | 9 hrs 23 min.    |  |
| 14-Nov         | 152  | 140  | 129  | 118  | 17% | 21%    | 16%    | 36 min.          |  |
| 14-Dec         | 142  | 131  | 110  | 84   | 42% | 19%    | 11%    | 18 hrs23 min.    |  |
| Annual<br>2014 | 1660 | 1528 | 1901 | 1292 | 12% | 19%    | 15%    | 102hrs10min<br>s |  |
| Total          | 4197 | 3863 | 4744 | 3188 | 14% | 19.10% | 14.50% | 404hrs34min<br>s |  |

# 9 Conclusions

The following conclusions were drawn from the present work,

- Plant is underperforming comparing with the estimated TUVRI P90 Generation. Year 2012 has 14%, Year 2013 has 16% and Year 2014 has 12% lesser generation due to Module failure and grid unavailability.
- Total 4200 modules were scanned by IR camera and observed that failure of 1322 modules.

| Failure Type                     | XL Energy |
|----------------------------------|-----------|
| Module Broken                    | 1         |
| Cell burnt Module                | 172       |
| Hot spot                         | 952       |
| PID                              | 54        |
| Bypass diode<br>defective module | 84        |
| Bypass diode and<br>Hot spot     | 59        |
| Total                            | 1322      |

- Random faulty modules IV curve was taken through the IV Curve tracer. Power loss up 88% observed in the burnt modules. Modules failure is due to process/manufacturing problem
- Inverter –ve needs to be earthed to avoid Potential Induced Degradation (PID) effect on modules. Needs to discuss with Inverter supplier to install the –ve earth kit to Inverter
- Total 1322 faulty modules are mixed in the 221 strings. Due to this the string will give less output. All 1322 modules needs to be removed from the strings and can be made separate string till the replacement of modules.
- As first priority all the bypass diode failure modules and cell burnt module needs to be removed from strings to avoid further loss in generation
- Corrective actions needs to be taken immediately on points raised in visual inspection table



#### **Cell Burnt Module**



Module O/P with Cell burnt module

| Row | CB # | Module SI #  | Datum Zeit            | T<br>sens | T<br>mod | E eff | lsc | Uoc  | Ipmax | Upmax | Pmax | lsc<br>0 | Uoc<br>0 | lpmax0 | Upmax0 | Ppk  | Nominal<br>Module | Deviation<br>from | %Deviation<br>from nominal |
|-----|------|--------------|-----------------------|-----------|----------|-------|-----|------|-------|-------|------|----------|----------|--------|--------|------|-------------------|-------------------|----------------------------|
| #   | CD#  |              | Date Time             | °C        | °C       | W/m2  | А   | V    | А     | V     | W    | А        | V        | А      | V      | W    | out put           | nominal<br>Wp     | Wp                         |
| 9   | 3    | XL1111C00315 | 2/28/2015<br>11:16:12 | 40.5      | 40.5     | 782.1 | 6.2 | 33.6 | 5.2   | 17.3  | 90.9 | 8.0      | 33.4     | 6.7    | 14.3   | 95.6 | 230               | -134              | -58%                       |
| 9   | 3    | XL1112C03756 | 2/28/2015<br>11:17:32 | 41.8      | 41.8     | 787.5 | 6.3 | 33.5 | 4.4   | 15.0  | 66.4 | 8.0      | 31.0     | 5.6    | 9.7    | 54.6 | 230               | -175              | -76%                       |
| 9   | 3    | XL1111C02349 | 2/28/2015<br>11:19:08 | 41.9      | 41.9     | 767.6 | 4.6 | 33.4 | 2.6   | 14.8  | 38.0 | 6.1      | 29.3     | 3.4    | 8.0    | 26.9 | 230               | -203              | -88%                       |

#### String O/P with Cell burnt module

| Row | CB # | Datum Zeit            | T<br>sens | T<br>mod | E eff | lsc | Uoc   | Ipmax | Upmax | Pmax   | lsc 0 | Uoc 0 | lpmax0 | Upmax0 | Ppk    | Nominal<br>Module | Deviation<br>from | %Deviation         |
|-----|------|-----------------------|-----------|----------|-------|-----|-------|-------|-------|--------|-------|-------|--------|--------|--------|-------------------|-------------------|--------------------|
| #   | CD#  | Date Time             | °C        | °C       | W/m2  | А   | V     | А     | V     | W      | А     | V     | А      | V      | W      | out put           | nominal<br>Wp     | from nominal<br>Wp |
| 27  | 14   | 2/27/2015<br>14:23:02 | 47.6      | 47.6     | 846.0 | 7.3 | 664.6 | 5.2   | 335.6 | 1738.4 | 8.6   | 677.6 | 6.1    | 317.1  | 1941.7 | 4600              | -2658             | -58%               |



#### **Bypass Diode Defective Modules**



#### Bypass diode defective module O/P

|     | <u> </u> | pass aloae acree      | serve module e        | <u></u>               |          |       |     |       |       |            |       |          |          |        |        |            |                   |                   |                            |
|-----|----------|-----------------------|-----------------------|-----------------------|----------|-------|-----|-------|-------|------------|-------|----------|----------|--------|--------|------------|-------------------|-------------------|----------------------------|
| Row | CB #     | Module SI #           | Datum Zeit            | T<br>sens             | T<br>mod | E eff | lsc | Uoc   | Ipmax | Upmax      | Pmax  | lsc<br>0 | Uoc<br>0 | lpmax0 | Upmax0 | ) Ppk      | Nominal<br>Module | Deviation<br>from | %Deviation<br>from nominal |
| #   | СБ #     |                       | Date Time             | °C                    | °C       | W/m2  | А   | V     | А     | V          | W     | А        | V        | А      | V      | W          | out put           | nominal<br>Wp     | Wp                         |
| 24  | 14       | XL1111C02359          | 2/27/2015<br>15:02:14 | 42.5                  | 42.5     | 742.6 | 5.9 | 22.5  | 4.7   | 16.0       | 75.1  | 7.9      | 25.5     | 6.3    | 18.6   | 117.1      | 230               | -113              | -49%                       |
| 17  | 10       | XL1111C01657          | 2/28/2015<br>10:38:18 | 40.2                  | 40.2     | 729.7 | 6.2 | 23.0  | 5.1   | 17.8       | 90.8  | 8.5      | 26.5     | 7.0    | 21.4   | 149.5      | 230               | -81               | -35%                       |
|     | Ву       | pass diode defeo      | ctive module (        | J/P (str <sup>;</sup> | ing)     |       |     |       |       |            |       |          |          |        |        |            |                   |                   |                            |
| Row | CB #     | Datum Zeit            | T T<br>sens mod       | E eff                 | lsc      | c Uo  | эс  | Ipmax | Upmax | x Pmax     | lsc 0 | Uc       | oc 0 I   | lpmax0 | Upmax0 | Ppk        | Nominal<br>Module | Deviation<br>from | %Deviation<br>from nominal |
| #   | 00 #     | Date Time             | 0° 0°                 | W/m2                  | 2 A      | V     | /   | А     | V     | W          | А     | 'n       | V        | А      | V      | W          | out put           | nominal<br>Wp     | Wp                         |
| 9   | 3        | 2/28/2015<br>11:05:20 | 36.0 36.0             | 678.4                 | 5.5      | 5 684 | .3  | 4.1   | 376.0 | 1548<br>.5 | 8.1   | 676.     | .2       | 6.1    | 293.9  | 1784.<br>1 | 4600              | -2816             | -61%                       |



# 10 Annexure 1

#### Module I-V curve measurement

| SI # | Row | СВ | Module SI #  | Datum Zeit            | Т    | Т    | E eff | lsc | Uoc  | lp  | Up   | Р     | lsc | Uoc  | lp   | Up   | Ppk   | Modul | Deviatio      | %Deviatio     | Remarks                      |
|------|-----|----|--------------|-----------------------|------|------|-------|-----|------|-----|------|-------|-----|------|------|------|-------|-------|---------------|---------------|------------------------------|
|      | #   | #  |              |                       | sens | mod  |       |     |      | max | max  | max   | 0   | 0    | max0 | max0 |       | e Wp  | n from        | n from        |                              |
|      |     |    |              | Date Time             | °C   | °C   | W/m2  | A   | V    | A   | V    | W     | A   | V    | A    | V    | W     |       | nominal<br>Wp | nominal<br>Wp |                              |
| 1    | 27  | 14 | XL1111C00623 | 2/27/2015<br>14:11:58 | 46.1 | 46.1 | 865.9 | 7.4 | 33.4 | 6.6 | 15.2 | 100.5 | 8.6 | 33.9 | 7.6  | 13.7 | 104.6 | 230   | -125          | -55%          | HotSpot                      |
| 2    | 27  | 14 | XL1112C03443 | 2/27/2015<br>14:13:38 | 46.6 | 46.6 | 864.3 | 4.1 | 33.2 | 2.1 | 14.4 | 30.5  | 4.8 | 31.7 | 2.5  | 11.5 | 28.2  | 230   | -202          | -88%          | Burnt                        |
| 3    | 27  | 14 | XL1111C01058 | 2/27/2015<br>14:15:14 | 46.7 | 46.7 | 864.5 | 7.2 | 33.2 | 4.9 | 21.7 | 106.2 | 8.3 | 37.5 | 5.7  | 25.5 | 144.3 | 230   | -86           | -37%          | Burnt                        |
| 4    | 27  | 14 | XL1111C00500 | 2/27/2015<br>14:17:22 | 46.1 | 46.1 | 861.6 | 7.0 | 33.3 | 5.6 | 23.6 | 132.3 | 8.1 | 36.6 | 6.5  | 26.7 | 173.8 | 230   | -56           | -24%          | HotSpot                      |
| 5    | 27  | 14 | XL1111C02960 | 2/27/2015<br>14:21:16 | 49.9 | 49.9 | 850.1 | 6.9 | 33.2 | 5.2 | 22.1 | 114.6 | 8.1 | 37.2 | 6.1  | 25.7 | 156.4 | 230   | -74           | -32%          | Backsheet<br>Bulged          |
| 6    | 26  | 14 | XL1112C04071 | 2/27/2015<br>14:28:14 | 46.7 | 46.7 | 841.4 | 7.0 | 33.8 | 6.3 | 25.0 | 156.7 | 8.3 | 36.6 | 7.4  | 27.5 | 204.5 | 230   | -26           | -11%          | PID                          |
| 7    | 26  | 14 | XL1112C04119 | 2/27/2015<br>14:30:06 | 47.9 | 47.9 | 841.8 | 7.0 | 33.7 | 6.3 | 24.7 | 155.2 | 8.3 | 36.5 | 7.5  | 27.1 | 202.5 | 230   | -28           | -12%          | PID                          |
| 8    | 26  | 14 | XL1112C04167 | 2/27/2015<br>14:31:56 | 47.8 | 47.8 | 835.7 | 6.9 | 33.8 | 6.3 | 24.8 | 156.7 | 8.3 | 36.5 | 7.6  | 27.1 | 204.8 | 230   | -25           | -11%          | PID                          |
| 9    | 26  | 14 | XL1111C02988 | 2/27/2015<br>14:36:56 | 45.1 | 45.1 | 815.6 | 6.7 | 33.4 | 6.0 | 15.4 | 92.0  | 8.2 | 33.5 | 7.3  | 12.5 | 91.6  | 230   | -138          | -60%          | Bypass<br>Diode &<br>Hotspot |
| 10   | 26  | 14 | XL1111C02248 | 2/27/2015<br>14:38:36 | 45.8 | 45.8 | 809.0 | 6.6 | 33.5 | 6.0 | 24.4 | 146.4 | 8.1 | 36.1 | 7.4  | 26.4 | 195.0 | 230   | -35           | -15%          | PID                          |
| 11   | 24  | 14 | XL1111C02417 | 2/27/2015<br>14:52:10 | 43.7 | 43.7 | 776.1 | 6.4 | 33.7 | 4.8 | 24.9 | 120.8 | 8.3 | 39.8 | 6.2  | 31.0 | 193.6 | 230   | -36           | -16%          | Backsheet<br>Bulged          |
| 12   | 24  | 14 | XL1111CO2642 | 2/27/2015<br>14:53:24 | 43.5 | 43.5 | 773.2 | 6.5 | 33.9 | 5.2 | 25.9 | 135.2 | 8.4 | 39.0 | 6.8  | 31.1 | 210.3 | 230   | -20           | -9%           | Backsheet<br>Bulged          |
| 13   | 24  | 14 | XL1111C00307 | 2/27/2015<br>15:00:02 | 43.1 | 43.1 | 751.4 | 6.3 | 33.7 | 5.4 | 14.7 | 80.1  | 8.4 | 32.2 | 7.2  | 8.7  | 62.9  | 230   | -167          | -73%          | Bypass<br>Diode &<br>Hotspot |
| 14   | 24  | 14 | XL1111C02359 | 2/27/2015<br>15:02:14 | 42.5 | 42.5 | 742.6 | 5.9 | 22.5 | 4.7 | 16.0 | 75.1  | 7.9 | 25.5 | 6.3  | 18.6 | 117.1 | 230   | -113          | -49%          | Bypass<br>Diode &<br>Hotspot |
| 15   | 24  | 14 | XL1111C02993 | 2/27/2015<br>15:03:54 | 43.6 | 43.6 | 737.5 | 6.3 | 33.7 | 5.7 | 16.1 | 92.4  | 8.6 | 33.3 | 7.8  | 11.0 | 85.9  | 230   | -144          | -63%          | Bypass<br>Diode              |
| 16   | 24  | 14 | XL1111C02305 | 2/27/2015<br>15:05:30 | 43.5 | 43.5 | 728.7 | 6.3 | 33.6 | 5.4 | 25.4 | 137.1 | 8.6 | 37.5 | 7.4  | 28.9 | 213.9 | 230   | -16           | -7%           | HotSpot                      |
| 17   | 23  | 14 | XL1112CO3381 | 2/27/2015<br>15:32:08 | 39.4 | 39.4 | 633.2 | 5.3 | 33.9 | 3.4 | 27.5 | 92.5  | 0.0 | 0.0  | 0.0  | 0.0  | 0.0   | 230   | -230          | -100%         | Burnt                        |



|    |    |    |              |                       |      |      |       |     |      | -   |      | -     |     |      |     |      |       |     |      |       |                              |
|----|----|----|--------------|-----------------------|------|------|-------|-----|------|-----|------|-------|-----|------|-----|------|-------|-----|------|-------|------------------------------|
| 18 | 23 | 14 | XL1112C04373 | 2/27/2015<br>15:33:26 | 39.1 | 39.1 | 625.6 | 5.4 | 33.8 | 4.9 | 25.7 | 126.6 | 8.7 | 36.7 | 7.9 | 27.1 | 213.4 | 230 | -17  | -7%   | Good<br>Module               |
| 19 | 23 | 14 | XL1112C04263 | 2/27/2015<br>15:35:36 | 38.9 | 38.9 | 629.6 | 5.3 | 33.9 | 4.8 | 25.6 | 123.2 | 8.4 | 36.7 | 7.7 | 26.7 | 204.1 | 230 | -26  | -11%  | Good<br>Module               |
| 20 | 23 | 14 | XL1112C04261 | 2/27/2015<br>15:37:32 | 38.8 | 38.8 | 618.9 | 5.2 | 33.8 | 3.4 | 25.5 | 86.8  | 0.0 | 0.0  | 0.0 | 0.0  | 0.0   | 230 | -230 | -100% | HotSpot                      |
| 21 | 23 | 14 | XL1112C03376 | 2/27/2015<br>15:39:28 | 39.3 | 39.3 | 614.3 | 5.0 | 34.0 | 4.6 | 26.1 | 119.6 | 8.2 | 37.0 | 7.5 | 27.5 | 205.4 | 230 | -25  | -11%  | PID                          |
| 22 | 17 | 10 | XL1111C01657 | 2/28/2015<br>10:38:18 | 40.2 | 40.2 | 729.7 | 6.2 | 23.0 | 5.1 | 17.8 | 90.8  | 8.5 | 26.5 | 7.0 | 21.4 | 149.5 | 230 | -81  | -35%  | Bypass<br>Diode              |
| 23 | 17 | 10 | XL1111C01062 | 2/28/2015<br>10:39:24 | 36.7 | 36.7 | 689.1 | 5.9 | 34.3 | 5.5 | 26.5 | 145.1 | 8.6 | 36.4 | 8.0 | 27.4 | 218.2 | 230 | -12  | -5%   | Good<br>Module               |
| 24 | 17 | 10 | XL1111C01668 | 2/28/2015<br>10:41:54 | 38.3 | 38.3 | 709.9 | 5.7 | 34.1 | 4.7 | 27.5 | 128.1 | 8.0 | 40.1 | 6.6 | 33.9 | 223.1 | 230 | -7   | -3%   | HotSpot                      |
| 25 | 17 | 10 | XL1111C01583 | 2/28/2015<br>10:42:42 | 42.1 | 42.1 | 695.8 | 5.6 | 34.1 | 5.2 | 26.6 | 139.2 | 8.1 | 36.7 | 7.5 | 28.1 | 211.7 | 230 | -18  | -8%   | Good<br>Module               |
| 26 | 17 | 10 | XL1111C01680 | 2/28/2015<br>10:48:42 | 38.9 | 38.9 | 639.3 | 5.2 | 33.6 | 4.3 | 27.1 | 115.1 | 8.1 | 40.8 | 6.6 | 35.0 | 232.8 | 230 | 3    | 1%    | HotSpot                      |
| 27 | 9  | 3  | XL1111C00312 | 2/28/2015<br>10:55:20 | 35.9 | 35.9 | 692.0 | 4.5 | 33.9 | 3.3 | 27.5 | 90.8  | 0.0 | 0.0  | 0.0 | 0.0  | 0.0   | 230 | -230 | -100% | HotSpot                      |
| 28 | 9  | 3  | XL1111C00406 | 2/28/2015<br>10:56:38 | 38.0 | 38.0 | 717.9 | 5.9 | 33.9 | 5.4 | 26.1 | 139.7 | 8.2 | 36.3 | 7.5 | 27.6 | 206.1 | 230 | -24  | -10%  | Good<br>Module               |
| 29 | 9  | 3  | XL1111c00584 | 2/28/2015<br>10:57:28 | 37.0 | 37.0 | 643.8 | 5.2 | 33.6 | 4.1 | 17.1 | 70.6  | 8.1 | 31.0 | 6.4 | 9.3  | 59.4  | 230 | -171 | -74%  | HotSpot &<br>Bypass<br>diode |
| 30 | 9  | 3  | XL1111C00649 | 2/28/2015<br>11:04:28 | 35.5 | 35.5 | 689.5 | 5.6 | 34.2 | 4.5 | 17.3 | 77.6  | 8.2 | 32.0 | 6.5 | 10.6 | 69.1  | 230 | -161 | -70%  | Burnt                        |
| 31 | 9  | 3  | XL1111C00315 | 2/28/2015<br>11:16:12 | 40.5 | 40.5 | 782.1 | 6.2 | 33.6 | 5.2 | 17.3 | 90.9  | 8.0 | 33.4 | 6.7 | 14.3 | 95.6  | 230 | -134 | -58%  | Burnt                        |
| 32 | 9  | 3  | XL1112C03756 | 2/28/2015<br>11:17:32 | 41.8 | 41.8 | 787.5 | 6.3 | 33.5 | 4.4 | 15.0 | 66.4  | 8.0 | 31.0 | 5.6 | 9.7  | 54.6  | 230 | -175 | -76%  | Burnt                        |
| 33 | 9  | 3  | XL1111C02349 | 2/28/2015<br>11:19:08 | 41.9 | 41.9 | 767.6 | 4.6 | 33.4 | 2.6 | 14.8 | 38.0  | 6.1 | 29.3 | 3.4 | 8.0  | 26.9  | 230 | -203 | -88%  | Burnt                        |
| 34 | 9  | 3  | XL1111C01735 | 2/28/2015<br>11:20:24 | 42.0 | 42.0 | 501.3 | 4.0 | 32.8 | 3.8 | 16.7 | 62.8  | 8.1 | 30.6 | 7.5 | 2.3  | 17.5  | 230 | -213 | -92%  | HotSpot &<br>Bypass<br>diode |
| 35 | 9  | 3  | XL1112C02738 | 2/28/2015<br>11:21:04 | 42.6 | 42.6 | 609.6 | 4.9 | 33.1 | 4.5 | 16.7 | 74.9  | 8.0 | 31.9 | 7.3 | 7.7  | 56.9  | 230 | -173 | -75%  | HotSpot &<br>Bypass<br>diode |
| 36 | 9  | 3  | XL1112C03057 | 2/28/2015<br>11:22:16 | 39.1 | 39.1 | 678.2 | 5.5 | 33.5 | 5.1 | 16.8 | 85.5  | 8.2 | 32.7 | 7.5 | 10.0 | 75.0  | 230 | -155 | -67%  | Burnt                        |
| 37 | 9  | 3  | XL1111C02481 | 2/28/2015<br>11:30:22 | 39.4 | 39.4 | 709.5 | 5.6 | 34.0 | 2.5 | 19.5 | 49.3  | 0.0 | 0.0  | 0.0 | 0.0  | 0.0   | 230 | -230 | -100% | Burnt                        |
| 38 | 9  | 3  | XL1111C00359 | 2/28/2015<br>11:30:58 | 40.2 | 40.2 | 696.5 | 5.6 | 33.9 | 4.6 | 24.8 | 114.0 | 8.1 | 38.7 | 6.6 | 28.9 | 190.6 | 230 | -39  | -17%  | Burnt                        |
| 39 | 9  | 3  | XL1111C00637 | 2/28/2015<br>11:31:58 | 39.8 | 39.8 | 696.4 | 5.5 | 33.9 | 3.4 | 24.4 | 83.4  | 7.9 | 47.9 | 4.9 | 39.4 | 193.7 | 230 | -36  | -16%  | Burnt                        |



# String I-V curve measurement

| SI # | Row<br># | CB<br># | Datum<br>Zeit         | T<br>sens | T<br>mod | E eff | lsc | Uoc   | lp<br>max | Up<br>max | P<br>max | lsc<br>0 | Uoc 0 | lp<br>max0 | Up<br>max0 | Ppk    | Nominal<br>Module out | Deviation<br>from | %Deviation<br>from | Remarks                                             |
|------|----------|---------|-----------------------|-----------|----------|-------|-----|-------|-----------|-----------|----------|----------|-------|------------|------------|--------|-----------------------|-------------------|--------------------|-----------------------------------------------------|
|      |          |         | Date<br>Time          | °C        | °C       | W/m2  | A   | V     | A         | V         | W        | A        | V     | A          | V          | W      | put                   | nominal Wp        | nominal Wp         |                                                     |
| 1    | 27       | 14      | 2/27/2015<br>14:23:02 | 47.6      | 47.6     | 846.0 | 7.3 | 664.6 | 5.2       | 335.6     | 1738.4   | 8.6      | 677.6 | 6.1        | 317.1      | 1941.7 | 4600                  | -2658             | -58%               | Cell burnt an<br>d bypass<br>diode module<br>string |
| 2    | 26       | 14      | 2/27/2015<br>14:34:08 | 46.7      | 46.7     | 825.2 | 7.1 | 672.1 | 6.3       | 476.8     | 2988.0   | 8.6      | 725.6 | 7.6        | 517.5      | 3930.1 | 4600                  | -670              | -15%               | Bypass diode module string                          |
| 3    | 24       | 14      | 2/27/2015<br>14:55:40 | 43.7      | 43.7     | 765.1 | 6.6 | 671.8 | 5.4       | 496.9     | 2681.4   | 8.7      | 760.7 | 7.1        | 580.1      | 4090.8 | 4600                  | -509              | -11%               | Hot spot<br>Module String                           |
| 4    | 24       | 14      | 2/27/2015<br>15:17:10 | 41.3      | 41.3     | 696.1 | 6.1 | 675.4 | 5.1       | 501.4     | 2559.0   | 8.7      | 760.2 | 7.3        | 572.7      | 4198.8 | 4600                  | -401              | -9%                | Good String                                         |
| 5    | 9        | 3       | 2/28/2015<br>11:05:20 | 36.0      | 36.0     | 678.4 | 5.5 | 684.3 | 4.1       | 376.0     | 1548.5   | 8.1      | 676.2 | 6.1        | 293.9      | 1784.1 | 4600                  | -2816             | -61%               | Cell burnt an<br>d bypass<br>diode module<br>string |



# 11 Annexture-2

### Insulation resistance measurement – Module

| SI # | Row # | CB # | Module SI #  | Insulation Resistance |
|------|-------|------|--------------|-----------------------|
|      |       |      |              |                       |
|      |       |      |              |                       |
| 1    | 27    | 14   | XL1111C00623 | 32.3                  |
| 2    | 27    | 14   | XL1112C03443 | 33.3                  |
| 3    | 27    | 14   | XL1111C01058 | 24.5                  |
| 4    | 27    | 14   | XL1111C00500 | 18.27                 |
| 5    | 27    | 14   | XL1111C02960 | 23.2                  |
| 6    | 26    | 14   | XL1112C04071 | 22.5                  |
| 7    | 26    | 14   | XL1112C04119 | 40.5                  |
| 8    | 26    | 14   | XL1112C04167 | 35.4                  |
| 9    | 26    | 14   | XL1111C02988 | 33.5                  |
| 10   | 26    | 14   | XL1111C02248 | 30.4                  |
| 11   | 24    | 14   | XL1111C02417 | 39.3                  |
| 12   | 24    | 14   | XL1111CO2642 | 31.5                  |
| 13   | 24    | 14   | XL1111C00307 | 83.5                  |
| 14   | 24    | 14   | XL1111C02359 | 49.5                  |
| 15   | 24    | 14   | XL1111C02993 | 60.2                  |
| 16   | 24    | 14   | XL1111C02305 | 70.5                  |
| 17   | 23    | 14   | XL1112CO3381 | 32.3                  |
| 18   | 23    | 14   | XL1112C04373 | 33.5                  |
| 19   | 23    | 14   | XL1112C04263 | 39.5                  |
| 20   | 23    | 14   | XL1112C04261 | 42.5                  |
| 21   | 23    | 14   | XL1112C03376 | 35.3                  |
| 22   | 17    | 10   | XL1111C01657 | 57.1                  |
| 23   | 17    | 10   | XL1111C01062 | 64.7                  |
| 24   | 17    | 10   | XL1111C01668 | 33.8                  |
| 25   | 17    | 10   | XL1111C01583 | 28.6                  |
| 26   | 17    | 10   | XL1111C01680 | 35.3                  |
| 27   | 9     | 3    | XL1111C00312 | 54.6                  |
| 28   | 9     | 3    | XL1111C00406 | 41.2                  |
| 29   | 9     | 3    | XL1111c00584 | 37.1                  |
| 30   | 9     | 3    | XL1111C00649 | 58.4                  |
| 31   | 9     | 3    | XL1111C00315 | 62.5                  |
| 32   | 9     | 3    | XL1112C03756 | 45.9                  |
| 33   | 9     | 3    | XL1111C02349 | 33.2                  |
| 34   | 9     | 3    | XL1111C01735 | 56.4                  |
| 35   | 9     | 3    | XL1112C02738 | 31.7                  |
| 36   | 9     | 3    | XL1112C03057 | 49.5                  |
| 37   | 9     | 3    | XL1111C02481 | 54.6                  |
| 38   | 9     | 3    | XL1111C00359 | 39.5                  |
| 39   | 9     | 3    | XL1111C00637 | 61.7                  |



# Insulation resistance – String

| SI # | Row # | CB # | Insulation<br>Resistance |
|------|-------|------|--------------------------|
| 1    | 27    | 14   | 27.6                     |
| 2    | 26    | 14   | 31.6                     |
| 3    | 24    | 14   | 23.5                     |
| 4    | 24    | 14   | 25.5                     |
| 5    | 9     | 3    | 26.1                     |