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Abstract 

Characterization of normality is an interesting aspect for Hilbert space operators. In this paper, we have 

shown that for an operator A to be normal, it is necessary that A = A*. It is also sufficient that for an 

operator A to be normal then the condition AA* = A*A holds. Moreover, for an inner derivation, we 

conjecture that the property ᵟA=ᵟA* is necessary for its normality.    
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Introduction 

The field of analysis has been very 

interesting especially on the study of elementary 

operators for many decades. Sylvester in 1880s 

[1], computed the eigenvalues of the matrix 

operators on a square matrix. This work has been 

of great concern especially in the applications of 

operator theory and functional analysis. Later, 

Lumer and Rosenblum [2] described the 

elementary operator from a mapping T : A → A 

if it can be expressed as T : B(H) → B(H) by                    

TAi ,Bi(X ) =∑
n

i=1Ai X Bi  ∀ X ∈ B(H) and  ∀ Ai , 

Bi fixed in B(H) and 1 ≤ i < n. The study of 

operator theory has been significant dating back 

many decades ago [3].  

Some research has been done though not 

exhaustive. Studies about elementary operators 

have been of much concern. We define an 

elementary operator T : B(H) → B(H)  [6]  by 

TAi ,Bi(X ) =∑
n

i=1Ai X Bi  ∀ X ∈ B(H) and   ∀ Ai , 

Bi fixed in B(H) where i = 1, . . . , n [4]. From 

this operator, we can define the generalized 

adjoint by TAi ,Bi(X ) =∑
n

i=1Ai* X Bi* and we say 

that T is normal if and only if T T*= T*T. Now 

AC = CA, BD = DB, together with AA*= A*A, 

BB*= B*B, CC*= C*C and DD*= D*D ensures 

that the operator TAi ,Bi(X) = AXC + BXD is 

normal [5]. Some of our results show that; if T ∈ 

B(H) be a p-hyponormal and T = U |T | be polar 

decomposition of T such that U
n0

= U* for some 

positive integer n0 then T is normal.  Moreover, 

if T ∈ B(H) be a p-hyponormal ant T = U |T | be 

the polar decomposition of T such that U*n→1 

or Un→ 1 as            n → ∞, where limits are 

taken in the strong operator topology then T is 

normal [6]. For an operator A to be normal, it is 

also necessary that A = A*. It is sufficient that 

for an operator A to be normal then the condition 

AA* = A*A holds [7].  This  knowledge is 

important especially in quantum physics 

especially the formulation of Heisenberg 

uncertainty principle for linear transformations 

and non-zero scalars such that AX − XA = αI 

[8]. The study can also be used in the solutions 

of Schrondinger wave equations since the 

infimum of the Hamiltonian operator is always 

an eigenvalue and its corresponding eigenvector 

are called the ground state energies E giving us a 

formulation of E as (EC3, H8) [9].  

Over the past years, several scholars have 

joined in research to describe several properties 

related to the structure of the elementary 

operators. Rodman [10] described Sylvester and 

Lyapunov operators in real and complex 

matrices which included in particular cases 

operators arising from the theory of linear time 

invariant system. Fanqyan [11] described the 

multiplicative mappings of operator algebras. 

They described the nest algebra as being the 

natural analogues of upper triangular matrix 

algebra in the infinite dimensional Hilbert space. 

Gheondea [12], described the normality of 

elementary operators based on the spectral 

theorem for the normal operators. This study 

Postulated that If N ∈ B(H) is a normal arbitrary 
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such that AN = NA then AN∗= N∗A as well is 

normal. This shows that that if A, B ∈ B(H ) are 

two normal operators that commute and each 

commutes with its adjoint, then their product is 

AB is normal [13]. The study further deduces 

that if   A and B are bounded operators such that 

AB is normal and compact, then BA is normal 

and compact as well and sk(AB) = sk(BA) for all 

k = 1, 2, . . .n [14] The objective of this study 

was to determine the necessary and sufficient 

conditions for normality of Hilbert space 

operators. These conditions have been obtained 

for Hilbert space operators and a conjecture 

given for inner derivations. 

Research methodology 

Here we define some of the key terms 

and give some basic concepts that are used in our 

work. 

Definition 1.1. ([15], Definition 1.2.1) Field. A 

field F is a set closed under two binary 

operations of addition and scalar multiplication 

satisfying the following properties: 

(i). Closure under addition and multiplication. a 

+ b ∈ F and a.b ∈ F, ∀ a, b ∈ F, 

(ii). Associativity: a + (b + c) = (a + b) + c, ∀ a, 

b, c ∈ F, 

(iii). commutativity: a + b = b + a and (a.b).c = 

(b.c).a, ∀ a, b, c ∈ F, 

(iv). Additive and multiplicative identities: ∀ a ∈ 

F, ∃ − a ∈ F: a + −a = 0. And ∃ a
-1∈ F: a.a

-1
=1 

 (v). Distributivity: a(b + c) = (ab + ac) ∀ a, b, c 

∈ F, 

 (vi). Existence of additive inverse: ∀ a ∈ F ∃ x ∈ 

K: a + x = 0, and x + a = 0 then a = −x          ∀a, 

x ∈ F, 

(vii). Existence of a multiplicative inverses: For 

each a ∈ F with 0<a> 0 the equations a.x = 1 and 

x.a = 1 have a solution x ∈ F, called the 

multiplicative inverse of a and denoted by a
−1

. 

Definition 1.2. ([16], Definition 1.1.2) Vector 

space. Let F be a field and V a collection of 

objects called vectors, then V is a vector space 

over a field F if V is closed under vector addition 

and scalar multiplication. i.e. ∀ v1, v2 ∈ V, v1 + 

v2 ∈ V and ∀ v ∈ V, and ∀ a ∈ F, a.v ∈V , and 

satisfies the following properties: 

(i). Commutativity. v1 + v2 = v2 + v1, ∀ v1, v2 ∈ 

V, 

(ii). Associativity. v1+ (v2 + v3) = (v1 + v2) + v3. 

∀ v1, v2, v3 ∈ V, 

(iii). Additive inverse. ∀ v ∈ v, ∃ − v ∈ V : v + 

−v = 0 ∀ v1, − v ∈ V 

(iv). Additive Identity. ∀ v ∈ V, ∃ 0 ∈ V : v + 0 

= v. ∀ v ∈ V 

(v). Multiplicative Identity. 1.v = v,  ∀ v ∈ V 

(vi). Distributive property. ∀ a ∈ F, and ∀ v1, v2 

∈ V, a(v1 + v2) = (av1 + av2) and the space  

(V, ∥.∥) is called a normed vector space. 

(vii). Unitary law. ∀ v ∈ V, 1.v = v. 

Definition 1.3. ([17], Definition 2.1.8) Banach 

space. This is a complete normed linear space. 

Definition 1.4. ([18], Definition 2.7) Hilbert 

space. A Hilbert space is a complete inner 

product space. 

Definition 1.5. ([19], Definition 2.1.8) Norm. A 

norm is a non-negative real valued function that 

takes the elements of a vector space to a field of 

real numbers denoted by ∥.∥: V → R satisfying 

the following conditions: 

(i.) Non-negativity: ∥x∥ ≥ 0, ∀ x ∈ V. 

(ii.) Zero property: ∥x∥ = 0, if and only if x=0, 

for all x ∈. 

(iii.) Homogeneity: ∥αx∥ ≤ |α|∥x∥, ∀ x ∈ V and α 

∈ F 

(iv.) Triangle inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥, ∀ 

x and y ∈ V 

The pair (V, ∥.∥) is called a normed linear space. 

Definition 1.6. [7]. Elementary Operator. Let H 

be an infinite dimensional complex Hilbert space 

and B(H) be an algebra of all bounded linear 

operators on the H . We define an elementary 

operator T : B(H) → B(H) by TAi ,Bi(X ) =∑
n

i=1Ai 

X Bi  ∀ X ∈ B(H) and   ∀ Ai , Bi fixed in B(H) 

where i = 1, . . . , n. Examples of elementary 

operators include: 

(i). The left multiplication operator LA: B(H) by: 

LA(X) = AX , ∀X ∈ B(H). 

(ii). The right multiplication operator RB: B(H) 

by: RB (X)=BX , ∀X ∈ B(H).  

(iii). The Basic elementary operator 

(implemented by A, B) by: MA, B (H) = AXB, 

∀X ∈ B(H). 

(iv). The Jordan elementary operator 

(implemented by A, B) by: UA,B (X)=AXB + 

BXA,             ∀X ∈B(H). 

(v). The Generalized derivation (implemented by 

A, B) by: δA,B = LA − RB. 

(vi).The inner derivation (implemented by A, B) 

by: δA = AX – XA. 

Definition 1.7. ([3] Definition 1.3) A normal 

operator. Let T ∈ B(H ) and T ∗ ∈ B(H ).  
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Then T is said to be normal if and only if    T T 

∗ =T ∗T. 

Definition 1.8. ([1] Definition 1.8) Adjoint of 

an operator. Let A be a bounded linear 

operator on a Hilbert space H. The operator 

A∗: H → H defined by (Ax, y) = (x, A∗Y) for 

all y ∈ H, is called the adjoint of the operator 

A. 

Definition 1.9. ([12], Definition 1.) Hyponormal 

Operators.  Let H be a Hilbert space and T ∈ 

B(H) then we say that T is hyponormal if ∥T x∥ 

= ∥T*x∥ i.e. T*T − T T* = 0 for all x ∈ H 

Definition 1.10. ([8], Definition 1.) p-

hyponormal operator.  Let H be a Hilbert space 

and T ∈ B(H ) then we say that T is p-

hyponormal  0 < p ≤ 1 if (T T*)p ≥ (T T*)p 

where T* is the adjoint of T . 

Definition 1.11. ([13], Definition 7.) Invertible 

operator.  Let H be a Hilbert space and T an 

operator in H, then T is said to be invertible if 

there exists T
−1 

called the inverse of T such that 

T
−1

T = T T
−1

= I. 

Definition 1.12. ([9], Definition 1.) 

Quasinilipotent operator.  Let H be a Hilbert 

space and T be an operator such that T ∈ B(H) 

and σ(T ) be the spectrum of T . We say that T is 

quasinilipotent if σ(T ) = 0 

Definition 1.13. ([13], Definition 1.) Positive 

operator. Let H be a Hilbert space and T ∈ B(H), 

then we say that T is positive if ⟨Tu, v⟩ ≥ 0. 

Definition 1.26. ([13], Definition 2.) Skew - 

Hermitian operator. Let H be a Hilbert space and 

T ∈ B(H) then T is Hermitian if  T*= −T. 

Results and discussion 

An adjoint of a bounded linear operator T 

is also linear, bounded and unique. This can be 

shown by the result below. 

Proposition 1. Let (Y, K) be Hilbert spaces and 

T ∈ B(Y, K) then there exists a unique bounded 

linear operator T∗∈ B (K, Y) such that; ⟨T x, y⟩ = 

⟨x, T∗y⟩ for all x ∈ Y and y ∈ K and ∥T ∥ = ∥T∗∥ 

(i.e. T∗ is an adjoint of T, (T∗)∗= T ∈ B(H)). 

Proof. Let y ∈ K be arbitrary and ∀x ∈ Y, we 

define fy(x) = ⟨T x, y⟩ ∀ x ∈ Y. We need to show 

that fy ∈ Y∗ and that fy is linear and bounded. Let 

x, x′ ∈ Y: λ, λ′∈ C then; fy (λx + λ′x′) = ⟨T (λx + 

λ′x′)y⟩ = ⟨λTx + λ′Tx′y⟩ = λ⟨T x, y⟩ + λ′⟨T x′, y ⟩ 
= λfy(x) + λ′fy (x′).        

Hence fy is linear. 

To show boundedness we have: 

|fy(x)| = |⟨T x, y⟩| ≤ ∥T x∥∥y∥, by CBS, ≤ ∥T ∥ 

∥x∥∥y∥. 

Therefore, ∥fy∥ ≤ ∥T x∥ ∥y∥ hence bounded. 

By Riez’s representation theorem, f (x) = ⟨x, y∗⟩ 
for some unique y∗∈ Y and ∥fy∥ = ∥y∗∥.  For y ∈ 

K, we have a unique y∗∈ Y. This helps us to 

define T∗: K → Y by T∗(y) = y∗ then we claim 

that T 
*
 is linear.  Let y1, y2 ∈ K and β1, β2 ∈ C, 

we can re-write; ∥fy∥ = ∥T∗y∥.  

Now, f β1y1, β2, y2 (x) = ⟨Tx, β1, y1+β2, y2⟩ = ⟨x, T∗( 

β1,y1+β2y2)⟩.  
But, ⟨T x, β1,y1+β2y2⟩ = ⟨T x, β1,y1⟩+ ⟨T x, 

β2y2⟩= β1⟨Tx,y1⟩+β2⟨Tx, y2⟩= β1⟨x, T∗y1⟩ + β2⟨x, 

T∗y2⟩= ⟨x, β1T∗y1⟩ +⟨x,β2T∗y2⟩=⟨x,β1T∗y1+ 

β2T∗y2⟩.  
Therefore, ⟨x, β1T∗y1+ β2T∗y2⟩= ⟨x, T∗( 

β1,y1+β2y2)⟩ for all x ∈ Y. Hence                                                   

T∗(β1,y1+β2y2) = β1T∗(y1) + β2T∗(y2) i.e. T∗ is 

linear. If T∗ ∈ B (K, Y), then we have that             

∥ T∗y∥ ≤ ∥T ∥∥y∥ i.e.  T∗ is bounded and 

∥T∗∥≤∥T ∥. It is clear now that T∗ is unique (for 

some unique y ∈ Y). Since T∗ ∈ B(K, Y), we 

apply the above reasoning to obtain its adjoint         

(T∗)∗∈ B(Y, K ) and we have that; ⟨ T∗ y, x⟩ = ⟨y, 

T
**

 x⟩, ∀ Y ∈ K and x ∈ Y and ⟨T*y, x⟩ = ⟨x, 

T*y⟩ = ⟨T x, y⟩ = ⟨y, T x⟩. We now show that 

∥T∗∗∥ ≤ ∥T*∥.  So we have that, ⟨y, T∗∗x⟩ =⟨y, T 

x⟩ ∀ y ∈ K and x ∈ Y i.e. ⟨y, T**x − T x⟩ = 0, 

i.e. T**x = Tx  hence ⇒ T**= T thus ∥T*∥ ≤ ∥T 

∥, ∥T**∥ ≤ ∥T*∥ and ∥T**∥ = ∥T ∥ so ∥T*∥ ≤ ∥T 

∥ and ∥T ∥ ≤ ∥T*∥ hence ∥T*∥ = ∥T ∥                                                                                                                       

Proposition 2. If A ∈ B(H) and ⟨Ax, x⟩ = 0, ∀ x, 

y ∈ H, then A = 0. 

Proof. Let x, y ∈ H, then; ⟨A(x + y), x + y⟩ = 

⟨Ax + Ay, x + y⟩ = ⟨Ax, x⟩ + ⟨Ax, y⟩ + ⟨Ay, x⟩ + 

⟨Ay, y⟩ …………………………………….(1) 

⟨A(x − y), x − y⟩ = ⟨Ax − Ay, x − y⟩ = ⟨Ax, x⟩ − 

⟨Ax − y⟩ − ⟨Ay − y⟩ + ⟨Ay, y⟩ ……………(2) 

⟨A(x + y), x + y⟩ = ⟨Ax + iAy, x + iy ⟩….….(3) 

= ⟨Ax, x⟩ + i⟨Ax, y⟩ + i⟨Ay, x⟩ + ⟨Ay, y⟩….(4) 

⟨A(x − y), x − y⟩ = ⟨Ax − iAy, x − iy ⟩………(5) 

= ⟨Ax, x⟩ − ⟨Ax, y⟩ − i⟨Ay, x⟩ + ⟨Ay, y⟩…..(6) 

Subtracting (2) from (1) gives;   2⟨Ax, y⟩ + 

2⟨Ay, x⟩. Subtracting i × (6) from (4) gives; 

2⟨Ax, y⟩ − 2⟨Ay, x⟩. Adding, 2⟨Ax, y⟩ + 2⟨Ay, 

x⟩ + 2⟨Ax, y⟩ − 2⟨Ay, x⟩ = 4⟨Ax + y⟩. 

Thus, ⟨Ax, y⟩ = {⟨A(x + y), x + y⟩ −⟨A(x − y), 

x − y⟩ + i⟨(x + iy), x +iy⟩ − i⟨A(x − iy), x − iy⟩}, 

∀ x, y ∈ H. Since ⟨Ax, x⟩ = 0, ∀x, y ∈ H, the 

right hand side of the equation is zero. 
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 i.e. ⟨Ax, y⟩ = 0, ⇒ Ax⊥Y ⇒ Ax¯0 ⇒ A = 0.      

Proposition 3. Let A ∈ B(H), then it is sufficient 

that A is normal if and only if it commutes with 

its adjoint A* i.e. A*Ax = AA*x for all x ∈ H 

thus A ∈ B(H) is normal if and only if ∥Ax∥ = 

∥A*x∥ and that AA*= A*A. 

Proof. To see this, let A ∈ B(H) be normal, i.e. A 

= A* thus A*Ax =AA*x ∀ x ∈ H then;    ⟨A*Ax, 

x⟩ = ⟨AA*x, x⟩ ∀x ∈ H i.e. ⟨Ax, Ax⟩ =⟨A*x, 

A*x⟩ ∀ x ∈ H. i.e.    ∥Ax∥2= ∥A*x∥2⇒ ∥Ax∥ = 

∥A*x∥, ∀ x ∈ H⇒ ∥A∥∥x∥ = ∥A*∥∥x∥⇒∥A∥= 

∥A*∥ hence A = A*. Conversely, Let ∥Ax∥ = 

∥A*x∥ ∀x ∈ H, i.e. ⟨A*Ax, x⟩ = ⟨AA*x, x⟩ ∀x ∈ 

H, i.e. ⟨ (A*A − AA*) x, x⟩ = 0 ∀ x ∈ H. And 

that (A*A − AA*) x = 0 ∀ x ∈ H.  It follows that 

by proposition [2] that A*A – AA*= 0 i.e. A*A = 

AA*.                                                                                                                                                       

Theorem 4. Let A, B, X ∈ B(H) such that A* is 

p-hyponormal, B is dominant and X is invertible, 

if AX = BX , then there exists a unitary U such 

that AU = UB and hence A and B are normal. 

Proof. Since AX = BX, then it follows by 

Fuglede-Putnam theorem that for p-hyponormal 

([16], Theorem 2) B∗X = XA* and so X* B = 

AX*. Now, AX* X = X* BX = X* XA.  Let X = 

UP be polar decomposition of X. Since X is 

invertible, it follows that P is invertible and U is 

unitary. Since AP
2
= P

2
 and P is positive, it 

follows that AP = PA. Thus BUP = UPA ⇒ BUP 

= UAP. But P is an invertible so we have BU = 

UA. Therefore, A and B are unitarily equivalent. 

So, A is dominant and B*is p-hyponormal. 

Hence A, B are normal.                                           

Theorem 5. Let T = A + iB ∈ B(H) be Cartesian 

decomposition of T with AB is p-hyponormal. If 

A or B is positive, then T is normal. 

Proof. Assume that A is positive, Let S = AB 

then SA = AS∗. Then it follows that from 

Fugled-Putnam theorem for p-hyponormal ([16], 

Theorem 2) that S*A = AS, that is BA
2
= A

2
B. 

But B is positive, then AB = BA hence T is 

normal.                     

Theorem 6. Let B be a bounded normal operator. 

Let A be an unbounded normal operator. 

Assume that B commutes with A. If for some r > 

0, ∥rBB*− I ∥ < 1, then BA is normal. 

Proof.  We need to show the closedness of BA. 

Let xn → x and BAxn →y, then the condition 

∥rBB*− I ∥ < 1 plus the normality of B 

guarantees that BB*= B*B is invertible. Hence 

by continuity of B∗, B*BAxn →B*y. Therefore, 

AXn → (B*B) −1B*y. This implies that        

B*BAx =B*y and hence BB*BAx = BB*y. With 

invertibility of BB*, we have that BAx = y 

proving the closedness of BA.                                                                                                   

Theorem 7. Let A, V, X ∈ B(H) be such that V, 

X are isometries and A* is p-hyponormal. 

If VX = XA, then A is normal. 

Proof. Since V X = XA, then by Fugled-Putnam 

theorem, we have that V*X = XA*. Multiplying 

V X = XA by V*, we get X = V*XA, then X (I – 

AA*) = 0 implies that X*X (I – A*A = 0.) So A 

is an isometry. Therefore A and A* are p-

hyponormal and hence A is a normal isometry.         

Theorem 8. Let A, B ∈ B(H) be such that A and 

AB are normal. Then BA is normal if and only if 

B commutes with |A|. 

Proof. Since A = U |A|, where U ∈ B(H) is 

unitary and commutes with |A| = √(A∗A) , if in 

addition B commutes with |A|, then U*ABU = 

U*U |A|BU = B|A| = BU |A| = BA and hence BA 

is normal as well (as unitary operator with the 

normal operator AB.) conversely, if BA is 

normal, let M = AB and N = BA. Then MA = 

ABA = AN. By Fuglede-Putnam theorem, it 

follows that M*A = AN*, that is, B*A*A = 

AA*B* and taking into account that A*A = AA* 
this means that B* commutes with A*A and so 

B.                                                                                    

Theorem 9. Let T = A + iB be the Cartesian 

decomposition of T. If T* is hyponormal and AB 

is p-hyponormal, then T is a normal operator. 

Proof. Let Q = AB, then QA = AQ∗= ABA. 

Then by Fuglede-Putnams theorem, we have that 

Q∗A = AQ i.e BA
2
= A

2
B. Now, (Q + Q*) A 

=A(Q + Q*) and (Q − Q*)A = A(Q − Q*) Since 

T* is hyponormal, we have that T T*−T*T = 

2i(BA−AB) = 2i(Q∗−Q) ≥ 0. Let Y = 

2i(BA−AB) then; 

 Y ≥ 0 and Y A = −AY. 

 Now        Y
2
A = Y (Y A) = Y (−AY) = −Y AY 

= − (−AY) Y = AY
2
. 

But Y is positive, then Y A = AY = 0. Hence, 

A(AB − BA) = (AB − BA)A = 0 implies that 

 σ(AB − BA) = 0 therefore AB − BA is 

quasinilipotent skew Hermitian. Thus AB − BA 

= 0 so T is normal. 

Theorem 10. Let T ∈ B(H ) be p-hyponormal and 

T = U |T | be polar decomposition of T such that 

U
n0

= U* for some positive integer n0 then T is 

normal. 

Proof. Let T be p-hyponormal for some p > 0. 

Hence |T |2p≥ |T∗|2p=U |T |2pU∗. Multiplying 

both sides of the inequality (|T |
2p

 ≥ |T*|
2p

) by U 
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and U* we have that U |T|
2p

 U*≥ U
2
|T |

2p
 U

2
* 

hence |T |
2p

 ≥ U |T |
2p

 U
2p

*. Repeating this 

process we have the inequalities:                                

|T |
2p

≥ |T*|V= U |T |
2
U

2p
≥ U

2
|T |

2p
 U

2p
*≥ . . .  

≥U
n0

|T|
2p

 U
n0+1

.................................. (4.2.16)     

Since U
n0

= U*, we observe that U
n0+1

= U∗U = 

U
(n0+1)∗ is a projection onto Ran|T|   hence, 

U
n0+1

|T |
2p

 U
(n0+1)∗=

 |T |
2p

 from which and 

inequality, [4.2.16], we obtain  |T |
2p

 ≥ |T∗|
2p

 thus 

|T|
2
= |T*|

2 
hence normal.          

Theorem 11. Let T ∈ B(H) be satisfying the 

following conditions: 

(i.) T is a restriction-Convexoid 

(ii.) T is reduced by each of its eigenspaces 

(iii.) T = S−1ApS + K where σ (A) is real, K is 

compact and p is some non-negative integer. 

Then T is normal 

Proof. By Weyl’s spectrum we have σw(T ) = 

σ(T ) − σ00 (T ). Since Weyl’s spectrum is 

preserved under similarity and also remains 

invariant under compact perturbation, we   have 

σw(S−1ApS + K) = σ(S−1ApS) =σw(Ap) ⊆ 

σ(A)p. So σw (T ) is real. Let T1 = T \ H, be the 

restriction of T to the subspaces H1 generated by 

eigenvectors corresponding to eigenvalues, 

λ0∈σ00(T ).  Let H2 = H1⊥ and T2 = T \ H2, then 

we obtain subspaces H1 ⊕ H2. Since T is 

reduced by each of its eigenspaces, we conclude 

that T is normal. Also σ(T2) = σw(T ) is real and 

hence T2 is self adjoint which shows that T is 

normal.                                                               

Theorem 12. Let T ∈ B(H) be a p-hyponormal 

ant T = U |T | be the polar decomposition of T 

such that U
 p

 *
 n

→ 1or Un→ 1 as n → ∞ where 

limits are taken in the strong operator topology. 

Then T is normal. 

Proof. Let U* n 
ξ → ξ as n → ∞ ∀ ξ ∈ H. In this 

case, Un→ 1 in the strong operator topology 

then it follows by inequalities, [4.2.16], that 

∥|T |
 p

 ξ ∥ ≥ ∥T*|
 p

 ξ ∥ = ∥|T |
 p

 U ξ ∥ ≥ ∥|T |
 p

 U
 p 

*ξ ∥ ≥... ∥|T |
 p

 ξ ∥ ≥ ∥|T |
 p

 U
 n 

ξ ∥ ≥ ….(4.2.17)  

Since| ∥|T |
 p

 U* n 
ξ ∥ − ∥ |T |

 p
 ξ ∥ | ≤ ∥|T |

 p
 U

 n 
ξ ∥ 

− |T |
 p

 ξ ∥ ≤ ∥|T |
 p ∥∥U* n 

ξ − ξ ∥→ 0 as n → ∞ 

we have that ∥T |
 p

 U* n 
ξ ∥ → ∥|T |

 p
 ξ ∥ as n → ∞ 

hence by inequalities, [4.2.17], we get ∥|T |
p
 

ξ∥2
=∥|T *|ξ ∥2

, so |T |
2p

 = |T*|
2p

 hence T is 

normal. 

Conclusions 

The structural properties of the elementary 

operators have been of great concern in analysis 

mathematics. Several of properties have been 

studied and of the most interesting concern is the 

norm property. The term elementary operator 

came as a result of the knowledge of the basic 

elementary operators from an algebra. If A is an 

algebra, then given a, b ∈ A, we define the basic 

elementary operator (implemented by A, B) by: 

MA, B (H) = AXB, ∀ X ∈ B(H). This led to the 

form describing the elementary operators as the 

sum of basic elementary operators. T : B(H) → 

B(H) by TAi ,Bi(X ) =∑
n

i=1Ai X Bi  ∀ X ∈ B(H) 

and  ∀ Ai , Bi fixed in B(H). For this operator A 

to be normal, it is necessary that A = A*. It is 

also sufficient that for an operator A to be 

normal then the condition AA* = A*A holds. He 

normality question has not been exhausted. For 

example, for an inner derivation operator, we 

conjecture that the property ᵟA=ᵟA*. 
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