IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

A Systematic Approach to Determine Bug Severity and

Prioritize Fixes

Radha Yadav
Department of Computer Application' Medicaps University, Indore (M.P)

radha.yadav@medicaps.ac.in

Abstract — Finding and fixing software’s bugs is a not easy
task, and a significant amount of effort is dedicated by
software developers on this issue. In the world of software
one cannot get rid of the bugs, fixes, patches etc. each of them
have a severity and priority associated to it. There is not yet
any formal relation between these components as both of
these either depends on the developer and tester and project
manager to be decided on. On one hand, the priority of a
component depends on the cost and the efforts associated
with it. While on the other, the severity depends on the efforts
required to accomplish a particular task. This work proposes
a formula that can draw a relationship among severity and
priority.

Keywords — severity; bugs; priority; test cases; effort
estimation; cost estimation;

. INTRODUCTION

We would try to explore the extent and to derive a
reasonable relationship between severity and priority.
Currently, we do not a possess a suitable relation between the
severity and priority of task to that of severity of it the only
component. We know on which these are depended, that are
cost associated and the effort to that of severity for the task.

A. Known component

e Estimate effort is the process of predicting the effort
required to develop a software system effort based
on development, test, and deployment. All these are
the level a judgment, based on past experience. But,
now past experience depends on a formulating a
particular values.

e Cost associated estimate are critical to developer,
customer and manager. They can be used for
generating request for proposals, contract
negotiations, scheduling, monitoring and control.

B Unknown component
e Severity of bug depends on tester or manager,
project and their importance. Sometime bug’s

severity depends on effort and cost of project. It
depends on how much; it’s severely put impact on
project and estimated time to resolve.

e Aspriority of bug depends on developer or manager,
bug’s priority depends on effort of tester to find and
developer to resolve it and judge, how much it
impact on project’s smooth running.

However, we know that the effort can be converted to the cost
of project task or tests. Also knows the cost that particular
project would generate. So, cost can be on of the relating
coupling.

1. METHODOLOGY

A Deriving the known components
We can derive the values of the known components by
using the following terms:

Efforts required: Effort can be sub-classified into lower
granularity as follows 4
1) Development Effort
2) Testing Effort
3) Deployment Effort
This can be estimated as:
Effort (E) = DVE+ TeE + DpE
DVE = Development Effort
TE = Test Effort
DpE = Deployment Effort
Calculation of these efforts can be further estimates as:
development efforts using PERT and Function point method,
these provide more comfort than others method in further
calculation of testing and deployment [, In case of testing
effort, based on test effort work, test case time, test case
development & execution time, defect time and use case point
approach estimation are used. Deployment effort is based on
calculating 10-15% of development effort and by using
practical experience of industry person.

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

A UNIT OF I20R

l|Page

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025

1) Development Effort
First

PERT estimating i.e. Program Evaluation and Review
Technique (PERT) which creates estimates of the weighted
average duration of tasks which is given by (%I
PERT Equation is:
(Optimistic Estimate + (4 times Most Likely Estimate) +
Pessimistic Estimate)

Divided by 6

Second

Function Point (FP) based on functionality of a program
(1 j.e. the total no. of function point depends on counts of
distinct in the five classes:

1) User input types data or control user input types.

2) User output types output data types to the user that

leaves the system.

3) Inquiry types interactive requiring a response.

4) Internal file types files (logical group of
information) that are used and shared inside the
system.

5) External file types files that are passed or shared
between the system and other system.

Each of these assigned individual one of the three
complexities levels BI:

Simple = 1, Average = 2 & Complex = 3 & weighting
values varies from 3 (simple input) to 15 (complex internal
files).

Unadjusted Function Point counts can be given as:

5 3
UFp= =1 J=1 Nij Wi
Nij Wi are no. and weight of types of class i with complexity.

-

FP = UPF * CAF
Where CAF is complexity adjustment factor and is equal to

[0.65+0.01 * z Fil
Fi=(1to 14) value adjustment factor

Jones's first-order estimation gives an estimate for
optimal schedule months from the function point count [,
First we must choose the appropriate exponent, j, to use, by
identifying the type of system and the general capability of
the development team.

Jones's first order estimate formula uses the exponent, j,
from the above table to compute schedule months, s, from
function points, f. Schedule months do not include the
requirements analysis phase, because this must have been
completed to get the design needed for the function point
count.

s=fi

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

Above calculates effort in man-month from function point.
The following formula converts function point into total man-
months.

m=f"1/27
A spreadsheet could be used to compute this which calculates
effort in man-day from function point.

TABLE I. CALCULATE SCHEDULE FROM FUCTION POINT

Kind of Software Béls;;: Average Wg;:gsm
Systems 0.43 0.45 0.48
Business 0.41 0.43 0.46

Shrink-wrap 0.39 0.42 0.45

Value of m divided by 8 (as 8 considered as total working
hour per day)

DvVE=m /8

2) Test Effort

Elements of Test Estimation Process (1]
1) Breaksizing into smaller and easier to estimate tasks.
a. Decompose the test project into phases:
i. System Test ii. Unit Test
b. Decompose each phase into constituent
activities:
i. System Test Planning ii. Test Execution
c. Decompose each activity into tasks and subtasks
until each task or subtask at the lowest level of
composition:
i. Executing a test scenario
ii. Writing a defect

1) Taking risk priority into account

2) Set up dependencies
a. Dependent tasks internal to the test sub project.
b. Document dependencies, resources, and tasks
external to the test subproject (i.e., those that
involve collaborative processes)

e Consider type of code (complex, reused, etc.)

e Augment professional judgment and gut instinct
with previous project data, industry metrics, and
so forth.

e Identify and, if possible, resolve discrepancies
between the test subproject schedule and the project
schedule.

e Use the work-breakdown-structure and schedule to
develop a budget. Extract from your work-
breakdown-structure a complete list of resources.

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

A UNIT OF I20R

2|Page

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025

For each resource, determine the first and last day of
assignment to the project.

e If you have resources shared across multiple test
projects within a given time period, understand the
percentage allocation of each resource’s assignment
to each project during various time periods.

e Revisit the Estimation continuously in order to
reflect any change in the Project Requirements or
Schedule

e Be Repeatable preferably Automat

Now, we study various methods helps to calculate the

test effort [*1:
First
Total Effort = Test case time + Defect time

Test Case Time = Test Case Development time + Test Case
Execution Time

Test Case Development Time = (Hours/Test case
development* #Test cases)

Test Case Execution Time = (Hours/Test case Execution *
#Test Cases)

Defect Time = (Hours/Defect * # Defects)

Second

Use Case Points Estimation using UCP [Use Case
Points], is rapidly gaining a faithful response. The approach
for estimation using UCP only needs slight modification in

order to be useful to estimate test efforts (101,

1) Determine the number of actors in the system. This
will give us the UAW — the unadjusted actor weights. Actors
are external to the system and interface with it. Examples are
end-users, other programs, data stores etc. Actors come in
three types: simple, average and complex. Actor
classification for test effort estimation differs from that of
development estimation. End users are simple actors. In the
context of testing [, end-user actions can be captured easily
using automated tool scripts. Average actors interact with the
system through some protocols etc. or they could be Data
stores. They qualify as average since the results of test case
runs would need to be verified manually by running SQL
statements on the store etc. Complex users are separate
systems that interact with the SUT through an API. The test
cases for these users can only be written at the unit level and
involves a significant amount of internal system behavioral
knowledge I,

The sum of these products gives the total unadjusted actor
weights. [UAW] as shown in table Il below.

2) Determine the number of use cases in the system. Get
UUCW.

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

The use cases are assigned weights depending on the
number of transactions / scenarios.

TABLE II. ACTOR WEIGHT
Actor Type Description Factor
Simple GUI
Average Interactive or 2
protocol-driver
Interface
Complex API / low-level 3
Interaction
TABLE III. Use CASE WEIGHT
Use Case Type Description Factor
Simple <=3 1
Average 4-7 2
Complex >7 3

The sum of these products gives the total unadjusted actor
weights. [UAW]

3) UUCP = UAW + UUCW

The calculation of the unadjusted UCP is done by adding
the unadjusted actor weight and the unadjusted use case
weights determined in the previous steps.

4) Compute technical and environmental factors

The technical and environmental factors for a test project
are listed in the table number 1V below.

To calculate one needs to assign weights and multiply them
with the assigned values to give the final values. The products
are all added up to give the TEF multiplier. The TEF
multiplier is then used in the next step.

5) Compute adjusted UCP.

We use the same formula as in the UCP method for
development.

AUCP =UUCP *[0.65 + (0.01*TEF)]

6) Arrive at final effort.

We now have to simply multiply the adjusted UCP with a
conversion factor. This conversion factor denotes the man-
hours in test effort required for a language/technology
combination. The organization will have to determine the
conversion factors for various such combinations.

E.g. Effort = AUCP * 20

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

A UNIT OF I20R

3|Page

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025

Where 20 man-hours and which is divided be 8 for man-
day are required to plan, write and execute tests on one UCP.

TABLE IV. TECHNICAL COMPLEXITY FACTOR
Factor Description Assigned
Value

Tl Test Tools 5
T2 Documented inputs 5
T3 Development Environnent 2
T4 Test Environnent 3
T5 Test-ware reuses 3
T6 Distributed system 4
T7 Performance objective 2
T8 Security Features 4
T9 Complex interfacing 5

3) Deployment Effort

First

Based on estimated test efforts as per the industry
standard which is taken as 10% of total development efforts
(Man Days)
This standard used in many company as well as programming
language (application of asp .net & biz talk development).

Second

Basically based on experience, in this process we strongly
need at least person whose experience on deployment.
Procedure or steps of deployment takes time, each of code
copy to execution and acceptance testing to documentation.

DpE= Execution time of application + Installation Time
on server (code copy+ code run) + Documentation time +
time taken by accepting testing.

After using above all methods we calculate effort, now
second thing cost factor that is important for further
calculation [®I:

Let the Cost per person hours = CpH
Estimated Cost of Project

Ce=E*CpH
Now the Cost Generated from the
Project be = Cg

Total Revenue of the Project
Cr=Cg-Ce
Percentage Revenue of the
Project = (Cr * 100)/Cg
So, we have devised a formula that relates the task to the
cost of it 1.

Relating the Known Components to the Unknown
Components:

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

Here, we know that the priority of a task depends on the
cost it generates. If there are two tasks, on of which generates
higher cost has obvious priority to the other. Also, the
severity of a task depends on the components it involves and
also the components it impacts
Therefore,

1) Priority o Cost
proportional)

2) Severity o No of components Involved + No of
components impacted.

generated (o0 => directly

Deriving the Constants

Now, to convert the above relation into a formula we
would derive few constants. Let’s scale the priority and
severity on the scale of ten points. We assume the following:

TABLE V. PRIORITY LIST (5 LEVELS]
Priority|/ |Low(2) |Mediu |High |Critical
Severity— m®B) [(7) |(10)
A(2) 4 10 14 20
B(4) 8 20 28 |40
C(6) 12 30 42 60
D(8) 16 40 56 80
E(10) 20 50 70 100

We have derived the ten point scale by dividing 10 by the
number of levels. We get 2 so each class would have a
difference of 2.

We can create a constants chart for our reference as follows:

From the below table, we can derive a fair estimate of the
severity and priority. Since, we have 1-100 values. We need
to derive the cost on the scale of hundred, i.e., the percent
value which is known to us. We would assume higher value
in as discrepancy about the selection.

Example 1
Follow all the process one be one

Development Effort by PERT
1) At best, need 24 person-hours
2) Most likely need 36 person-hours

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

A UNIT OF I20R

4|Page

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025

3) And if everything goes wrong, you need 51 person
hours
Now we convert man per days

36.5/8 =4.5 person-days = 5 person-days

Test Effort Calculation

Test Case Development Time = 0.16*10 = 16
Test Case Execution Time = 0.083 *10 =8.3
Defect Time =0.16 * 10 = 1.6 hour

Test Case Time = 16 + 8.3 = 24.5 hour

Test Effort work = 24.5 +1.6 = 26person-hour

Now we convert man per days
26/8= 3.5 person-days = 4 person-days

Deployment Effort
10-15% of development effort so 1 person-day

Total Effort
E=5+4+1=10 person-days

Effort per day = 8 hours

Estimated Effort hours: 80 hours
Cost per person hours: 12$

Total Cost: 960 $

Cost Generated from Project: 1200$
Revenue Cost = 1200 — 960 = 240$

The ration of profit to cost generated:
=240/ 1200 * 100 = 20.
The nearest values are B-Medium, A-Critical and E-Low.

Now, from the profit generated we know that the number of
components is 6. Therefore, the severity is medium. Hence,
it the severity is medium and priority is B.

Example 2

Development Effort by FP
For an average case

No of external i/p files - 24 4 =96

No of external o/p files- 16 5 =80

No of external inquires- 22 4 =88

No of internal logical files- 04 10= 40

No of external interface files- 02 07=14

UPF =318

CAF =, [0.65 +0.01 * z Fi where, Fi- (1 to 14)
=[0.65 +0.01 * (14*3)
=1.07

FP=318*1.07 = 341

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

M = 341 3043 (average)
=(34171.35)/27 =97.24

Here we can divide no of days 22 or 30

97.24 122 =4.42 =5 person-days

97.24 130 =3.24 =4 person-days

Test Effort Calculation by UCP
UUCP = UAW + UUCW
=10+10 =20
AUCP =UUCP*[0.65+ (0.01*TCE)]
= 20*[0.65+0.01*33]
=19.6

Effort = 19.6*2
= 39.2 person-hour

=39.2/8
=5 person-days

Now converting into

Deployment Effort
DpV=1hr+15hr+25hr+3hr
= 8hr = 1 person-day

Total Effort
E=4+5+1 = 10 person-days

Hence, the severity and priority can be calculated as same in
the above quoted examplel.

ACKNOWLEDGMENT

We would like to thank the all faculty members of the
institute, Prof. Ritesh Shah who helped us lot in calculating
the facts and figures related to my paper. | would also like to
thank the anonymous reviewers who provided helpful
feedback on my manuscript

REFERENCES

[1]. C. R. Symons, “Function Point Analysis: Difficulties and
Improvements”, IEEE Transactions on Software Engineering,
Volume 14, Issue 1, January 1988

[2]. Graham C. Low, D. R. Jeffery, “Function Points in the
Estimation and Evaluation of the Software Process”, IEEE
Transactions on Software Engineering, Volume 16, Issue 1,
January 1990

[3]. IEEE Standards Collection: Software Engineering, IEEE
Standard

[4]. J. E. Matson, B. E. Barrett, J. M. Mellichamp, “Software
Development Cost Estimation Using Function Points”, IEEE
Transactions on Software Engineering, Volume 20, Issue 4,
April 1994

[5]. Hill P.R. (ISBSG) - Software Project Estimation, A Workbook
for Macro-Estimation of Software Development Effort and
Duration - March, 1999 - Chapter 3

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

A UNIT OF I20R

5|Page

IJRECE VOL. 13 ISSUE 4 OCT-DEC 2025

Johnson K. - Software Size Estimation - Dept. Of Computer

Science, University of Calgary, January, 1998

Londeix B. - Three Points Techniques in Software Project

Estimation — SE1ER - April, 1997Inc.

[8]. Capers,John 1996, Applied Software Measurement, Mc Graw-

Hill.

[9]. Dekkers Ton, 1999, Test point Analysis Estimation About The
Formula.htm

[10].Cockburn, A Writing Effective Use Cases. Addison Wesley,
2000

[11].Prof.Torky Sultan, DEVELOPMENT AND EVALUATION
OF A DEFECT TRACKING MODEL FOR CLASSIFYING
THE INSERTED DEFECT DATA, European Scientific
Journal April 2013 edition vol.9, No.12 ISSN: 1857 — 7881

[12]. Aman Kumar Sharma, Comparative Study of the Bug Tracking
Tools, International Journal of Advanced Research in
Computer Science and Software Engineering, Volume 5, Issue
3, March 2015 ISSN: 2277 128X

[13].Varun Mittala, Recent Developments in the Field Of Bug

Fixing, (ICCC-2014), Bhubaneswar, Odisha, India

[6].
[71.

ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

A UNIT OF I20R

6|Page

