

Code and technical update

presented by

Mark S. Graham

Associate Executive Director, Technical Services National Roofing Contractors Association

New LTTR values for polyiso.

New minimum LTTR values

PIMA Quality Mark^{cm} program (minimum values)

Revised LTTR values				
Thickness (inches)	New LTTR values per inch thickness	New LTTR values per thickness		
1	5.6	5.6		
2	5.7	11.4		
3	5.8	17.4		
4	5.9	23.6		

"Tech today," Professional Roofing, August 2013

3

Comparing existing vs. new LTTR values

Thickness	LTTR (2004 – 2013)	New LTTR (2014 –)
1 inch	6.0	5.6
1.5 inches	9.0	8.6
2 inches	12.1	11.4
3 inches	18.5	17.4
4 inches	25.0	23.6

Some concerns

Design/bid/construction scenarios:

- Projects designed in 2013, but will be constructed in 2014
- Projects bid in 2013, but will be constructed in 2014
- Projects designed and bid in 2014 using outdated LTTR values

5

NRCA recommends designers specify polyisocyanurate insulation by thickness – not R-value or LTTR.

Some words of caution...

Do not use the terms "R-value" and "LTTR" interchangeably.

7

Some additional cautions...

- Is the "long-term" in LTTR really long term in the context of a roof system service life?
- LTTR may not appropriate for use for vapor retarder design.
- LTTR may not be appropriate for use for building energy calculations.

NRCA has not endorsed the LTTR concept

"Although the LTTR method of R-value determination and reporting may be appropriate for laboratory analysis, research comparison and procurement purposes, NRCA does not consider LTTR to be appropriate for design and in-service purposes..."

--The NRCA Roofing Manual: Membrane Roof Systems-2011

NRCA's recommended design R-values

The NRCA Roofing Manual: Membrane Roof System-2011

Polyisocyanurate					
Thickness, in.	LTTR	NRCA Recommended Design R-values			
		Heating Conditions	Cooling Conditions		
1.0	6.0	5.0	5.6		
1.25	7.5	6.3	7.0		
1.5	9.0	7.5	8.4		
1.75	10.5	8.8	9.8		
2.0	12.1	10.0	11.2		
2.3	14.0	11.5	12.9		
2.5	15.3	12.5	14.0		
2.8	17.2	14.0	15.7		
3.0	18.5	15.0	16.8		
3.25	20.1	16.3	18.2		
3.5	21.7	17.5	19.6		
3.75	23.4	18.8	21.0		
4.0	25.0	20.0	22.4		

"Tech today," Professional Roofing, May 2010

NRCA 2009 R-value testing:

- 15 samples of new 2-inch polyiso. were testing according to ASTM C518
- Tested R-values at 75 F were lower than LTTR
- R-value of polyiso. is temperature sensitive
- R-values at 25 F, 40 F and 110 F are lower than Rvalue at laboratory conditions

BCS Info. Sheet 502:

- Replicated NRCA's 2009 R-value testing
- Similar results
- Suggests a "climatebased" R-value approach
- Suggests use of a hybrid insulation approach

Moisture-related problems with lightweight structural concrete roof decks

NRCA

Some terminology

- Structural concrete (normal weight)
 - 150 lbs/ft³
- Lightweight structural concrete
 - 85-120 lbs/ft³
- Lightweight insulating concrete
 - 20-40 lbs/ft³

MNRCA

15

Some terminology

- Structural concrete (normal weight)
 - 150 lbs/ft³
- Lightweight structural concrete
 - 85-120 lbs/ft3
- Lightweight insulating concrete
 - 20-40 lbs/ft3

Concrete Aggregates

60-80% of Concrete Mix Design

- Normal-weight aggregates (stone):
 - Dense
 - Absorb about 2% by weight
- Light-weight aggregates (expanded shale):
 - Porous
 - Absorbs from 5 25% by weight

Lightweight structural concrete inherently contains more moisture

17

Concrete Floors and Moisture, 2nd Edition

Howard M. Kanare, CTL Group

75% internal RH can be achieved:

- Normal weight structural concrete
 - Less than 90 days
- Lightweight structural concrete
 - Almost 6 months

NRCA considers the decision of when it is appropriate to cover newly placed concrete substrates with roofing materials to be beyond roof contractors' control....

19

NRCA's recommendations

In new construction:

- NRCA recommends lightweight structural concrete not be used for roof deck construction.
- If lightweight structural concrete is used, the Designer should specifically identify concrete drying parameters/when to apply roofing

IIII NRCA

NRCA's recommendations – cont.

Existing concrete roof decks (known to be lightweight structural concrete or where moisture-related problems are evident):

- Above-deck venting design (e.g., venting base sheet)
- Adhered vapor retarder (e.g., two-part epoxy) 12-15 mils)

Adhered or loosely-laid, ballasted roof systems

Development of the 2015 I-codes

23

2015 I-codes

- IBC 2015 (Chapter 15):
 - Some reformatting
 - Secondary drain exception in reroofing
 - Additional language on rooftop PV
- IRC 2015 (Chapter 9):
 - Rooftop PV scoped with roofing chapter

2015 I-codes – cont.

- IECC 2015:
 - Reroofing applicability clarified
 - Min. R-values increased (+R=5)
 - Air barrier exception in reroofing
- IgCC 2015:
 - 2014 code development cycle

25

2015 I-codes (except IgCC) will be published in June 2014

Illinois adoption????

Mark S. Graham

Associate Executive Director, Technical Services National Roofing Contractors Association 10255 West Higgins Road, 600 Rosemont, Illinois 60018-5607

> (847) 299-9070 1-800-323-9545 (847) 299-1183

www.nrca.net mgraham@nrca.net Twitter: www.twitter.com/MarkGrahamNRCA