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ABSTRACT- Automatic Speech Recognition (ASR) 
system is generally divided into two parts. Front-end extracts 
the acoustic features from the raw speech and back-end 
classifies the acoustic featuresinto corresponding text. Mel-
frequency cepstral coefficients (MFCCs) is widely used 
feature extraction technique. It derives the acoustic features by 
logarithmic spectral energies of the speech signal using Mel-
scale filterbank. In MFCC filterbank analysis, it is observed 
that no consensus for spacing and number of filters is defined 
in various noise conditions. This paper proposes a novel 
approach to optimize the parameters of MFCC filterbank like 
central and side frequencies using pigeons inspired 
optimization. All the experiments are conducted on TIMIT 
dataset for phoneme recognition and results show that the new 
optimized feature set performs better than conventional 
MFCC. 
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1. INTRODUCTION 

The primary goal of automatic speech recognition (ASR) 
system is to map human speech into the corresponding text 
without any intervention of a human. The designing of high-
performance ASR system is a challenging task because there 
are a lot of variabilities present in speech i.e. different speaker, 
age, accent, background noise etc. Although various 
researchers claim that they have developed such systemsbut in 
noisy environments, the performance of their systems 
deteriorates drastically. This happens because these systems 
are highly sensitive to addictive background noise, room 
reverberations, and speaker variations. 

For noisy conditions, various noise suppressions and 
spectral enhancement techniques have been proposed such as 
spectral subtraction [1], Kalman filtering [2], RASTA and its 
variants [3, 4], Weiner filtering [5], and vector Taylor series 
approximation [6]. These approaches are widely divided into 
three broad categories: 

 Filtering of the noisy speech prior to classification. 

 Adaptation of the speech models to include the effects of 
noise. 

 The use of the features those are more robust to noise. 

Invariant and robust features can effectively raise the 
robustness of ASR because they minimize the observation 
variability caused by the different types of inferring factor and 
they also reduce the possible mismatch between training and 
testing conditions. Mel-frequency cepstral coefficients 
(MFCC) features are widely used features that are generated 
by first applying short-time Fourier transform and then 
filterbank analysis on Mel-scale frequency spectrum [7]. 
However, the issue with these features is: first, high sensitivity 
toward background noise. It deteriorates the performance of 
MFCC-based ASR systems in noisy conditions. Second, the 
number of filters and their bandwidth are not standardized. 20 
to 40 filters are generally used to implement MFCC that are 
linearly spaced before 1 KHz. In this paper,a novel approach 
is proposed to optimize the MFCC features. Pigeons Inspired 
Optimization (PIO) algorithm is a novel swarm intelligence 
algorithm proposed by Duan & Qiao in 2014 [8]. It can be 
applied for optimizing the number of filters and their spacing 
to improve the performance in both clean and noisy 
environments. The PIO optimized MFCC features are 
evaluated on TIMIT corpus for phoneme error rate (PER) and 
observed better than traditional features. 

The remaining of this paper is organized as follows: 
section 2 covers related work i.e. optimization techniques used 
at front-end and back-end. Section 3 briefly discusses the 
MFCC, PIO, and HMM. Section 4 presents PIO-based MFCC 
filterbank optimization technique. Section 5 describes the 
experimental setup used and results obtained. Finally, this 
paper is concluded in section 6 with a brief discussion. 

 

2. RELATED WORK 

State-of-the-art ASR systems work as two separate 
modules. Front-end module extracts the useful acoustic 
features from the raw speech and back-end module performs 
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the likelihood evaluation of these features. At the back-end, 
GMM/HMM combination is generally used for mapping 
acoustic features into corresponding text. The two major 
issues with ASR are i) How to select feature vectors, and ii) 
How to set the parameters and topology. Various optimization 
methods have been proposed by the researchers for both ends. 
At earlier years, Baum-Welch and gradient methods were used 
to optimize the model parameters. These both models are 
based on hill-climbing algorithm hence strongly depend on the 
initial estimates of the model parameters which is a major 
drawback of these methods. This issue was resolved by 
adopting a k-means segmental procedure to derive Gaussian 
means and covariance parameters. 

Firstly, Kwang et al. [9]introduced genetic time working in 
1996 that solves non-linear time warping problem using 
genetic algorithm. Chau et al. [10]introduce the idea of the 
GA-based HMM training in 1997 which offered the better 
quality solutions than Baum-Welch algorithm. In this, GA 
optimizes HMM model parameters during HMM training. In 
2001, Kwong et al. [11]extended their previous work by 
optimizing the HMM model parameters in a single step and 
found the optimal number of states for the word model. 
Kwang et al. [12] also proposed GA-based HMM training for 
MCE framework. It is found better than standard MCE 
methods. It also overcomes the shortcoming of traditional 
MCE methods that the smoothing of the empirical 
classification error. In 2010, Najkar et al. [13]replaced the 
Viterbi algorithm used in recognition phase. Data-driven 
design of filterbank is proposed by Burget and Hermansky 
[14]. Some modifications are made in standard Mel-scaled 
filterbank by Skowronski and Harris [15, 16] and showed 
improvements in recognition rate.Aggarwal and Dave 
[17]used combinations of feature streams and find the best 
filterbank by comparing different combinations. Dua et al. 
[18] also optimizes the filterbank by combining MFCC 
features with Gammatone frequency cepstral coefficients. 

 

3. MFCC, PIO, and HMM 

MFCC [7]and perceptual linear predictions[19] are popular 
and widely used feature extraction techniques. In both 
techniques, 40-dimensional feature vector is constructed by 13 
coefficients + 13 first order + 13 second order time derivatives 
+ energy. The human auditory system processes the signal in 
various frequency bands with linear distribution in the initial 
part of the frequency range and becomes non-linear towards 
the higher frequency range. In section 2.1, only MFCC 
technique is discussed in details which will be further used in 
experiments.  

3.1 Mel-Frequency Cepstral Coefficients 

MFCC is a well-proven method by researchers to extract 
distinct characteristics of input speech signal [20]. It uses 
some parts of speech production and speech perception to 
extract the feature vector that contains all information about 
the speech signal. MFCC method performs the feature 
extraction in the following steps: 

i. Pre-emphasis and windowing: Pre-emphasis 
amplifies the energy of signal at high frequencies. It also 
reduces the differences in power components and distributes 
the power across the relative frequencies. Then, the input 
signal is partitioned into frames which contain an arbitrary 
number of samples. Each time frame is distributed in the 
overlappedhamming window to remove discontinuities from 
the edges. Eqn. (1) represents the mathematical formula for 
Hamming window: 

𝑊(𝑛) = {0.54 − 0.46 cos (
2𝜋𝑛

𝑁
− 1)                     0 ≤ 𝑛 ≤ 𝑁 − 1

0                                                            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            

(1) 

where 𝑊(𝑛) represents hamming window. 𝑛 and 𝑁 refer 
to current sample and total number of samples respectively. 

ii. Discrete Fourier Transform (DFT): DFT is applied to 
divide the energy comprised into each frequency. Short-
TermFourier Transform (STFT) is a fast variant of DFT and 
applied on each frame to extract frequency components. Eqn. 
(2) represents the mathematical formula for STFT: 

𝑓𝑡,𝑖,0 = |
1

𝑁
∑ (𝑒−𝑗2𝜋

𝑘𝑖
𝑁 ) 𝑓𝐾

𝑁−1
𝑘=1 |             (2) 

where 𝑖 = 0, 1, . . . , (
𝑁

2
) − 1; 𝑡 and 𝑁 represent the time 

frame and a number of sampling points within a time frame 𝑡. 

The spectrum obtained by STFT is filtered with low and 
high bandpass filter. This is required for estimating the power 
spectrum. Eqn. (3) represents the mathematical formula for 
spectrum band: 

𝑓𝑡,𝑘,1 =  ∑ 𝑐𝑘,𝑖𝑓𝑡,𝑖,0

𝑁

2
−1

𝑖=0
                               (3) 

where 𝑘 = 0,1,2, . . . , 𝑁𝑑 (number of band pass filters) and 
𝑐 represents the amplitude of band pass filter with index 𝑘 and 
frequency 𝑖. 

iii. Cepstral Coefficients: The Mel frequency spectrum is 
computed using triangular shape bandpass filter. STFT 
obtained using eqn. (3) is used to compute the cepstral 
coefficients. Logarithmic Mel-Scaled filterbank is applied on 
Fourier transformed frame. The relation between the Mel-
Scale and frequency of speech signal is given in eqn. (4). 

𝑀𝑒𝑙(𝑓𝑡,𝑘,2) = 2595𝑙𝑜𝑔10 (1 +
𝑓𝑡,𝑘,1

700
⁄ )                   (4) 

The conversion of the signal into a logarithmic form is 
done in order to achieve the human perception of loudness.  

iv. Discrete cosine transform (DCT): DCT is applied on 
the Mel-coefficients to change them again into the time 
domain. It produces 13 MFCC features for each frame. Eqn. 
(5) represents the mathematical formula of DCT: 

𝑓𝑡,𝑘,3 = ∑ (𝑐𝑜𝑠 [
𝑖(2𝑘−1)𝜋

2𝑁𝑑
] (𝑓𝑡,𝑘,2))

𝑁𝑑
𝑘=1             (5) 

where 𝑘 = 1, 2, . . . , 𝑁𝑑; 𝑁𝑐 < 𝑁𝑑 and 𝑁𝑐 is the number of 
cepstral coefficient selected for further processing. 
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The speech signal is not uniform throughout the frames. 
To overcome this issue, cepstral coefficients over time are also 
added. Therefore, first (Δ) and second (ΔΔ) order derivatives 
are added with cepstral coefficient. Now, total 39 coefficients 
+ energy make it complete 40-dimensional feature vector. 

𝑓𝑡 = [𝑓𝑡,𝑘,3, Δ𝑓𝑡,𝑘,3, ΔΔ𝑓𝑡,𝑘,3] + 𝑒𝑛𝑒𝑟𝑔𝑦              (6) 

where 𝑓𝑡  represents the final feature vector containing 39 
coefficient values + energy i.e. 40 dimensional feature vector. 

 

3.2 Pigeons Inspired Optimization 

Particle Swarm Optimization, Ant Colony Optimization, 
Artificial Bee Colony Optimization algorithms are popular 
optimization algorithms. Although these optimization 
algorithms have remarkable performance in solving 
optimization problems, still there is also alarge space for 
improvement. In recent years, population-based swarm 
intelligence algorithms have been studied in depth and used in 
many areas to solve the optimization problem.Pigeon 
optimization algorithm is inspired by bio-inspired 
optimization based on swarm behavior like fireflies, ant, and 
bee which is implemented for optimization problems. In 
nature, pigeons find their destinations by relying on the sun, 
magnetic field, and landmarks. The basic PIO has two 
operators which are map and compress operator and landmark 
operator. The map and compress operator is based on 
magnetic field and sun, and the landmark operator is based on 
landmarks. The leader of the pigeon flock initiates 
conversation and signal to another pigeon in the flock who 
acknowledge back by emulating the behavior of calling pigeon 
and manage side by side structure emerge in a flock of definite 
shape. The leader of the pigeon of the flock is chosen on the 
basis of the number of times calls to another pigeon in the 
flock. A fitness function 𝑓(𝑥) attach to every pigeon that 
count how many times a particular pigeon called to other 

pigeon in given population.PIO has the capability of problem-
solving. It can be used in various field of optimization like a 
shortest path in traveling salesman problems. PIO can also be 
applied to optimize the filterbank for MFCC technique. 

3.3 Gaussian Mixture Model/Hidden Markov Model 

GMM/HMM combination is the most successful acoustic 
modeling technique. Its efficient algorithm for training and 
recognition makes it power. GMM/HMM can efficiently 
model the stationary stochastic processes and the temporal 
relationship among the processes. This combination powers us 
to model dynamic speech signals using one reliable 
framework. Another attractive feature of GMM/HMM 
acoustic model is very simple to train from a given set of 
labeled training data (one or more sequences of observations). 
The two training algorithms are Baum-Welch and segmental k 
means both results in well-formulated and well-behaved 
solutions.  

When the output symbols are associated with the states of 
the HMM then the model is known as state output HMM and 
when output symbols are associated with an edge then HMM 
model is known as edge-output HMM [21, 22]. The state 
output model is generally preferred over edge output model 
for speech recognition. A typical structure of a word based 
HMM is shown in figure 1. The role of acoustic modeling can 
be structured in a four-level hierarchy: 

 Likelihood evaluation of spectral features at every 
HMM state.  

 To find and manage the contextual phonetic variants 
(i.e. allophone, triphones, syllables) of the underline phoneme.  

 Word composition using sub-word units (provided by 
HMMs) with the help of Lexicon (Pronunciation modeling). 

 To generate the sequences of words or phrases up to 
the sentence level.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Block diagram of hidden Markov model
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4. PROBLEM FORMULATION AND 
IMPLEMENTATION  

In this paper, we optimized the filterbankusing PIO. Figure 
2 shows the step followed in ASR for applying PIO to 

optimize MFCC features. The objective function used for ASR 
is a phoneme classifier, and the performance of this classifier 
is evaluated for PER on TIMIT corpus.

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Block Diagram of PIO optimized MFCC based ASR System 

4.1 Pigeons Inspired MFCC filterbank optimization 

The mel scaled triangular filterbank is optimized by considering three parameters which correspond to the frequency values: 
where the triangle for the filter begins, reaches to its maximum and finally ends. Each pigeon represents a different filter and is 
defined as a sequence of such triangular filters represented by three frequencies as shown in figure 3. 

 

 

 

 

 

Figure 3: Frequencies for each filter in the filterbank

 

 Left frequency ----------𝛼 

 Center frequency--------𝛽 

 Right frequency----------𝛾 

A filterbank is a sequence of filters and it is represented by 
the parameter set: 

𝐹𝐵 = {𝐹𝑖|𝑖 = 1, . . . , 𝑁}                 (7) 

where 𝐹𝑖 has 3-tuple (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖) and 𝑁 represents the 
number of filters. 

Initially, a standard MFCC filterbank is generated and this 
filterbank is perturbed as follows: 

 Randomly choose the number of filters to be 
modified 

 Randomly choose the filters to be modified 

 Change the edge frequencies of each filter selected in 
a small neighbor 

In order to have a well-formed filterbank, the filter edge 
frequencies should be changed within a limit. for example the 
order of the frequency edges (left edge < center< right edge) 
should be followed. Therefore, after perturbation of a filter, 
this property should be checked and if it is not satisfied, 
perturbation should be performed again. To update a filterbank 
selected randomly in a small neighborhood in the parameter 
space, the edge of the filter (𝛼, 𝛽, 𝛾) can change only between 
-4 to +4 frequency bins. 

Filterbank optimization problem has identified as natural 
swarm problem and can be easily implemented through the 
pigeons. The PIO optimizes the filterbank problem in a similar 
way as it solves the traveling salesman problem. A random 
integer 𝑟 ∈ [1, 𝑁] is produces to select the number of pigeons. 
Each pigeon represents a separate filter. The filter which is 
offering the best result is selected as leader pigeon. The leader 
pigeon starts conversion and signal to another pigeons about 
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his frequencies. Another pigeons include the leader suggestion 
to adjust their filters frequency. Then, they acknowledge back 
to their leader. The fitness function 𝑓(𝑥) is attached to every 
pigeon to count that how many times a particular pigeon have 
communicated to other pigeon in given population. 

Triangular filters can be distributed along the frequency 
bank, with the restriction of half overlapping. This means that 
only the central position (parameters 𝛽𝑖) are required to be 
optimized, and the bandwidth of each filter is adjusted by the 
preceding and following filters. 

 

5. RESULT AND DISCUSSIONS 

5.1Experimental Setup  

 Human acoustic speech observations are taken from the 
TIMIT corpus to evaluate the performance of the PIO 
optimized MFCC featuresonGMM/HMM-based acoustic 
model. TIMIT is a standard dataset includes the utterances of 
both male and female speakers. It consists of 6300 utterances 
from the 630 speakers. We used 183 target class labels (61 
phones * 3 states/phone). For decoding purpose, a phone tri-
gram model is used. After decoding, the 61 phone classes are 
mapped into 39 useful classes as in [23]. MFCC feature 
extraction technique is used for extracting the features from 
raw speech signals. For this,the sliding window size is taken 
25-ms with a fixed shift of 10-ms. 13 MFCC features + their 
first and second order time derivatives + energy i.e. 40 
observations are supplied as input feature vector. As the 
number of filters 𝑛𝑓in each filterbank is not fixed, therefore, 

the number of output DCT coefficients is set to (
𝑛𝑓

2
) + 1. The 

number of filters varies between 16 to 32. Feature extraction 
module, acoustic module, and decoding module havebeen 
developed using HTK 3.5 β-2 version toolkit. PIO is used to 
optimize the MFCC features. The objective of PIO is to adjust 
the filters frequency in maximum performance range. PIO is 
run for 100 iterations. An experiment is performed on a high 
performance computer with Intel i7-8core processor; 8GB 
RAM and Ubuntu 17.04 as the operating system. The noisy 
dataset is composed by applying a room simulator to 
artificially corrupt the clean signal by merging varying 
degrees of noise and echo so that the SNR exists between 6dB 
to 30dB. Restaurant lunch time recordings and YouTube are 
the sources of noise. 

 

5.2 Result 

At front-end, filters are derived using PIO algorithm and 
called as optimized filters. These filterbank are optimized in 
clean environment and training of system is also performed in 
clean environment. After optimization process, selected 
filterbank were tested with different levels of noise. Table 1 
shows the results for PIO optimized MFCC features and 
normal MFCC features in PER. The results clearly indicate a 
significant and persistent reduction in the PER is achieved by 
optimizing the MFCC features. Result clearly indicates that 
PIO optimized MFCC features are better as compared to 
traditional MFCC features.PIO optimizes features performed 

better at lower SNRs like 6dB, 12dB, and 18dB. In clean 
environment, still MFCC features took lead over optimized 
features. 

 

Table 1: PER for optimized MFCC features at 
different SNRs. Note that system is trained in clean 

environment 

Number of 
filters in 

the 
filterbank 

Degree of Noise (SNR) 

6dB 12dB 18dB 24dB 30dB Averages 

OFB-32 69.25 52.55 40.49 24.12 20.13 41.308 

OFB-28 69.89 52.92 41.07 24.31 22.85 42.208 

OFB-24 70.02 53.85 41.96 25.08 25.36 43.254 

OFB-20 70.95 54.88 42.11 32.02 27.13 45.418 

OFB-16 71.48 56.19 44.16 34.53 28.93 47.058 

MFCC-24 68.05 51.95 41.39 25.18 19.87 41.288 

 

6. CONCLUSION 

The main outcomes of this paper are: the various 
optimization techniques for front-end and back-end are 
discussed in section 2. This paper mainly focused on changing 
the filterbank bandwidths to get noise robustness. PIO 
technique is well-defined optimization technique, used to 
optimize the filterbank for MFCC features. Optimized MFCC 
features offered high recognition rate in both clean and noisy 
environments. Experimental results have illustrated that some 
of the filterbank performed 5% better than MFCC in a noisy 
environment. In future, same optimized features may be used 
for the large vocabulary continuous speech recognition task. 
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