Calculus 3 - Vector Functions

In calculus 2 we introduced two ways of multiplying vectors: the dot

product and cross product.

Dot Product The dot product of two vectors U =< u, i, >and 7 =<
V1,07 > 1S

- —>
U0 = U101 + U0y

or in 3D where ¥ =< uq, Uy, u3 > and U =< v1, U, U3 > is
U7 = U101 + UV + U3DV3

The alternate definition is

u -7 = ||| 7]l cosb
where || /|| and || 7 || is the magnitude of the two vectors and 6 is the angle
between the vectors.

Cross Product

. —> —> .
Given vectors U =< uqy, Uy, U3 > and v =< vy, 07, v3 > we define the cross

product between two vectors as
— —
U X 0 =< U03 — U3V, U301 — U103, U102 — UV >

Now we define the cross product
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Properties of the Dot Product

— — —>
Let u, v and w be vectors and ¢ a scalar (a number)

() #-F=7-7

(i) U-(0+W)=u-0+uU-W
(i) c(it-T) = (cth)-T = i - (D)
(iv) 0-T =0

(v) W4 =

Properties of the Cross Product

Let 1, ¥ and W be vectors and ¢ a scalar (a number)

(i) UXT=-0x1u

(ii) UX(T+W)=UXT+UXD
(i) c(u x T) = (cit) x T = u x (c0)
(iv) OxT=0

(v) Txd=0

(vi) W-(Txw)=(UXT)xw
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With the introduction of derivative of vector functions

7(H) =< f(t)g() > then T'(t)=<f(1),g(H)> (@)

We have the following derivative rules. Let 1 and 7 be vector functions



and f(t) a differentiable scalar function, and ¢ a constant vector, then

U)%?zﬁ
(i) () + () = () + T(0)
(i) S (FOTW) = FOT + FOT (0
(o) TR0 = TFE)F )
(0) (@(0)-TW) =TT+ T T0)
(vi) %(ﬂ’(t) X T(t))=u'(t) x T(t)+ u(t) x T'(t)

On thing that’s important to realize is that if a vector has constant length
(say c) then
() - (t) = (2)

=

and using the property (v) above then
w'(t)-d(t)+u(t)-u'(t) =0 (3)

so that
u(t)-u'(t) =0 (4)

meaning that 1/ (t) and u’(t) are perpendicular to one another. This is

important in what follows.



Unit Tangent Vector

As we saw when we first introduced derivatives, that 7'(¢) is tangent to

the space curve given by

x=f(t), y=gl(t).

so we define the unit tangent vector as
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T: p—
r

()

(6)

So, for example, if ¥ =< t,3t> > then 7/ =< 1,f > and the unit tangent

vector is
<1,t>

T=2-—,
V142

(7)



if 7 =< cost,sint,t > then ¥ =< —sint,cost,1 > and the unit tangent

vector is
< —sint,cost,1 >

V2

since the magnitude of 7'(t) is v/2. Since the tangent vector is a unit vector,

T = (8)

then the derivative of this would give another vector that is perpendicular

to T

Unit Normal Vector

We define the unit normal vector as

T'(t)

N=—
IT" ()]

©)

If we consider the examples above then

=, —t 1
= <(1 T 12)3/2 (1 + t2)3/2> (10)

-, —t 2 1 2 1
1=\ (i) + ()~ 0

and we obtain

then

—t 1
N = <(1+fz)3/z' (1+t2)3/2> _ —i 1 (12)
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and the reader can verify that T|=1,|N|=1and T - N =0.



In the second example, where

< —sint,cost,1 >

V2

T = (13)

then

— — t,—sint
T’:< cost,—sint,0 > (14)

V2

— 1 —
T'l = — and N is given b
g y

V2

N =< —cost,—sint,0 > (15)

and the reader can also verify that ||TH =1, ||ﬁ\\ =1land T-N=0.

Unit Binormal

If we are in 3D, we now have two vectors, the unit tangent vector and the
unit normal vector. We can create a third vector which is perpendicular to

both. We define the unit Binormal as
B=TxN (16)

For the example above where 7 =< cost,sint,t > then
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