Calculus 3 - Vector Functions

In calculus 2 we introduced two ways of multiplying vectors: the dot product and cross product.

<u>Dot Product</u> The dot product of two vectors $\vec{u} = \langle u_1, u_2 \rangle$ and $\vec{v} = \langle v_1, v_2 \rangle$ is

$$\overrightarrow{u} \cdot \overrightarrow{v} = u_1 v_1 + u_2 v_2$$

or in 3D where $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ is

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

The alternate definition is

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

where $\|\vec{u}\|$ and $\|\vec{v}\|$ is the magnitude of the two vectors and θ is the angle between the vectors.

Cross Product

Given vectors $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ we define the cross product between two vectors as

$$\vec{u} \times \vec{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

Now we define the cross product

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \left| \begin{array}{c|c} u_2 & u_3 \\ v_2 & v_3 \end{array} \right| \overrightarrow{i} - \left| \begin{array}{c|c} u_1 & u_3 \\ v_1 & v_3 \end{array} \right| \overrightarrow{j} + \left| \begin{array}{c|c} u_1 & u_2 \\ v_1 & v_2 \end{array} \right| \overrightarrow{k}$$

Properties of the Dot Product

Let \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} be vectors and c a scalar (a number)

(i)
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$(ii) \quad \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$(iii) \quad c(\overrightarrow{u} \cdot \overrightarrow{v}) = (\overrightarrow{cu}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (\overrightarrow{cv})$$

$$(iv)$$
 $\overrightarrow{0} \cdot \overrightarrow{v} = 0$

$$(v)$$
 $\overrightarrow{u} \cdot \overrightarrow{u} = ||\overrightarrow{u}||^2$

Properties of the Cross Product

Let \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} be vectors and c a scalar (a number)

(i)
$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$$

$$(ii) \quad \vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$

(iii)
$$c(\vec{u} \times \vec{v}) = (\vec{cu}) \times \vec{v} = \vec{u} \times (\vec{cv})$$

$$(iv)$$
 $\overrightarrow{0} \times \overrightarrow{v} = \overrightarrow{0}$

$$(v)$$
 $\vec{u} \times \vec{u} = \vec{0}$

$$(vi) \quad \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w}$$

With the introduction of derivative of vector functions

$$\overrightarrow{r}(t) = \langle f(t), g(t) \rangle \quad \text{then} \quad \overrightarrow{r}'(t) = \langle f'(t), g'(t) \rangle \tag{1}$$

We have the following derivative rules. Let \vec{u} and \vec{v} be vector functions

and f(t) a differentiable scalar function, and \overrightarrow{c} a constant vector, then

$$(i) \quad \frac{d}{dt} \vec{c} = \vec{0}$$

$$(ii) \quad \frac{d}{dt} (\vec{u}(t) + \vec{v}(t)) = \vec{u}'(t) + \vec{v}'(t)$$

$$(iii) \quad \frac{d}{dt} (f(t)\vec{u}(t)) = f'(t)\vec{u} + f(t)\vec{u}'(t)$$

$$(iv) \quad \frac{d}{dt} (\vec{u}(f(t))) = \vec{u}'(f(t))f'(t)$$

$$(v) \quad \frac{d}{dt} (\vec{u}(t) \cdot \vec{v}(t)) = \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t)$$

$$(vi) \quad \frac{d}{dt} (\vec{u}(t) \times \vec{v}(t)) = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)$$

On thing that's important to realize is that if a vector has constant length (say *c*) then

$$\vec{u}(t) \cdot \vec{u}(t) = c^2 \tag{2}$$

and using the property (v) above then

$$\vec{u}'(t) \cdot \vec{u}(t) + \vec{u}(t) \cdot \vec{u}'(t) = 0 \tag{3}$$

so that

$$\vec{u}(t) \cdot \vec{u}'(t) = 0 \tag{4}$$

meaning that $\vec{u}(t)$ and $\vec{u}'(t)$ are perpendicular to one another. This is important in what follows.

Unit Tangent Vector

As we saw when we first introduced derivatives, that $\vec{r}'(t)$ is tangent to the space curve given by

$$x = f(t), \quad y = g(t). \tag{5}$$

so we define the unit tangent vector as

$$\vec{T} = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|} \tag{6}$$

So, for example, if $\vec{r} = \langle t, \frac{1}{2}t^2 \rangle$ then $\vec{r}' = \langle 1, t \rangle$ and the unit tangent vector is

$$\vec{T} = \frac{\langle 1, t \rangle}{\sqrt{1 + t^2}},\tag{7}$$

if $\vec{r} = <\cos t, \sin t, t >$ then $\vec{r}' = <-\sin t, \cos t, 1 >$ and the unit tangent vector is

$$\vec{T} = \frac{\langle -\sin t, \cos t, 1 \rangle}{\sqrt{2}} \tag{8}$$

since the magnitude of $\vec{r}'(t)$ is $\sqrt{2}$. Since the tangent vector is a unit vector, then the derivative of this would give another vector that is perpendicular to \vec{T}' .

Unit Normal Vector

We define the unit normal vector as

$$\vec{N} = \frac{\vec{T}'(t)}{\|\vec{T}'(t)\|} \tag{9}$$

If we consider the examples above then

$$\vec{T}' = \left\langle \frac{-t}{(1+t^2)^{3/2}}, \frac{1}{(1+t^2)^{3/2}} \right\rangle \tag{10}$$

then

$$\|\vec{T}'\| = \sqrt{\left(\frac{-t}{(1+t^2)^{3/2}}\right)^2 + \left(\frac{1}{(1+t^2)^{3/2}}\right)^2} = \frac{1}{1+t^2}$$
 (11)

and we obtain

$$\vec{N} = \frac{\left\langle \frac{-t}{(1+t^2)^{3/2}}, \frac{1}{(1+t^2)^{3/2}} \right\rangle}{\frac{1}{1+t^2}} = \left\langle \frac{-t}{\sqrt{1+t^2}}, \frac{1}{\sqrt{1+t^2}} \right\rangle$$
(12)

and the reader can verify that $|\vec{T}| = 1$, $|\vec{N}| = 1$ and $\vec{T} \cdot \vec{N} = 0$.

In the second example, where

$$\vec{T} = \frac{\langle -\sin t, \cos t, 1 \rangle}{\sqrt{2}} \tag{13}$$

then

$$\vec{T}' = \frac{\langle -\cos t, -\sin t, 0 \rangle}{\sqrt{2}} \tag{14}$$

 $|\vec{T}'| = \frac{1}{\sqrt{2}}$ and \vec{N} is given by

$$\overrightarrow{N} = \langle -\cos t, -\sin t, 0 \rangle \tag{15}$$

and the reader can also verify that $\|\vec{T}\| = 1$, $\|\vec{N}\| = 1$ and $\vec{T} \cdot \vec{N} = 0$.

Unit Binormal

If we are in 3D, we now have two vectors, the unit tangent vector and the unit normal vector. We can create a third vector which is perpendicular to both. We define the unit Binormal as

$$\vec{B} = \vec{T} \times \vec{N} \tag{16}$$

For the example above where $\vec{r} = <\cos t, \sin t, t >$ then

$$\vec{B} = \vec{T} \times \vec{N} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -\sin t & \cos t & 1 \\ \frac{1}{\sqrt{2}} & \frac{\cos t}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} = <\frac{\sin t}{\sqrt{2}}, \frac{-\cos t}{\sqrt{2}}, \frac{1}{\sqrt{2}} >$$