
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 901 | P a g e

A Discretization Technique Based on Behavior for
Normalizing Diversified Code Reuse Repositories

Swathy Vodithala
Assistant Professor, Dept. of CSE, KITS, Warangal

Suresh Pabboju
Professor, Dept. of IT, CBIT, Hyderabad

ABSTRACT: The major motivation of Component Based
Software Development (CBSD) or Component Based
Software Engineering (CBSE) is Software reuse. The
importance of software reuse has been magnified as mostly the
component reused refers to source code rather than
documentation, tools and design patterns. The component in
the proposed work is source code taken from the reuse
repository. The proposed work explains a technique that can
extract the behavior of software components taken from
diversified code reuse repositories. The behavior of
components taken from different code reuse repositories is
normalized to a single dataset which can further be used by
any retrieval algorithm. Apart from the behavior other relevant
facets can be identified to describe the software component.

KEYWORDS: Behavior; Component Description;
Discretization; Diversified dataset; Code reuse.

1. INTRODUCTION

Software engineering is the application of engineering to
software. Component-Based Software Development (CBSD)
or Component Based Software Engineering (CBSE) focuses
on the development of applications based on existing software
components rather than doing it from scratch.[2][3][4]. CBSE
is having a higher level of importance as it is the key
technology followed by many industries and resulting in high-
quality software systems that are developed on time. The main
aim of CBSE is to minimize the cost and time, consequently
gives profitable results. The components are the pieces of code
written by different programmers belong to different
companies who follow different standards. The internal
assumptions of code reuse repository differ because of
different standards followed by the companies, so the
substitutability and compatibility of software components
plays a vital challenge in CBSD. The adaptability of a
component is to be verified, because in reuse a component
must successfully replace another in a particular application.
.Reuse may be on design pattern, program elements or tools
.But the widely reused software component is source code.
There are three major areas in software engineering which has
to be focused when considering the components for software
reuse [5]. These are described as

a) Classifying/Clustering the components needed.

b) Describing the components.

 c) Finding the appropriate component.

 The structure of the paper is organized as
follows. The section II, describes the related work which
explains the existing approaches that forms the basis for
proposed work. The section III explains the proposed
algorithm along with the architecture .In the section IV, we
have the experimentation results. The paper is concluded by
conclusion, future scope and references.

2. RELATED WORK

 There are many ways by which the behavior of a
software component can be explained. The word specification
can also be interchangeably used to the term behaviour[1].
The behavior of software is normally explained by one of the
techniques given below:

 Informal specifications

 a) comments embedded in code

 b) informal metaphors

 Formal specifications

 a) formal mathematics.

 i) algebraic specifications

 ii) model based specifications

 b)predicate calculus

2.1. Specifications of components using Larch

There are many ideas proposed to retrieve a behavior of a
software component. The specifications of software
components have been compared by Zamarski both for
functions (e.g., C routines, Ada procedures, ML functions) and
modules (roughly speaking, sets of functions) written in some
programming language [8]. These components might typically
be stored in a program library, shared directory of files, or
software repository. Associated with each component is a
signature and a specification of its behavior .

Whereas signatures describe a component’s type
information (which is usually statically-checkable),

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 902 | P a g e

specifications describe the component’s dynamic behavior.
Specifications more precisely characterize the semantics of a
component than just its signature. The specifications are
formal, i.e., written in a formally defined assertion language.
Although we define match as a conjunction, we can think of
signature match as a “filter” that eliminates the obvious non-
matches before trying the more expensive specification match.
The importance is to write pre-and post-condition
specifications for each function, where assert ions are
expressed in a first-order predicate logic. Match between two
functions is then determined by some logical relationship, e.g.,
implication, between the two pre-/post-condition
specifications. We can then define match between two
modules in terms of some kind of match between
corresponding functions in the modules. Given our choice of
formal specifications, we can exploit state-of-the-art theorem
proving technology as a way to implement a specification
match engine.

The main disadvantage of specification matching is that it
is very expensive because to extract the behavior meta
language has to be defined .one more problem with
specification matching is interoperability.

2.2 Behavioral matching by executing the components

Atkinson proposed behavioral retrieval which works by
exploiting the executability of software components. Programs
are executed using components, and the responses of
components are recorded. Retrieval is achieved by selecting
those components whose responses (with respect to the
program) are closest to a pre-determined set of desired
responses. This idea was originally called “behavioural
sampling” by Podgurski and Pierce. A component is
represented as a relation between programs and responses.
This is because in general, a program execution can yield
several responses (due to non-determinism) and a response
may be evoked by more than one program. Formally, a
component C can be declared as

 C: program response

 A program p belongs to program is modeled as a
sequence of calls on the component's interface. A response is a
sequence of values in correspondence with a program. In
effect, each program determines a context in which the
behavior of a component is exhibited. The behavior of a
component C is derived from the set of response sequences by
removing those responses which are proper extensions of
other responses. Whereas behavioral sampling technique did
not necessarily collect all the possible execution responses but
rather samples the responses over a number of executions, and
exercised the most commonly used operations based on a
probability distribution [7]. Thus, the behavior of a component
C is the set of guaranteed responses to a program.

 P: response behavior

2.3. Behavioral matching by predicate logic

The description of software component based on facets.
Among the facets which are considered for component

description the important facet is behavior of the component.
Generally, each source file consists of the comments as per the
standards prescribed by the companies. The behavior of the
component is extracted from the comments of the source code
file and later these comments are converted to first order
predicate logic i.e. describing a code in a formal method. An
important point to be noted while considering the comments is
that not all the comments are converted to first order predicate
but the comments that includes information about the input
,output and some other important operations in the code are
only converted. Since each line of code has a precondition and
post condition it is not possible to consider all pre and post
conditions, so we take into the consideration of only few pre
and post conditions like input of the function, output of the
function and some other important operations in the code of
the function[6].

 Example: Consider the component (binary search
subroutine)

The binary search function works as follows: it takes an
array or list as an input and a key value which is to be found as
the output from the list. The prerequisite of the binary search
is that the list should be in an sorted order. The list is further
divided into two halves such that the merging of two lists
gives the original list i.e., no loss of elements must happen.
The function code searches the element in both the halves of
the list so as to minimize the time.

PSEUDO CODE FOR BINARY SEARCH

//alist is the list of integer elements

//item is the integer element to be found

//alist should be sorted form

def binarySearch(alist, item):

//assigning low and high indices

 first = 0

 last = len(alist)-1

 found = False

 // divides the list into two halves

 // searching in either of the divided arrays

 while first<=last and not found:

 midpoint = (first + last)//2

 if alist[midpoint] == item:

 found = True

 else:

 if item < alist[midpoint]:

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 903 | P a g e

 last = midpoint-1

 else:

 first = midpoint+1

 return found

//returns the position and item value found

Step 1:

The above source code file, we have the documentation
i.e., comments regarding the code. We consider the comments
related to the input , output and other important functions or
operations performed. They are

 alist is the list of integer elements

 item is the integer element to be found

 alist should be sorted form

 divides the list into two halves

 returns the position and item value found

Step 2:The next step is to convert these English statements
to first order predicate .

1. English sentence: alist is the list of integer elements
 First order predicate: is(alist, list)

2. English sentence: item is the integer element to be

found
 First order predicate: is(item,integer)
3. English sentence: alist should be in sorted form

 First order predicate: sort(alist)

4. English sentence: divides the list into two halves
 First order predicate: equals((alist1.alist2),alist)
5. English sentence: returns the element is found or not
First order predicate: is_in(item,alist1)

 is_in(item,alist2)

The behavior of the software component of binary search
is described as follows:

 is(alist, list)

 is(item,integer)

 sort(alist)

 equals((alist1.alist2),alist)

 is_in(item,alist1)

 is_in(item,alist2)

3. PROPOSED WORK:

The preprocessing step for retrieval of a software
component is the way of describing the software component.
The dataset resulted from the real world code reuse
repositories [9] plays a vital role for the algorithms used for
retrieval. In general the procedure followed to retrieve a
component will be the same as how the component is
described .There are many traditional techniques say
“keyword” search where a component is described with a set
of keywords and the component is retrieved if we specify the
keyword relevant to the component.

 There are many techniques in literature which extract
the behavior of components. Most of the existing techniques
are based on formal mathematics which takes a specific model
to extract the behavior. Model based techniques have to be
different for different code reuse repositories and the
drawbacks are that they are expensive as they follow some
ML and have interoperability problem. The retrieval is
appreciated only when the component retrieved can be
substituted (reused) for other applications.

The proposed work is applied on diversified data
repositories which extract the behavior from the
documentation written in the source code .The comparision
analysis and normalizing all code repositories is the major
contribution of the proposed work. The dataset once
normalized from different code repositories is achieved then
the preprocessing step for retrieval is done.

1. Below is the Sample Customized source code where
the comments have input and output along with some other
important operations

//fn_arr is an array

// MAX_SIZE is an int

void insertion(int fn_arr[]) {

 int i, j, a, t;

 for (i = 1; i < MAX_SIZE; i++) {

 t = fn_arr[i];

 j = i - 1;

 while (j >= 0 && fn_arr[j] > t) {

 fn_arr[j + 1] = fn_arr[j];

 j = j - 1;

 }

 fn_arr[j + 1] = t;

 printf("\nIteration %d : ", i);

 for (a = 0; a < MAX_SIZE; a++) {

 printf("\t%d", fn_arr[a]);

 }

 }

 printf("\n\nSorted Data :");

 for (i = 0; i < MAX_SIZE; i++) {

 printf("\t%d", fn_arr[i]);

 }

}

//j is index

//swaps the j and j+1

//returns the sorted array

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 904 | P a g e

The comments are extracted and are converted to first
order predicate and along with this behavior the other facets
described are time(TC) and space complexity(SC),
programming language (PL)and operating system(OS).

Behavior:
is(fn_arr,array)#is(MAX_SIZE,int)#sort(fn_arr)#is(j,index)#s
waps(j,j+1)

The description of the above component looks like

TC SC PL OS Behavior

O(n) O(1) c Windows is(fn_arr,array)#is(MAX_SIZE,int)#sort(fn_arr)#is(j,index)#swaps(j,j+1)

2. Consider the code repository of Java Standard
Library(JSL) and a sample source code from JSL is shown
below

/*

 * Copyright (c) 1994, 2008, Oracle and/or its affiliates.
All rights reserved.

 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is
subject to license terms.

 *

 */

package java.lang;

 /**

 * See the general contract of the
<code>readFully</code>

 * method of <code>DataInput</code>.

 * <p>

 * Bytes

 * for this operation are read from the contained

 * input stream.

 *

 * @param b the buffer into which the data is read.

 * @param off the start offset of the data.

 * @param len the number of bytes to read.

 * @exception EOFException if this input stream
reaches the end before

 * reading all the bytes.

 * @exception IOException the stream has been
closed and the contained

 * input stream does not support reading after
close, or

 * another I/O error occurs.

 * @see java.io.FilterInputStream#in

 */

The important comments considered here are starting with
@param, @exception, @returns etc. and the remaining are
deleted from code and this process is data reduction. The
datatypes of @param are read from function header using
Regular Expression. The above component is rewritten as

 @param n the number of bytes to be skipped.

 @return the actual number of bytes skipped.

 @exception IOException if the contained input stream
does not support

 public final int skipBytes(int n) throws IOException

=>Is(n,int)

Skipped(bytes)

IOException(input stream)

The other facets described are time(TC) and space
complexity(SC), programming language (PL)and operating
system(OS)along with behavior and the description of the
above component looks like

Table1: sample dataset from Java standard library

TC SC PL OS Behavior

O(1) O(1) Windows Java Is(n,int)#

Skipped(bytes)#

IOException

(input stream)

In order to reuse software components the mining of code
reuse repositories to some common form is required.This is
known as discretization technique.The dataset retrieved from
two different code reuse repositories mentioned above can be
written as follows in a single dataset.

Table2: sample dataset from Customized dataset

TC SC PL OS Behavior

O(n) O(1) C Windows is(fn_arr,array)#is(MAX_SIZE,int)#sort(fn_arr)#is(j,index)#swaps(j,j+1)

O(1) O(1) Windows Java is(n,int)#Skipped(bytes)#IOException (input stream)

4. IMPLEMENTATION RESULTS
The results are extracted from two datasets (Table 1 and

Table 2). One dataset is extracted from java standard library
(JSL) and the other is customized dataset. A keyword search
technique is applied on both datasets and the relevant retrieved
components for “search” keyword are noted. The relevant
components are nearly 85% on customized dataset and nearly
80% on standard java library.

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 905 | P a g e

Fig. 1. Comparision of keyword search on customized

dataset and JSL

The main purpose of the proposed work is to make the

different datasets normalized .The above statistics shows that
even in we integrate the different datasets from different code
reuse repositories the results efficiency is not minimized.

5. CONCLUSION AND FUTURE SCOPE

There are many techniques in literature which extract the
behavior of components. Most of the existing techniques are
based on formal mathematics which can only be applied by
the experts .There are even some informal techniques like
predicate calculus which is explained in the Related work. The
advantage of informal way of extracting the behavior of
software components is the simplicity. The main focus of the
proposed work is converting any real world dataset
(diversified dataset) into behavior of the component
(description of component) which further can be processed by
the machine. Once the behavior of the component is extracted
then any of the clustering or retrieval algorithms can be
applied. This is the most important preprocessing step for the
component clustering or retrieval. The future scope can be
worked on converting the datasets into a different way rather
than the behavior.

REFERENCES

[1] Swathy vodithala and Suresh pabboju,“Aspects related to
the specifications of software components”, International
Journal of Computer Science & Engineering Technology
(IJCSET), Vol. 5 , No. 03 Mar 2014.

[2] Book:BillCouncill ,”Definition of a Software Component
and Its Elements”, chapter 1.

[3] Book:Debayan Bose,”Component Based Development:
Application In Software Engineering”.

[4] Swathy vodithala,Niranjan Reddy and Preethi, “A
Resolved Retrieval Technique for software Components”,
IJARCET, volume 1, issue 4, june 2012.

[5] Swathy Vodithala and Suresh Pabboju “A Keyword
ontology for retrieval of software components”, IJCTA
,10(19), 2017, pp. 177-182, International Science Press.

[6] Swathy Vodithala and Suresh Pabboju “ A description of
software reusable component based on
behavior”,ICTIS,2017 pp.602-609, Springer.

[7] Steven Atkinson, ”Examining behavioral matching”,
Software Verification Research Centre.Department of
Computer Science University of Queensland

[8] Amy moormann zaremski and Jeannette m. wing,
“Specification matching of software Components”, ACM
Transactions on Software Engineering and Methodology,
Vol. 6, No. 4, October 1997, Pages 333–369.

[9] Yunwen ye and Gerhard fischer,”Promoting reuse with
active reuse repository systems”,proceedings of 6th
Internationl conference on software reuse(ICSR-
6),Sprimger verlag,Austria,June 27-29,2000,pp:302-317

