
Introduction to JSON

Michael Morris

Software Engineer in Test, ACT

Chair, PESC Technical Advisory Board

Chair, JSON/JSON-LD Task Force

Quotes that I live by

 “I would never die for my beliefs because I might be
wrong.”
⚫ “To die for an idea: it is unquestionably noble. But how much

nobler it would be if men died for ideas that were true.”

 “It's tough to make predictions, especially about the
future.”

 “The older I grow the more I distrust the familiar
doctrine that age brings wisdom.”

 “There are no solutions, only trade-offs”

Learning Objectives

 Be able to understand the trade-offs
between using JSON vs. XML

 Be able to read a syntax diagram

 Be able to recognize a valid JSON
string and number

 Be able to create a JSON object and
array

 Be able to recognize a JSON schema

JavaScript Object

Notation (JSON)

 A subset of JavaScript Programming
Language (no functions)

 Light weight text-based data exchange
format

 Uses C string conventions (e.g., \ as escape
character)

 The JSON syntax can be used to develop
semantically rich applications (e.g., JSON
Schema, JSON-LD) by adding meaning to
object properties.

JSON (continued)

 Used by most RESTful web services (APIs)
for both request and response data

 Used in web applications for data exchange
using JavaScript (e.g., AJAX)

 Can be marshaled (to string) and
unmarshaled (to native data structure)
directly with JavaScript and Node.js

 All major programming languages provide
JSON marshaling and unmarshaling tools.

 JSON Schema standard is supported by
third party tools (e.g., XML Spy, Oxygen,
JetBrain IDEs, Visual Studio Code)

JSON Advantages over

XML

o Easier to read by humans

o Easier to manipulate with most
programming languages

o Smaller payloads and less bandwidth
required for tranmission

o Easier to learn and understand

o Evidence: JSON has replaced XML in
many applications (configuration files,
web services, data exchanges, AJAX,
etc.).

XML Advantages

 XML provides a comprehensive namespace
construct. This is not part of basic JSON.

 XML Schema provides more complex and
sophisticated data modeling constructs
(e.g., attributes, elements, extensions,
restrictions, substitution groups).

 XML Schema provides an extensive set of
data types.

 XML Schema sequence allows ordering of
tags. JSON cannot set the order of
properties.

6.022E23

666

64.6

{"name": "Michael"}

[1, 5, 9]

["a", "b, "c"]

[{"name": "Michael"},3, false]

true

false

null

"Michael"

Note: All the syntax diagrams in this presentation were borrowed from www.json.org

JSON Values

examples:
"my name"
"pesc:transcript"
"\t\thelp"
"line 1\nline2"
"a Unicode code point: \u22F9"

Notes:
o Some programming languages

have problems with object
property keys that include
special characters or spaces so it
is best practice not to use this
type of key.

o The Unicode character above is
⋹

JSON String

Valid:
-30
-30.123
15.134E23
32.1e-13
-0
0.0
0.38
3e5

Invalid:
003
3.5.4
+24

JSON Number

Example:
{"name": "Michael", "age": 39, "tee_times": [8, 9, 11]}

o Object properties are key-value pairs. A programming
language may change the order of the properties upon
manipulation. For example, it may put them in lexical
order by property key (aka property name).

o There may not be duplicate keys in an object

key

value

JSON Object

Example:
[{"name": "array", "size": 5}, "a string\n", 34.5e-2, [1, 5, 9], false]
o Arrays can have mixed values (objects, arrays, and atomic objects)
o Array values are ordered and are referenced in most programming

languages by an index starting with 0.

JSON Array

Having white space defined between tokens allows JSON to be made more readable
by having spaces, new lines and tabs to format the JSON. We will review an
example of formatted JSON later in this presentation

Whitespace

{
"oauth_consumer_key": "MyKey",
"lti_message_type": "basic-lti-launch-request",
"lti_version": "LTI-1p0",
"launch_presentation_return_url": "http://www.act.org",
"resource_link_id": "testing",
"user_id": "7015",
"roles": "Learner",
"oauth_callback": "about%3Ablank",
"oauth_signature_method": "HMAC-SHA1",
"lis_person_name_full": "MOYUA POV",
"context_id": "99888",
"context_label": "ACT Test Center",
"context_title": "Iowa City Test Center",
"launch_presentation_locale": "en-us",
"lis_person_name_given": "MOYUA",
"lis_person_name_family": "POV"

}

IMS Global Learning Tools
Interoperability (LTI) POST
Body

Example PESC JSON

{

"TransmissionData": {

"DocumentID": "12345CV",

"CreatedDateTime": "2016-02-29",

"TransmissionType": "Resubmission",

"DocumentTypeCode": "Application",

"Source": {…},

"Destination": {…},

"NoteMessage": ["First Message", "Second Message"

]

},

"Student": {…}

}

Preview of JSON

Schema

 How do we specify what properties go where in the
document?

 How do we validate that the values are appropriate?
Numbers are numbers and dates are dates, and
SCED codes are SCED codes.

 How do we specify if a property is required in the
document?

 How do we specify if a required property's value can
be null?

 How can we specify if a property is present
conditionally on another property value?

 Answer: Use a JSON Schema to specify your JSON
exchange.

Schema Example
{

"$schema": "http://json-schema.org/draft-04/schema#",

"description": "JSON Schema for PESC College Transcript",

"type": "object",

"additionalProperties": false,

"required": [

"Student",

"TransmissionData"

],

"properties": {

"NoteMessage": {

"items": {

"$ref": "#/definitions/NoteMessageType"

},

"type": "array"

},

"Student": {

"$ref": "#/definitions/StudentType"

},

"TransmissionData": {

"$ref": "#/definitions/TransmissionDataType"

},

"UserDefinedExtensions": {

"$ref": "#/definitions/UserDefinedExtensionsType"

}

},

"definitions": {…}

}

JSON Schema Snippet

{
"AgencyCodeType": {

"description": "A code that describes the type of agency that assigned the student's
identification number",

"enum": [
"District",
"Migrant",
"MutuallyDefined",
"National",
"Province",
"Regional",
"State"

],
"type": "string"

},
"AgencyCourseIDType": {

"description": "The course ID that might have been assigned to this course by the
state or other agency",

"maxLength": 30,
"minLength": 1,
"type": "string"

}
}

Questions

