## EUREKA MATH ${ }^{2-}$

## Lesson 3:

Use exponents to multiply and divide by powers of 10.
CCSS Standard -5.NBT.A. 2


## Hand Signals

We will use hand signals in math class this year to respond to questions and to express our understanding of material.

Hand cupped around ear for "Listen".

Finger to temple for "Think".

Raise your hand to "Answer or Ask" questions.

Write the number in STANDARD FORM on your whiteboards.

## 1 thousand 9 hundreds 4 tens 3 ones $=1,943$

Ready? Let's try some more! Get your whiteboards ready. Use your place value charts if it helps you.

```
FLUENCY (10-min)
```

Whiteboard Exchange: Place Value

Now we will practice ROUNDING three-digit numbers to the nearest hundred and nearest ten.

What is 192 when rounded to the nearest hundred?


What is 192 when rounded to the nearest ten?


Ready? Let's try some more! Get your whiteboards ready.

## LAUNCH (10-min)

## Which One Doesn't Belong?

Which One Doesn't Belong? There are no right or wrong answers, but you must justify your reasoning. That means you have to explain why you picked the expression that you feel does not belong with the others.


## LAUNCH (10-min)

## Which One Doesn't Belong?

"How are $A$ and $B$ similar or different?
Both show the product 10,000, but A shows it as 10 times as
much as 1,000 and $B$ shows it as $10 \times 10 \times 10 \times 10$
$10 \times 1,000=$
"How are $A$ and $C$ similar or different?
Both have products of 10,000 . Both have 10 as a factor four times.
The only difference is how the 10 s are grouped.
$100 \times 100=$


Both show the units in the 10's, 100's, 1,000's and 10,000's columns.
$B$ shows repeated multiplication. $D$ shows repeated division.

## LEARN (30-min)

## Determine Pattens in Powers of 10

Our goal is to complete this chart by using only 10s as factors. Look at the first equation. How can we write a product that equals 100 by using only 10s?.

| Equation | Representation |  |  |  |  |  |  | Exponential Form |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { millions } \\ (1,000,000) \end{gathered}$ | hundred <br> thousands <br> ( 100,000 ) | ten thousands (10,000) | thousands $(1,000)$ | hundreds (100) | tens <br> (10) | his exponen <br> ones <br> (1) | as 10 to the $2^{\text {nd }}$ power |
| $100=10 \times 10$ <br> Let's represent $10 \times 10$ on the place value chart using dots. | How many 10's do you see being multiplied? |  |  |  | How many do you see? |  |  | We can use an EXPONENT to represent how many times we use 10 as a factor. <br> Exponential Form helps us to write very large numbers quickly and in less space. |

## LEARN (30-min) <br> Determine Pattens in Powers of 10

Please complete this Powers of 10 Chart as we do it in class.

Now, let's do 1,000 in exponential form.


## LEARN (30-min)

## Determine Pattens in Powers of 10

Please complete this Powers of 10 Chart as we do it in class.

Now, let's do 10,000 in exponential form.


## LEARN (30-min) <br> Determine Pattens in Powers of 10

Please complete this Powers of 10 Chart as we do it in class.

Now, let's do 100,000 in exponential form.


## LEARN (30-min)

## Determine Pattens in Powers of 10

Now, let's do 1,000,000 in exponential form.


```
LEARN (30-min) Determine Pattens in Powers of 10
```

Please complete this Powers of 10 Chart as we do it in class.

How can we write a product that equals $\mathbf{1 0}$ by using only 10s?


```
LEARN (30-min)
```

OK, let's practice your new knowledge of exponential form: Write an equation that shows each power of 10 equal to a multiplication expression

$$
10^{2}=10 \times 10 \quad 10^{1}=10
$$

$$
10^{3}=10 \times 10 \times 10
$$

$10^{5}=10 \times 10 \times 10 \times 10 \times 10$
$10^{6}=10 \times 10 \times 10 \times 10 \times 10 \times 10$
$10^{4}=10 \times 10 \times 10 \times 10$

## LEARN (30-min)

Now, write an equation that shows each number in exponential form.

$$
\begin{aligned}
& 1,000=10^{3} \\
& 100,000=10^{5} \\
& 100=10^{2} \\
& 10,000=10^{4} \\
& 1,000,000=10^{6}
\end{aligned}
$$

```
LEARN (30-min)
```

Let's apply our knowledge of exponential form. $\begin{array}{ll}\text { Multiply. } & \text { How many 0's do you see in 10,000? How many in } \\ \text { 100? How many is that altogether? }\end{array}$

1. $10,000 \times 100=\underline{1,000,000}$ or $10^{6}$
2. $1,000 \times 10^{3}=1,000,000$ or $10^{6}$

How many 0's do you see in 1,000 ? What does $10^{3}$ mean?
How many is that altogether?

```
LEARN (30-min)
```

Let's apply our knowledge of exponential form.

## 

3. $7 \times 10^{2}=7 \times 100=700$
4. $300 \times 10^{3}=\underline{300 \times 1,000=300,000}$

What does $10^{3}$ mean? How many 0 's is that altoghether?

Let's apply our knowledge of exponential form.

What does $10^{2}$ mean? Now we are dividing, so the number becomes

## Divide.

 smaller. How many places are we going to shift right?
## 5. $10,000 \div 10^{2}=10,000 \div 100=100$ or $10^{2}$

What does $10^{3}$ mean? Now we are dividing, so the number becomes smaller.
How many places are we going to shift right?
6. $1,000,000 \div 10^{3}=\frac{1,000,000 \div 1,000=1,000}{\text { or } 10^{3}}$

```
LEARN (30-min)
```

Let's apply our knowledge of exponential form.

What does $10^{3}$ mean? Now we are dividing, so the number becomes
Divide. smaller. How many places are we going to shift right?
7. $9,000 \div 10^{3}=9,000 \div 1,000=9$
8. $360,000 \div 10^{4}=360,000 \div 10,000=36$

What does $10^{4}$ mean? Now we are dividing, so the number becomes
smaller. How many places are we going to shift right?

Complete the table to represent each number in three different forms. The first one is done for you.

|  | Standard Form | Multiplication Expression <br> Using Only 10 as a Factor |
| :--- | :---: | :---: |
| 1. | $10 \times 10$ | Exponential Form |
| 2. | 100 | $10 \times 10 \times 10$ |
| 3. | 1000 | $10 \times 10 \times 10 \times 10 \times 10$ |
| 4. | 100,000 | $10 \times 10 \times 10 \times 10 \times 10 \times 10$ |



Multiply or divide. Then write each product or quotient in exponential form.

1. $10 \times 10 \times 10 \times 10=$ $\qquad$
After Exit Ticket:

Work on pages 31 \& 32
in workbook.
2. $10 \times 1,000=$ $\qquad$
3. $100 \times 10^{4}=$ $\qquad$
4. $100,000 \div 10^{2}=$ $\qquad$

Multiply or divide. Then write each product or quotient in standard form.
Small Group Time:
Review exit ticket
Finish workbook pages
5. $4 \times 10^{5}=$ $\qquad$
6. $200 \times 10^{4}=$ $\qquad$
7. $70,000 \div 10^{4}=$ $\qquad$
8. $340,000 \div 10^{3}=$ $\qquad$

