

Using Software Metrics
&

Measurements for Earned Value
Toolkit

Dave Burgess
Cost Department Head

Developing an EVM Implementation Approach

Time

D
ol

la
rs

Contract Budget Base

PM Baseline

DT / OT

REQUIREMENTS
UNIT TEST

SYSTEM INTEGRATION TEST

MODIFIED
 CODE

REUSE CODE
SC

HED
ULE

NEW
 C

ODE

QUALIT
Y

FUNCTIO
N POIN

TS

REWORK
CSCI

CSU
CSC

DESIGN

SLOC

COTS

MODULES

EVM CREDIT

SOFTWARE MEASUREMENTS

Ted Rogers
EVM Division Head

Chris Mushrush
EVM Subject Matter Expert

Dave Kester
EVM Subject Matter Expert

October 2004

Points of Contact
Process: Earned Value Management AIR 4.2.3
Technical: Software Engineering AIR 4.1.4

Software EVM Toolkit

Intentionally left blank

Software EVM Toolkit

RECORD OF CHANGE

Version Date Description of Revision
1.0 TBD Initial release

i

Software EVM Toolkit

FOREWORD

This handbook was created as a reference to provide guidance on how to develop an earned
value approach to software development. Issues and challenges that must be considered and
planned for and recommendations for software measures that can be used as the basis for
determining earned value are presented.

The goal of the handbook is to provide software Program Managers, Technical Managers and
Analysts with information needed to structure a robust earned value system that will provide
essential information to aid in managing their program.

It is assumed that the reader is already familiar with the subject of earned value and its use. A
copy of the Defense Systems Management College Earned Value Management Gold Card is
provided in Appendix K for use as a reference for earned value concepts.

The handbook uses IEEE/EIA 12207 Software Lifecycle Process terminology to the maximum
extent possible. Appendix I contains a comparison of MIL-STD-498 development activities to
IEEE/EIA 12207.

Special Thanks

In addition to the many NAVAIR employees who assisted in the development of this handbook, we would
also like to make special note of the assistance provided by Mr. Paul Solomon (Northrop Grumman
Corporation and a Visiting Scientist at the Carnegie Mellon Software Engineering Institute), Mr. Mike
Ferraro (Defense Contract Management Agency) and Mr. Robert Larrabee (ARINC). Without their
assistance this handbook could not have been possible.

The handbook will be updated from lessons learned, best practices, and as continuous process
improvements evolve at NAVAIR.

Authors: Rick Holcomb, Rick.Holcomb@navy.mil, (301)995-7657
Phyllis Sanders, Phyllis.Sanders@navy.mil (301)-342-0264

For copies or comments the following media are available:
By mail, contact: Phyllis Sanders David Kester
 DEPARTMENT OF THE

NAVY
4.2 COST DEPARTMENT
21491 GREAT MILLS ROAD
LEXINGTON PARK, MD
20653

OFFICIAL BUSINESS

DEPARTMENT OF THE
NAVY
4.2 COST DEPARTMENT
21491 GREAT MILLS ROAD
LEXINGTON PARK, MD
20653

OFFICIAL BUSINESS
By telephone (voice), use: (301)342-0264 (301)342-2403
By FAX (TELEX), use: (301)342-2397
By Email: Phyllis.Sanders@navy.mil David.Kester@navy.mil

 ii

mailto:Rick.Holcomb@navy.mil
mailto:Phyllis.Sanders@navy.mil
mailto:Phyllis.Sanders@navy.mil
mailto:David.Kester@navy.mil

Software EVM Toolkit

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 1

2. THE SOFTWARE PROJECT .. 3

2.1 Introduction ...3

2.2 Software Project Measurement ..4
2.2.1 Software Metrics & Measurement References ..4
2.2.2 Base Measures, Derived Measures and Metrics ..4
2.2.3 Using Measures As A Basis For An EVMS..5

2.3 Project Management and Planning Activities...7
2.3.1 Peer Reviews ...7
2.3.2 Integrated Baseline Review (IBR)...8
2.3.3 Software Risk Management...9
2.3.4 Measurement IPT...10

2.4 Software Lifecycle Phases ...10
2.4.1 Requirements Analysis ..11

2.4.1.1 System Requirements ..11
2.4.1.2 Software Requirements..11

2.4.2 Design..12
2.4.2.1 Preliminary Design ..12
2.4.2.2 Detailed Design ...12

2.4.3 Code & Unit Test (C&UT) ..12
2.4.4 Test ..12

2.4.4.1 Computer Software Component (CSC) Integration and Test ..12
2.4.4.2 Computer Program (CSCI) Test ..13
2.4.4.3 Software and Hardware System Integration & Test ..13

2.4.5 Software Rework ...13

2.5 Software Development Models ..13
2.5.1 Spiral Development Lifecycle Model..14
2.5.2 Incremental Development Lifecycle Model ..14
2.5.3 Waterfall Development Lifecycle Model ..14

2.6 The Software Work Breakdown Structure (WBS)...19

2.7 Software Code Issues...22
2.7.1 New Code ..22
2.7.2 Reuse Code ..22
2.7.3 Modified Code...23
2.7.4 Deleted Code ...23
2.7.5 Automatically Generated Code..23
2.7.6 Converted/Ported Code..24
2.7.7 Commercial Off the Shelf (COTS). ...24

3. SOFTWARE METRICS & MEASURES .. 26

3.1 Requirements ...26

 iii

Software EVM Toolkit

3.1.1 Recommendation ...26
3.1.2 Overview & Description..26
3.1.3 Phases Using Requirements for EVM ...29

3.1.3.1 Software Requirements Analysis Phase...29
3.1.3.2 Software Design ..31
3.1.3.3 Code & Unit Test (C&UT) Phase..32
3.1.3.4 Test Phases ..33
3.1.3.5 Software Rework ...34

3.1.4 Deferred Functionality or Requirements ...37
3.1.5 Capacity & Performance Requirements Issues..39

3.1.5.1 Description...39
3.1.5.2 Technical Performance Measurements (TPM) ..41

3.1.6 General Requirements Issues...41

3.2 Size ..43
3.2.1 Source Lines Of Code (SLOC)..43

3.2.1.1 Recommendation ...43
3.2.1.2 Overview & Description..43
3.2.1.3 SLOC EVM Issues Summary ..46

3.2.2 Equivalent SLOC (ESLOC) ..47
3.2.2.1 Recommendation ...47
3.2.2.2 Overview & Description..47
3.2.2.3 ESLOC EVM Issues Summary..48

3.2.3 Function Points (FP)..49
3.2.3.1 Recommendation ...49
3.2.3.2 Overview & Description..49
3.2.3.3 Phases Using Function Points for EVM ..50

3.2.3.3.1 Software Requirements Analysis Phase..50
3.2.3.3.2 Software Design Phase ...51
3.2.3.3.3 Code & Unit Test Phase..53
3.2.3.3.4 Testing Phases...54
3.2.3.3.5 Rework..57
3.2.3.3.6 Capacity, Performance and General Requirements Issues..57

3.2.3.4 FP EVM Issues Summary..57

3.3 Modules ..58
3.3.1 Recommendation ...58
3.3.2 Overview & Description..58
3.3.3 Modules EVM Issues Summary ..60

3.4 Test Procedures/Cases...60
3.4.1 Recommendation ...60
3.4.2 Overview & Description..60
3.4.3 Test Procedures/Cases EVM Issues Summary ..61

3.5 Software Defects ..62
3.5.1 Recommendation ...62
3.5.2 Overview & Description..62
3.5.3 Software Defects EVM Issues Summary...67

3.6 Schedule Milestones...67
3.6.1 Recommendation ...67
3.6.2 Overview & Description..67
3.6.3 Schedule and Milestone EVM Issues Summary..67

 iv

Software EVM Toolkit

3.7 Level of Effort (LOE) ..68
3.7.1 Recommendation ...68
3.7.2 Overview & Description..68

APPENDIX A. ACRONYMS AND DEFINITIONS ... 71

APPENDIX B. SEI CAPABILITY MATURITY MODELS ... 75

APPENDIX C. MIL-HDBK-881 SECTION 2.2.5 AVOIDING PITFALLS IN CONSTRUCTING A WORK
BREAKDOWN STRUCTURE... 77

APPENDIX D. MIL-HDBK-881 SECTION 3.2 CONTRACTUAL ISSUES AND SECTION 3.2.1
SOFTWARE AND SOFTWARE INTENSIVE SYSTEMS... 79

APPENDIX E. SOFTWARE IN THE WORK BREAKDOWN STRUCTURE .. 81

APPENDIX F. SAMPLE SOFTWARE WORK BREAKDOWN STRUCTURE 82

APPENDIX G. COCOMO II ESLOC.. 87

APPENDIX H. TECHNICAL PERFORMANCE MEASUREMENTS (TPM).. 91

APPENDIX I. COMPARISON OF SOFTWARE LIFE CYCLE STANDARDS .. 99

APPENDIX J. COMPREHENSIVE SOFTWARE EARNED VALUE EXAMPLE 102

APPENDIX K. EARNED VALUE MANAGEMENT GOLD CARD .. 129

TABLES

TABLE 1-1: COMMON SOFTWARE MEASURES USED AS BASIS FOR EARNED VALUE...........................1
TABLE 1-2: EVM ISSUES FOR SOFTWARE MEASURES USED AS BASIS FOR EARNED VALUE.............2
TABLE 2-1: CRITICAL SUCCESS FACTORS IN GOVERNMENT SOFTWARE PROJECTS............................3
TABLE 3-1: DEFECT EARNED VALUE EXAMPLE ...65
TABLE 3-2: IEEE/EIA 12207.2 DEFECT PRIORITIES...66
TABLE G-1: RATING SCALE FOR SOFTWARE UNDERSTANDING INCREMENT (SU).............................88
TABLE G-2: RATING SCALE FOR ASSESSMENT AND ASSIMILATION INCREMENT (AA)89
TABLE G-3: RATING SCALE FOR PROGRAMMER UNFAMILIARITY (UNFM) ..89
TABLE H-1: EVM ADJUSTMENT FOLLOWING CSCI A BUILD 1 SYSTEM TEST95
TABLE H-2: EVM ADJUSTMENT FOR CSCI A BUILD 2 PRE TEST PHASES..96
TABLE H-3: EVM ADJUSTMENT FOR CSCI A BUILD 2 SYSTEM TEST ...97

 v

Software EVM Toolkit

FIGURES

FIGURE 2-1: SOFTWARE LIFE CYCLE ACTIVITY PHASES..11
FIGURE 2-2: IEEE SOFTWARE SPIRAL DEVELOPMENT LIFECYCLE MODEL ..16
FIGURE 2-3: SOFTWARE INCREMENTAL DEVELOPMENT LIFECYCLE MODEL17
FIGURE 2-4: IEEE SOFTWARE WATERFALL DEVELOPMENT LIFECYCLE MODEL................................18
FIGURE 2-5: CONTRACT WBS EXAMPLE ...20
FIGURE 2-6: PROJECT SUMMARY WBS EXAMPLE ..21
FIGURE 3-1: SYSTEM HIERARCHY FOR SOFTWARE DEVELOPMENT...59
FIGURE B-1: SEI CMM LEVELS ...76
FIGURE D-1: EXAMPLE OF SOFTWARE INTENSIVE SYSTEM WBS..80
FIGURE G-1: ESLOC REUSE EFFECTS ...90
FIGURE H-1: EXAMPLE CPU UTILIZATION TPM ...91
FIGURE H-2: RAM UTILIZATION TPM...95

 vi

Software EVM Toolkit

1. Executive Summary
Earned Value Management (EVM) is a management tool that integrates cost, schedule, and
technical performance. Despite its widespread use, EVM has often not been successfully
implemented on software development efforts. There are several reasons why this is so:

1. Excessive use of Level of Effort (LOE).
2. Crediting full-earned value for tasks and requirements even though all tasks and

requirements have not been completed.
3. Basing earned value on metrics and measures that do not directly relate to implementation of

the software requirements.
4. Basing earned value on metrics and measures that are obsolete or inaccurate.
5. Utilizing EVM in isolation vice in conjunction with other software measurements and

metrics to evaluate program status.
6. Failure to consider rework in developing the Performance Measurement Baseline (PMB).
7. Failure to correlate earned value with Technical Performance Measurement (TPM).

Developing an earned value implementation approach in software development is based on
several software measures. Some of the more common software measures which can be used as
the basis for earned value are summarized in Table 1-1.

LIFECYCLE PHASE

SOFTWARE MEASURE

BASIS OF EARNED VALUE

EARNED VALUE

ALLOCATION
METHOD

QUALITY
AS AN EVM
MEASURE

REQUIREMENTS
ANALYSIS

System Requirements
S/W Requirements

Function Point
Schedule Milestones

Each System Requirement for S/W
Completed effort for the S/W
 Requirement
Current Function Point Count
ALL completed milestone tasks &
 requirements

0-100%
0-100%

% Complete

0-100%

Good

Good
Fair
Poor

DESIGN S/W Requirements

Function Points
Modules

Completed effort for the S/W
 requirement
Current Function point Count
Each completed module

0-100%

% Complete
0-100%

Good

Fair
Poor

CODE & UNIT TEST S/W Requirements

SLOC
ESLOC
Function Points (FP)
Modules

Completed effort for the S/W
 requirement
Current SLOC estimate
Current ESLOC estimate
Current FP count

0-100%

% Complete
% Complete
% Complete

Good
Poor
Poor
Fair

TEST

S/W Requirements

Function Points
Test Cases

Modules

Completed effort for the S/W
 requirement
Count of successfully tested function points
Number of successfully completed
 SW test cases
 Each completed module.

0-100%

% Complete
0-100%

0-100%

Good

Fair
Good

Poor

REWORK S/W Requirements

Function Points

Software Defects

Completed effort for the S/W
 requirement
Count of Function Points for completed
rework
No recommended method.

0-100%

% Completed

N/A

Good

Fair

Poor

Table 1-1: Common Software Measures Used as Basis for Earned Value

1

Software EVM Toolkit

When selecting a measure upon which to base earned value, the best results are achieved when
the measure is directly related to indicating that the desired functionality has been implemented.
Requirements are directly related to implementing functionality and are the most effective
measure for allocating earned value. Other measures less related to functionality result in
reduced accuracy or additional effort and cost to implement.

Earned value is a formally defined measure and is only one of many measures that can be used to
evaluate the status of a software project. Some measures are useful throughout the project
lifecycle; some are applicable to specific tasks within specific development phases only. Each
measure has its advantages and disadvantages. Like all measures EVM can provide objective
information upon which to make project management decisions in order to achieve project
functionality, cost and schedule goals. NO SINGLE MEASURE SHOULD EVER BE USED AS THE SOLE
MEANS OF EVALUATING STATUS AND OF MAKING PROGRAM MANAGEMENT DECISIONS DURING THE
SOFTWARE LIFECYCLE!

Table 1-2 summarizes issues and challenges that must be considered and planned for when using
a software measure to allocate the earned value for software development activities.
SOFTWARE MEASURE EVM ISSUES EXPLANATION
SLOC Definition of SLOC

SLOC Counts

Effective Use As A Measure

SLOC Growth

SLOC and Requirements

SLOC can be defined in many ways. There must be agreement on the counting
 methods and rules used to determine total lines of code.
Estimated SLOC counts must be continuously updated as data becomes available
 throughout the development lifecycle.
SLOC as a measure is only appropriate for use during the Code & Unit test
 (C&UT) phase.
Initial SLOC estimates are often low and should not be used. SLOC estimates
 and counts must be continuously updated as data becomes available
 throughout the development lifecycle.
SLOC estimates and counts are based on planned functionality as defined by
 requirements. However, if all the planned functionality is not implemented,
 earned value based on the estimated SLOC will be overstated.

ESLOC Similar to SLOC issues.

FUNCTION POINTS Trained FP counters

Software Requirements

FP Counts

At least one team member must be a Certified Function Point Specialist (CFPS)
 to accurately account for the number of FPs for each task associated with the
 requirement.
FP counts are best performed on well defined software requirements specified at
 the level of detail found in a Software Requirements Specification (SRS).
FP counts must be continually updated to reflect changes in requirements. While
 FPs can be applicable to all phases of software development, there may be
 specific tasks in each phase that are not well suited to earned value allocation.

MODULES Module Completion As Sole
 Basis For EV

Effective Use As A Meaure

Using module completion as a measure by itself does not guarantee that all
 planned requirements for the module are implemented. Requirements must be
 tracked for each module to verify that all have been implemented as designed.
Modules as a measure is only appropriate for use during the design, Code &
 Unit test (C&UT), and integration phases.

TEST PROCEDURES/CASES Traceability to Requirements

Effective Use As A Measure

Useful in determining if system and software requirements have been implemented
 correctly. Each test procedure or case must relate back to a requirement.
 Test procedures and cases as a measure are only appropriate for use during
 testing phases.

MILESTONES Milestone Completion As
Sole Basis For EV

Using milestone completion as a measure by itself does not guarantee that all
 planned requirements for the module are implemented. Requirements must be
 tracked for each milestone to verify that all have been implemented as designed.

LEVEL OF EFFORT (LOE) Effective Use As A Measure LOE should not be used for any task that produces a product. LOE is more
 appropriate as a measure for indirect support activities such as management,
 administrative support, quality assurance, etc.

Table 1-2: EVM Issues For Software Measures Used as Basis for Earned Value

 2

Software EVM Toolkit

2. The Software Project

2.1 Introduction
Many Department of Defense (DoD) systems are extremely complex and software intensive.
Each year costs for software design, development, implementation, and maintenance (i.e.,
upgrades, modifications, and fixes) continue to increase. Compared to other areas of
engineering, software efforts experience large numbers of program terminations with large cost
and schedule overruns.

In its 2000 Chaos Study, Standish Group International published the following data for a sample
set of over 30,000 software programs:

1) 23% of software development projects were terminated,
2) 28% were successful,
3) 49% were challenged. On average the challenged programs experienced cost growth of 45%,

schedule growth of 63%, and only 67% of the original requirements implemented.

Numerous articles, studies, and books have been written that address the various reasons why
software programs fail. Capers Jones, in his book Patterns of Software System Failure and
Success, lists several major factors associated with both success (i.e., on time with good quality)
and failure (i.e., cancelled, delayed, or inoperable) of software projects. See Table 2-1, Critical
Success Factors in Government Software Projects.

Projects that have better than average results in these critical factors have demonstrated that
large complex software projects can be completed on time, within budget, and have few
remaining defects after the software has been delivered.1 But this requires cost and schedule
performance to be monitored from the very beginning.

SUCCESSFUL PROJECTS FAILING PROJECTS
Effective project planning Inadequate project planning
Effective project cost estimating Inadequate Effective project cost estimating
Effective project measurements Inadequate Effective project measurements
Effective project milestone tracking Inadequate Effective project milestone tracking
Effective project quality control Inadequate Effective project quality control
Effective project change management Ineffective project change management
Effective development processes Ineffective development processes
Effective communications Ineffective communications
Capable project managers Inexperienced project managers
Capable technical personnel Inexperienced technical personnel
Significant use of specialists Generalists rather than specialists
Substantial volume of reusable material Little or no reuse of technical material

Table 2-1: Critical Success Factors in Government Software Projects

 3

Software EVM Toolkit

The Software Program Managers Network (SPMN) developed the 16 Software Critical
Practices for performance-based management. Use Metrics to Manage and Track Earned
Value are two of the practices. 2 Manage and Trace Requirements and Track Defects Against
Quality Targets are essentially specific types of software measures. The use of metrics,
measures, and EVM, which is a rigorously defined type of metric/measure, is an essential
combination to meeting another one of the critical practices: Estimate Cost and Schedule
Empirically.

Measures and metrics are also required as part of achieving higher software development
maturity levels under the Carnegie Melon Software Engineering Institute (SEI) Capability
Maturity Model® for Software (SW-CMM®)3 and the Capability Maturity Model Integration®
(CMMI®)4. Appendix B contains information on the SEI capability maturity models.

2.2 Software Project Measurement
2.2.1 Software Metrics & Measurement References
Information on NAVAIR’s software metrics policy and guidance on how to implement and
interpret a robust flexible measurement program can be found in the following sources:

1. NAVAIR INSTRUCTION 5234.5 NAVAL AIR SYSTEMS COMMAND METRICS
FOR SOFTWARE INTENSIVE PROGRAMS, 30 September 02,
https://directives.navair.navy.mil/index.cfm

2. NAVAIR Software Metrics Program Handbook, SWDIV-HDBK-7, Rev 1, 1 November
2002

3. Practical Software Measurement, Objective Information for Decision Makers, John
McGarry, David Card, Cheryl Jones, Beth Layman, Elizabeth Clark, Joseph Dean, Fred
Hall, Addison Wesley 2002.

4. Practical Software & Systems Measurement, www.psmsc.com.
5. Practical Software & Systems Measurement: A Foundation for Objective Program

Management, Version 4.0b, October 2000, http://www.psmsc.com/members/default.asp
6. Capability Maturity Model For Software (SW-CMM), http://www.sei.cmu.edu
7. IISO/IEC 15939:2002, Software Engineering - Software Measurement Process, (may be

ordered at
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=29572)

2.2.2 Base Measures, Derived Measures and Metrics
The Practical Software & Systems Measurement (PSM) methodology5 defines both base and
derived measures as they pertain to the PSM information model and measurement construct.

Base Measures are a measurement of a single attribute defined by a specified measurement
method. Examples of a base measure are:

1. Estimate for the number of SLOC at a specific date for a specific module
2. Actual number of SLOC for a completed module
3. Number of open priority 1 defects on a specific date for a specific module of code.

 4

https://directives.navair.navy.mil/index.cfm
http://www.psmsc.com/
http://www.psmsc.com/members/default.asp
http://www.sei.cmu.edu/
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=29572)

Software EVM Toolkit

Derived Measures are a measure or quantity that is defined as a function of two or more base
and/or derived measures. Examples of derived measures are:

1. Productivity, the amount of code produced divided by the amount of staff hours it took to
develop the code.

2. Requirements Change Rate, the number of software requirements at the beginning of a
time period, divided by the number of new, modified or deleted requirements at the end
of the time period.

3. Earned value, a base measure multiplied by its budgeted or planned cost.

Derived measures may use charts and graphs rather than mathematical functions to combine
and/or compare base measures. Common examples are:

1. Time phased graphs of the change in the estimated size of the software over time and at
various project milestones.

2. Time phased graphs of the numbers of open defects and their priorities over time and at
program milestones.

Base measures can be thought of as raw data. On their own, they provide little information on
the status of the project. A derived measure combines data from two or more base measures to
provide insight into the actual status of the project and the basis upon which alternative
corrective courses of action can be developed and program management decisions made.

Earned value is a formally defined derived measure. It is one of many measures that can be used
to evaluate the status of a project during the software lifecycle. Some measures are useful
throughout the project lifecycle; others are applicable to only specific tasks within specific
development phases. In the majority of cases earned value is determined based on other derived
software measures. The software measures discussed in section 3 provide a significant amount
of useful information on project status in their own right. However, when used as part of an
EVMS, they provide even greater insight into actual status of the program. No single measure
should ever be used as the sole measure of evaluating status or to make program management
decisions.

2.2.3 Using Measures As A Basis For An EVMS
Each program is responsible for determining what the drivers will be for its earned value system.
Section 3 presents several different types of software measures that can be used to drive earned
value during different development phases and tasks including their advantages and
disadvantages. It could be argued that all of the measures are directly or indirectly required for
organizations which have achieved a SW-CMM®3 or CMMI®4 level III certification. NAVAIR
requires that Developers working on ACAT I, II, III and IV software intensive systems have
achieved Level III6 certification. Thus asking the developer to change the measure driving their
earned value system should have only minimal or no impact on the cost of implementing their
earned value and measurement program. In many cases, pointing out the potential weaknesses in
the earned value implementation will be all that is required to convince the developer to modify

 5

Software EVM Toolkit

his implementation, especially if the alternative is an extensive discussion of how the
weaknesses of the driving measure can be adjusted for and how it will not only impede the
Government’s insight into the program but also the Developer’s.

Just because a developer’s earned value system is compliant with EVMS, does not mean that the
base and derived measures driving it will provide adequate information on program status7.
Even if the developer is collecting better measures, there is still nothing in EVMS that requires
the developer to use the better measures to drive their earned value program. Which means that
the developer could insist on an earned value implementation with significant flaws in its ability
to spot deviations from program cost, schedule, and technical objectives. IN SUCH A SITUATION,
IT IS ESSENTIAL THE GOVERNMENT HAS CONTRACTUALLY ESTABLISHED A MEASUREMENT
PROGRAM THAT WILL INSURE THAT MEASURES CAPABLE OF IDENTIFYING DEVIATIONS FROM
THE PROGRAMS COST SCHEDULE AND TECHNICAL OBJECTIVES ARE DELIVERED TO THE
GOVERNMENT. This provides the Program Office with an alternative method of spotting
problems that does not rely on a potentially unwise earned value program. Problems that do
arise for which the earned value system provided no warning provides additional justification for
encouraging the Developer to modify their earned value to prevent other earned value failures in
the future.

Even if the program does have an earned value system based on good measures, it is still
important for program and technical management including project analysts to continue to
analyze other software measures. No measure, no matter how carefully designed, can be
guaranteed to spot every project problem. OFTEN THE FIRST WARNING OF A PROBLEM WILL BE
UNEXPLAINED INCONSISTENCIES BETWEEN DIFFERENT MEASURES. Many times these
inconsistencies at first glance indicate desirable trends but when taken together don’t make
sense.
If only earned value is being reviewed such inconsistencies will not be spotted and serious
problems may go undetected until later in the program when the cost and delay associated with
correcting them will be much more severe.

In addition to CMMI®, ISO/IEC 15939:2002 and PSM, additional guidance on implementing a
robust flexible measurement program along with interpreting the results are available the in SW-
CMM®3, NAVAIR Instruction 5234.510, and the NAVAIR Software Metrics Program
Handbook8.

Often the best way of determining problems on a program is when one or more measures appear
to provide contradictory information on the program status. This is usually due to an analysis
that has not considered all the significant data or a misinterpretation of what a measure is really
indicating. An analyst can be misled by a single measure. In order to get an accurate view of the
actual program status, different measures must be viewed and analyzed together. An analyst
looking at a group of measures and asking relevant questions about the inconsistencies and
undesirable trends shown in the measures is much less likely to be misled and more likely to spot
problems earlier in the effort when they can be more effectively dealt with. The effectiveness of
earned value will be maximized when it is calculated based on the appropriate measure for the
task and phase, and when it is evaluated in conjunction with other appropriate measures.

 6

Software EVM Toolkit

2.3 Project Management and Planning Activities
2.3.1 Peer Reviews
Software developers tend to be very optimistic about the progress they have made. More often
than not the subjective judgment of the individual developer is used to determine how much of
the work is finished. This often results in situations where +90% of a task is done very quickly,
but the remainder of the task takes, weeks, months or even longer to complete.

Peer reviews are an alternative non-subjective means for determining when the work is actually
completed. A peer review is a formal review by other members of the development team of the
products produced by an individual developer for a specific development phase. This reduced
subjectivity makes the successful completion of a peer review attractive as the indicator for when
a task is actually completed and the earned value or BCWP for the task has been earned. Peer
reviews are conducted as part of requirements analysis, design, code and unit test, and test
procedure preparation.

If peer reviews are used as the basis for allocating BCWP, the tasks being reviewed must be
broken down so that they can be completed in less than a month and preferably less than a week.
This negates the need to use partial credit methods of allocating earned value and permits the
exclusive use of the 0/100% method for earned value allocation. Longer task lengths do not
allow enough opportunity for the developer to earn BCWP using a 0/100% method and force the
use of other more subjective and less accurate methods.

The purpose of peer review is to detect and remove defects as early as possible from software
products. The process involves a methodical examination of software work products by the
producers’ peers to identify defects and areas where changes are needed9. Peer reviews are
included in the software CMM as a Level 3 key process area and cover all areas of the software
life cycle as follows:

1. Requirements Analysis Phase. Verify that all higher-level requirements allocated to
software in documents such as the MNS, ORD, Systems Specification, Software
Performance Specification, etc. are decomposed into software requirements. Refer to the
following for additional information:
1. Executive Summary
3.1.3.1 Software Requirements Analysis Phase (EVM & Requirements Metric)
3.2.3.3.1 Software Requirements Analysis Phase (EVM & Function Points Metric)
3.1.4 Deferred Functionality or Requirements
3.1.5 Capacity & Performance Requirements Issues
3.1.6 General Requirements Issues

2. Design Phase. Ensure that all software requirements assigned to the segment of the

design under review have been implemented. Ensure that the design correctly
implements the software requirements, defines a maintainable, extensible design, and
implement appropriate corporate design methodologies. Refer to the following for
additional information:
1. Executive Summary

 7

Software EVM Toolkit

3.1.3.2 Software Design (Requirements Metric)
3.2.3.3.2 Software Design Phase (Function Points Metric)
3.3 Modules (EVM & Modules Metric)

3. Coding Phase. Ensure that all requirements and the design for the software module under

review have been fully implemented and successfully unit tested. Ensure that the code is
maintainable, that the code follows corporate coding standards. Refer to the following
for additional information:
1. Executive Summary
2.7 Software Code Issues
3.1.3.3 Code & Unit Test (C&UT) Phase (Requirements Metric)
3.2.1 Code & Unit Test Phase (SLOC Metric)
3.2.3.3.3 Code & Unit Test Phase (Function Points Metrics)

4. Test Phase. Verify that all software requirements can be traced to a test procedure and
that the test procedure adequately exercises the code implementing all of the software
requirements. Refer to the following for additional information:
1. Executive Summary
3.1.3.4 Test Phases (EVM & Requirements Metric)
3.2.3.4 Test Phases (EVM & Function Points)
3.4 Test Procedures/Cases (EVM & Test procedures/Cases Metric)

Numerous studies confirm that each peer review detects from 31 to 93 percent of defects, with a
median of around 60 percent10. When the defects are caught much earlier in the development,
they are less expensive to correct. Only 30% to 40% of defects are detected in each formal test
conducted. Formal tests also detect errors much later in the development, when it is not only
more costly to correct them, but when there is less time and resources to do so.

Peer reviews of software requirements, design, code and test procedures are required in
organizations achieving SW-CMM® Level III certification6. NAVAIR Instruction 5234.18
requires all NAVAIR ACAT I, IA, II, III and IV software intensive systems to be certified at
SW-CMM® Level III or its equivalent. Thus using successful peer review completion as the
milestone for allocating earned value will not place an additional burden on the developer.

2.3.2 Integrated Baseline Review (IBR)
In addition to ensuring that the program has an executable schedule and budget profile, the IBR
also provides the Government with an opportunity to evaluate how the developer plans to
implement their earned value system including questions on any potential weaknesses in
implementation. Specifically, what measures will be used by the developer for different tasks in
different phases to determine how much earned value can be allocated and how the developer
will integrate other measures into earned value in order to insure that the program status is
accurately reflected.

To implement such a measurement system, the following steps should be done prior to the IBR:

 8

Software EVM Toolkit

1. Develop a well-structured program Work Breakdown Structure (WBS) that clearly
differentiates software development tasks from hardware and systems engineering tasks
in the program.

2. Identify Key Performance Parameters (KPPs) and Technical Performance Measures

(TPM). See Appendix H for additional information.

3. Initiate a software risk management program and identify an initial set of program risks.
If earned value is to be useful in identifying risk occurrence and the cost and schedule
impact to the program, measures must be selected that provide insight into the identified
projects risks.

4. Establish a Measurement IPT comprised of government and developer members. Most

of the earned value concerns should be considered and addressed by the team. If a
Measurement IPT has been established, then most of the earned value concerns cited in
the IBR should have already been considered and addressed by the team.

Failure to do the above steps will reduce the ability to identify software related problems.
Additional information on how to prepare and conduct an IBR can be found in the following
documents:

1. The Program Managers’ Guide to the Integrated Baseline Review Process, A Product of
the Department of Defense / Industry Integrated Baseline Review Integrated Product
Team, October 2002

2. NAVAIR Earned Value Management Integrated Baseline Review Toolkit, March 2003

2.3.3 Software Risk Management
EVM measures, like all measures, are intended to provide visibility into the status of the
program in meeting its performance, cost, and schedule goals. A major aspect of meeting these
goals is to ensure that the program’s measurement program, including EVM measures, is able to
alert program management of the likelihood of a risk occurring and the impact of the risk. The
goal of the PSM11,12,13 is to select measures which meet program information needs, the tracking
of
program risks being one of the most critical. When deciding how to implement earned value on
a program, the significant risks to the project must be considered when determining what
measures will be used to drive the earned value system. EARNED VALUE MEASURES WILL
PROVIDE NO INFORMATION ON THE STATUS OF A PROGRAM RISK IF THE MEASURES DRIVING THE
EARNED VALUE SYSTEM GIVE NO INSIGHT INTO THE RISK.

If your program has information needs or associated risks which none of the measures described
section 3 give insight to, you will need to develop other measures and methods to drive the
earned value system in order to achieve the necessary visibility.

It is also essential when selecting measures and setting up an earned value system that the benefit
of tracking a specific risk or information need is determined for the program. A risk with a low

 9

Software EVM Toolkit

probability of occurrence or a low impact on the program if it does occur is unlikely to be worth
the effort of collecting measures and calibrating the earned value system to track it.

2.3.4 Measurement IPT
The Measurement Integrated Process Team (IPT) is a government, developer team tasked with
identifying program information needs and the measures that will provide insight into the
program. The goal of the Measurement IPT is to maintain a flexible measurement program that
accurately tracks the program status by discarding ineffective measures and replacing them with
effective measures. Ideally, this team should be initiated prior to contract award in order to
provide the competing developers with information on what the Government believes its
information needs are for consideration in the developer’s proposals. Once the winner is
determined, they should immediately join the Measurement IPT to assist in determining what the
contractual measurement requirements will be for the project.

The contract should be implemented so that the Measurement IPT is able to modify the program
measures as the information needs of the program change over its life cycle. It is very unlikely
that all of the program information needs and risks will be determined at the beginning of the
program. Issues that appeared to be major programmatic risks initially may decrease in
significance while others not originally foreseen will arise. This mandates that the measurement
program have the flexibility to change with the developing information needs and risks.

In order to meet its objectives, each program is responsible for determining what the drivers will
be for the earned value system. An EV system based on a robust flexible measurement program
that adapts to the current program needs will be much more effective than one that is not. The
Measurement IPT will play a critical part in ensuring that a program’s earned value system is
able to accurately track the program’s progress in meeting cost, schedule and performance goals.
An earned value system based on an inflexible measurement program is much less likely to
provide this visibility, since its base measures will only identify a risk or problem by chance,
rather than as a result of planning and forethought. CMMI®4 (See Appendix B) and ISO/IEC
15939:200214 identify the requirements for implementing such a measurement program. PSM6,7,8

provides a template and methodology for implementing the measurement requirements and
goals.

2.4 Software Lifecycle Phases
A software lifecycle is the evolution of a software system from development through
maintenance and eventually replacement. The duration of a lifecycle can be from days to years
and can have as few as three phases or as many as 20 or more phases. Depending on the
organization, their process, or their analytical tools, the phases of the software development
process can differ in name and number. However, the same activities must be performed to
complete the life cycle. The most common sequential activity phases and tasks performed under
each activity phase are shown in Figure 2-1.

 10

Software EVM Toolkit

Test

Rework
Code &

Unit Test

Design

Requirements
Analysis

 System Requirements Preliminary Design Coding/Programming S/W Integration Defect Correction
 S/W Requirements Detailed Design Unit Test Hardware Integration

Figure 2-1: Software Life Cycle Activity Phases

The activity phase definitions below are based on Barry Boehm’s book Software Engineering
Economics15 and SEER-SEM User’s Manual: 16

2.4.1 Requirements Analysis
Involves the creation of initial system requirements and related tasks and detailed software
requirements analysis.

Refer to the following for additional information
1. Executive Summary

2.4.1.1 System Requirements
If the system has both software and hardware components, this normally is the time when
specific functions are allocated to software. If it is possible to break out the software portion of
this effort (identified by the work assignments, titles, and/or labor categories of the personnel
who participate in the process), the software portion should be assigned to the specific software
project under analysis.

2.4.1.2 Software Requirements
This activity uses information created during system requirements analysis. There should be no
difficulty in identifying and assigning this effort to a specific software project. Since many
software analysis models do not distinguish between system level and software level
requirements effort, it is important to define terms and understand exactly what effort is included
in the estimated and actual labor hours.

Refer to the following for additional information:
1. Executive Summary
3.1.3.1 Software Requirements Analysis Phase (EVM & Requirements Metric)
3.2.3.3.1 Software Requirements Analysis Phase (EVM & Function Points Metric)
3.1.4 Deferred Functionality or Requirements
3.1.5 Capacity & Performance Requirements Issues
3.1.6 General Requirements Issues

 11

Software EVM Toolkit

2.4.2 Design
Involves breaking the software into packages and/or functions. This effort may be done formally
or informally. Some software analysis models combine preliminary and detailed design into one
activity phase.
Refer to the following for additional information:
1. Executive Summary
3.1.3.2 Software Design (Requirements Metric)
3.2.3.3.2 Software Design Phase (Function Points Metric)
3.3 Modules (EVM & Modules Metric)

2.4.2.1 Preliminary Design
The data flows between different program components may be defined, and the design mapped
back into the software requirements.

2.4.2.2 Detailed Design
Includes the further definition of software down to the single decision point.

2.4.3 Code & Unit Test (C&UT)
Includes writing the actual source code and testing it at the unit or function level. The
programmer often performs unit testing as part of the coding process.

Refer to the following for additional information:
1. Executive Summary
2.7 Software Code Issues
3.1.3.3 Code & Unit Test (C&UT) Phase (Requirements Metric)
3.2.1 Code & Unit Test Phase (SLOC Metric)
3.2.3.3.3 Code & Unit Test Phase (Function Points Metrics)

2.4.4 Test
Includes testing of the software to determine if requirements are being met. Testing can be done
formally or informally. Some software analysis models combine Code & Unit Test, Component
Integration & Test, and Program Test into one “Programming” or “Coding” phase.

Refer to the following for additional information:
1. Executive Summary
3.1.3.4 Test Phases (EVM & Requirements Metric)
3.2.3.4 Test Phases (EVM & Function Points)
3.4 Test Procedures/Cases (EVM & Test procedures/Cases Metric)

2.4.4.1 Computer Software Component (CSC) Integration and Test
This is integration of software units with other units to form a computer program.

 12

Software EVM Toolkit

2.4.4.2 Computer Program (CSCI) Test
This is testing of each CSCI as a whole.

2.4.4.3 Software and Hardware System Integration & Test
Involves software to software and software to hardware integration. The final system is tested
with live data in a real world type environment. Some software analysis models separate System
Integration & Test into its two component parts: SW-to-SW integration and SW-to-HW
integration.

2.4.5 Software Rework
Software rework is the correction of defects. These defects may be in the requirements, design
and other documents, or in the code itself.

Refer to the following for additional information:
1. Executive Summary
3.1.3.5 Software Rework (EVM & Requirements Metric)
3.2.3.3.5 Rework (EVM & Function Points Metric)
3.5 Software Defects (EVM & Software Defects Metric)

Software maintenance when added to development defines the complete software lifecycle cost.
Software maintenance is defined as the process of modifying existing operational software while
leaving its primary functions intact. Software maintenance can be classified into three main
categories:

1. Corrective, corrects processing, performance, or implementation failures
2. Adaptive, changes in the processing or data environment
3. Perfective, performance or maintainability enhancements

2.5 Software Development Models
DoDI 5000.2, Operation of the Defense Acquisition System, 12 May 2003, Section 3.3 provides
the following definitions of Evolutionary, Spiral and Incremental development:

Evolutionary Acquisition is the preferred DoD strategy for rapid acquisition of mature
technology for the user. An evolutionary approach delivers capability in increments,
recognizing, up front, the need for future capability improvements. The objective is to balance
needs and available capability with resources, and to put capability into the hands of the user
quickly. The success of the strategy depends on consistent and continuous definition of
requirements, and the maturation of technologies that lead to disciplined development and
production of systems that provide increasing capability towards a material concept. The
approaches to achieve evolutionary acquisition require collaboration between the user, tester,
and developer. Each has its advantages and disadvantages. The development approach may be
specified in a contractor’s Software Development Plan (SDP).

 13

Software EVM Toolkit

2.5.1 Spiral Development Lifecycle Model
In this process, a desired capability is identified, but the end-state requirements are not known at
program initiation. Those requirements are refined through demonstration and risk management;
there is continuous user feedback; and each increment provides the user the best possible
capability. The requirements for future increments depend on feedback from users and
technology maturation. Figure 2-2 shows the IEEE Software Spiral Development Lifecycle
Model.

2.5.2 Incremental Development Lifecycle Model
In this process, a desired capability is identified, an end-state requirement is known, and that
requirement is met over time by developing several increments, each dependent on available
mature technology. Figure 2-3 illustrates the incremental model based on Barry Boehm.

The waterfall model is only rarely used in NAVAIR software development and when used, it is
for relatively simple efforts.

2.5.3 Waterfall Development Lifecycle Model
In the traditional model, each stage is a prerequisite to subsequent activities. Successful
completion of a stage is required before starting the next one. Life-cycle reviews should be used
to assess progress and determine whether or not to proceed to the next phase of software
development. Following is a list of assumptions about the waterfall model:17

1. The requirements are known in advance of implementation.
2. The requirements have no unresolved, high-risk implications. (i.e. risks due to COTS

 choices, cost, schedule, performance, safety, security, user interfaces, organizational
 impacts.

3. The nature of the requirements will not change very much during development.
4. The requirements are compatible with all key requirements’ stakeholders expectations.
5. The right architecture for implementing the requirements is well understood.
6. There is enough calendar time to proceed sequentially.

Figure 2-4 shows the waterfall model based on DoD-Std-2167A.

 14

Software EVM Toolkit

1 Jones, T. Caper, “Government Software Projects Rank High in Major Critical Success Factors”, Crosstalk, Vol.15
2 Software Program Managers Network 16 Critical Software Practices, http://www.spmn.com/16CSP.html
3 Key Practices for the Capability Maturity Model Version 1.1, CMU/SEI-93-TR-025,
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.025.html
4 CMMI® Models, http://www.sei.cmu.edu/cmmi/models/
5 Practical Software Measurement, Objective Information for Decision Makers, John McGarry, David Card, Cheryl
Jones, Beth Layman, Elizabeth Clark, Joseph Dean, Fred Hall, Addison Wesley 2002. page 17 – 29.
6 NAVAIR INSTRUCTION 5234.5 NAVAL AIR SYSTEMS COMMAND METRICS FOR SOFTWARE
INTENSIVE PROGRAMS, 30 September 02, https://directives.navair.navy.mil/index.cfm
7 Using CMMI to Improve Earned Value Management, Paul Solomon, October 2002, CMU/SEI-2002-TN-016,
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tn016.pdf
8 NAVAIR Software Metrics Program Handbook, SWDIV-HDBK-7, Rev 1, 1 November 2002
9 Capability Maturity Model For Software (SW-CMM) Key Process Area: Peer Reviews, http://www.sei.cmu.edu
10 Basil, Victor R., Boehm, Barry, “Software Defect Reduction Top 10 List”, Crosstalk, January 2001
11Practical Software Measurement, Objective Information for Decision Makers, John McGarry, David Card, Cheryl
Jones, Beth Layman, Elizabeth Clark, Joseph Dean, Fred Hall, Addison Wesley 2002
12 Practical Software & Systems Measurement, www.psmsc.com
13 Practical Software & Systems Measurement: A Foundation for Objective Program Management, Version 4.0b,
October 2000, http://www.psmsc.com/members/default.asp
14 ISO/IEC 15939:2002, Software Engineering - Software Measurement Process
15 “Software Engineering Economics”, Barry W. Boehm, 1981, Prentiss Hall PTR
16 “SEER-SEM Version 6.0 User’s Manual, Galorath, Inc., 2001, printed in USA
17 “Spiral Development: Experience, Principles and Refinements”, Barry Boehm USC Spiral Development
Workshop, 9 February 2000, http://www.sei.cmu.edu/cbs/spiral2000/Boehm/sld001.htm

 15

http://www.spmn.com/16CSP.html
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.025.html
http://www.sei.cmu.edu/cmmi/models/
https://teamworkflow.navair.navy.mil/cyberdocs/Libraries/Default_Library/Common/frameviewdsp.asp?doc=83622&lib=TEAMWORKFLOW&mimetype=application%2Fx%2D1&rendition=native
http://www.psmsc.com/
http://www.psmsc.com/members/default.asp
http://www.sei.cmu.edu/cbs/spiral2000/Boehm/sld001.htm

Software EVM Toolkit

Spiral Development Lifecycle Model

Figure 2-2: IEEE Software Spiral Development Lifecycle Model

16

Software EVM Toolkit

Incremental Development Lifecycle Model

System Analysis

Requirements

Product
Design

Increment 1

Increment n

Maintenance

Detailed
Design

Code

Test

Detailed
Design

Code

Test

Figure 2-3: Software Incremental Development Lifecycle Model

 17

Software EVM Toolkit

Waterfall Development Lifecycle Model

PDR CDR Project
Startup

System
Req’ts

Project
Proposal

Organization
and Planning

Softwar
e

Req’ts
Specs Software

Design
Document

(Preliminary)

Code

Unit
Test

Integration
and Test

Acceptance
Test

Operation &
Maintenance

SRR

Based on
DoD-Std-2167A

System/Segment Specification
System/Segment Design Document
Software Design Document
Version Description Document
Software Test Plan
Software Test Description
Software Test Report
Computer System Operator’s Manual
Software User’s Manual
Software Programmer’s Manual
Firmware Support Manual
Computer Resources Integrated Support Document
Software Requirements Specification
Interface Requirements Specification
Interface Design Document
Software Product Specification
Software Development Plan

Software
Design

Document
(Detailed)

DoD-Std-2167A

Acceptance

Figure 2-4: IEEE Software Waterfall Development Lifecycle Model

18

Software EVM Toolkit

2.6 The Software Work Breakdown Structure (WBS)

A well-designed software WBS is essential to an efficient and accurate EVM approach. A WBS
structure that does not differentiate clearly between software and hardware tasks or provide
adequate visibility into the software tasks results in efforts that do not provide management with
visibility into problems with cost and schedule.

While the guidance in DoD MIL-HDBK-881 emphasizes the importance of software within the
DoD environment, some of the guidance is inconsistent with the need to develop a software
WBS compatible with allocating earned value. Specific problem areas in MIL-HDBK-881 are:

1. Section 2.2.5 Avoiding Pitfalls In Constructing a Work Breakdown Structure. Appendix C
 contains Section 2.2.5 wording.

Section 2.2.5 identifies phases as items that should not be included separately in a WBS. It
states that the WBS should “address the products required, NOT the functions or costs
associated with those products”. While phases may not be appropriate for inclusion in a
WBS, the various deliverables and/or artifacts produced during these phases are. The
requirements phase produces the software requirements specifications. The design phase
produces design documents. Code and unit test phases produce source code and verifies the
functioning of the code according to test plans and procedures. Thus when you see phases
identified in a software WBS it does not indicate noncompliance with the handbook, instead it
is identifying the development task leading to a significant product deliverable or artifact.
Failure to include these phases in the software WBS delays project visibility because specific
status and progress on these deliverables is not shown.

Due to the length of time involved with developing software, especially in larger efforts, a
method of breaking the software development into tasks of a manageable schedule length is
required to effectively monitor EVM. Breaking the development effort into phases or
breaking the WBS into smaller modules of code results in tasks of shorter schedule length,
thus contributing to EVMs accuracy and provide early warning of project problems.

Dr. Barry Boehm, the primary developer of COCOMO (COnstructive COst MOdel) and
COCOMO II software cost and schedule estimation models, includes the phases in software
WBSs in his various works1,2. In addition, virtually all software cost and schedule estimating

19

Software EVM Toolkit

software tools, including tools produced by Galorath (SEER), SPR (KnowledgePlan),
COCOMO, COCOMO II, PRICE Systems (PRICE-S) implicitly recommend the use of these
phases by basing the estimates produced by their tools on these phases.

The software WBS should be customized to the program’s software requirements. The WBS
is necessary for identifying all tasks and issues, which have labor, schedule and material costs
assigned to them as part of the complete estimate.

2. Section 3.2 Contractual Issues & 3.2.1 Software and Software Intensive Systems. Appendix
 D contains Sections 3.2 and 3.2.1 wording.

Experience has shown that software development has an inherently high technical, cost and
schedule risk3,4,5,6. It is vital that the software WBS be designed to insure an effective EVM
system can be implemented. It is essential that appropriate reporting be provided to at least
the top level of each software development effort comprising the system.

For a large system, there may be several software development efforts associated with
different hardware system components. MIL-HDBK-881 requires that software identified in
the WBS be associated with the specific piece of equipment it will operate on in the system.
This often results in software WBS elements not appearing until below the third level of the
WBS. It such cases it must be contractually specified that EVM be reported for software
elements, even when such elements are below the third level of the WBS. At a minimum
EVM must be reported to the top level at which each software component appears in the
WBS. It is preferable that EVM be reported to the level where the software development
phases (requirements analysis, design, code & unit test, integration test, system test) appear in
the WBS structure. The WBS can be tailored beyond the level prescribed in MIL-HDBK-881
to provide increased visibility into program performance, this is highly recommended due to
cost and risk associated with software efforts. Figure 2-5 is an example of a WBS that
provides visibility into software development efforts.

Contract WBS - SW Treated as subsystem
1(3) 2(4) 3(5) 4(6) 5(7)
Fire Control
 Radar
 Receiver
 Applications Software
 Build 1
 Build 2
 Integration Testing
 Systems Software
 Build 1
 Build 2
 Integration Testing
 Transmitter
 Antenna
 Radar Integration
 Platform Integration

 Figure 2-5: Contract WBS Example

 20

Software EVM Toolkit

 A software project summary WBS contains the most suitable WBS items that satisfy operational
needs. The WBS elements are described generically and apply to each type of system. The
associated activities and deliverables are listed with each software WBS description. The
application software refers to all the effort required to design, develop, integrate, and checkout
product applications, builds, and CSCIs. It does not include software integral to any specific
hardware subsystem specification.

Figure 2-6 7 illustrates an excellent template for a multi release, incremental or spiral
development software project WBS. It shows the breakdown of both application and system
software CSCIs.

 AIRCRAFT
SYSTEM

Prime Mission
Product (PMP)

Subsystem
#N

Subsystem
#N + 1

PMP
Application

Software

PMP
System

Software
Integration,
Assembly, Test
& Checkout

Hardware
Component

Software
Component LL

LL

LL

Build
(1…N)

CSCI to CSCI
Integration &

Check out
CSCI #1

CSCI #2

CSCI #3

Requirements
Analysis

Design Code & Unit
Testing

Integration
Testing

CSCI
Testing

STR
Resolution

Redesign
Recoding &

Testing
Reintegration
& Testing

LL SOFTWARE WBS

LL = Lower Lever Extension
CSCI = Computer Software Configuration
STR = Software Trouble Report

Interrelationships Among WBS Types

AIRCRAFT
SYSTEM

Prime Mission
Product (PMP)

Subsystem
#N

Subsystem
#N + 1

PMP
Application

Software

PMP
System

Software
Integration,
Assembly, Test
& Checkout

Hardware
Component

Software
Component LL

LL

LL

Build
(1…N)

CSCI to CSCI
Integration &

Check out
CSCI #1

CSCI #2

CSCI #3

Requirements
Analysis

Design Code & Unit
Testing

Integration
Testing

CSCI
Testing

STR
Resolution

Redesign
Recoding &

Testing
Reintegration
& Testing

LL SOFTWARE WBS

LL = Lower Lever Extension
CSCI = Computer Software Configuration
STR = Software Trouble Report

Figure 2-6: Project Summary WBS Example

Appendices E and F contain additional information on the software WBS.

 21

Software EVM Toolkit

For more and more DOD systems, software development will consume the majority of resources,
schedule and cost while generating the bulk of program risk. Obscuring the software
development effort by burying it deeply within the system WBS often as a sub component of
much cheaper, lower risk hardware efforts can only aggravate these problems. It is important to
keep these issues in mind when developing the Program and Contract WBS. The deeper the
software is buried in the effort, the deeper the contractor must report and the greater the burden
placed on the contractor’s financial tracking and reporting system. Appendices E and F contain
additional guidance on developing a software WBS.

2.7 Software Code Issues
How the code was produced also has a significant impact on cost and schedule. Several different
types of software code development (new, reuse, modified, deleted, automatically generated,
ported, and COTS) are discussed in the following sections. The different levels of effort
required to implement and integrate each type of software means that each different type should
be tracked separately. Failure to do so will make it very difficult to estimate the project and to
update the estimate based upon actuals. Different types of software take varying amounts of
effort, time and earned value to develop or modify for inclusion in a software development.

2.7.1 New Code
Code developed from scratch specifically for a project. New code is usually the most expensive
to develop and most often underestimated in size. More time and effort, translated into more
earned value, will be associated with each line of new code.

EVM Issues
1. Size is often underestimated. This results in overoptimistic costs and schedules with

resulting low Cost Performance Index (CPI) and Schedule Performance Index (SPI).

2. Generally the most expensive type of code to produce. Every phase of software development
 must be implemented.

2.7.2 Reuse Code
Reuse code is previously developed (existing) code that will be integrated as-is into the system.
The amount of functionality to be gained by reusing code is often overestimated. This results in
higher cost and longer schedules when new code is used to satisfy requirements rather than
reused code. Most of the effort with reused code involves integration into the system; therefore
the costs, schedule and effort are much less than new code.

EVM Issues
1. The amount of functionality that can be gained through software reuse is often overestimated.
 This results in a reduction in the amount of reuse and an increase in new and/or modified
code
 resulting in higher cost and longer schedules. CPI and SPI degrade.

2. Often cost and schedule overruns are experienced in development efforts based on software

 22

Software EVM Toolkit

 reuse integration. These overruns can often be attributed to developer unfamiliarity with the
 code, poor documentation, and low quality of code.

2.7.3 Modified Code
Modified code was previously developed for a different system and is now being modified to
meet the new systems requirements. Modified code is “usually” less expensive than new code,
however this is not always the case. If the code is of low quality, poorly documented, or the
developer is unfamiliar with the code, costs can rise steeply and may exceed the cost of
developing new code. No matter how good the code being modified is, if the percentage of
modification becomes large enough it becomes easier to develop new code than modify it.

EVM Issues
The amount of modified code that can be used in a system is often overestimated and/or the
amount of modification the code will require is underestimated. This results in increasing cost
and schedule for implementing and integrating the modified code or additional new code and
subsequent degradation in CPI and SPI.

2.7.4 Deleted Code
Deleted code is software previously developed for another system that is being removed since it
provides functionality not required by the new system. Parts of the remaining code will require
retest, redesign and recoding in order to ensure that the remaining functionality and interfaces
were not impacted by the deletions.

Deleting code is not a “No Cost” effort. If the code is poorly designed and documented, deletion
can become very expensive because of the time and effort associated with retest and redesign to
verify the remaining functionality. Often deleted code is included with modified code and not
tracked separately.

EVM Issues
Similar to the problems with modified code. Often the amount of code to be deleted and the
amount of testing after the deletions is underestimated as part of the modification effort. This
leads to higher cost and schedule and lower CPI and SPI.

2.7.5 Automatically Generated Code
Software tools that interpret the software design and generate the source code and executable
code produce automatically generated code. The generator may produce high quality code if the
design it is given is correct, but it will also automatically generate defects caused by faulty
software requirements and design. Testing will still be required.

Using automatic code generators does not eliminate the need for requirements analysis, design
and testing and may eliminate less than 20% of the development effort compared to manual code
generation.

EVM Issues

 23

Software EVM Toolkit

Automatically generated code does not produce free code. Requirements analysis, design and
testing are still necessary for automatically generated code.
2.7.6 Converted/Ported Code
Another type of automatic code generator converts from one language to another, from one
operating system to another, or both. This may be referred to as converted, translated or ported
code. Usually done for maintainability reasons due to the old language, operating system or
computer hardware no longer being supported.

If it becomes necessary to manually correct the source code generated by any of these methods,
determining the cause and how to correct it can be very difficult due to the lack of commenting
of the source code.

EVM Issues
Automatically converted/translated/ported code may require extensive manual corrections to get
it to run in the new environment. However, if it was automatically generated without comments
it is likely to be much more difficult, costly and time consuming to understand and modify or
correct.

2.7.7 Commercial Off the Shelf (COTS).
COTS are essentially commercially acquired reuse code. When using COTS code,
maintainability and availability are bigger concerns. The developer may decide to stop
supporting the version or product used in the system or they may go out of business. In which
case the system must either upgrade or change to a different tool if it wants to avoid having
unsupported code. The integration costs for such COTS changes can be significant. The
commercial viability and upgrade policies of a COTS vendor are serious considerations when
selecting products. An established vendor with a long history, good future prospects, a large
customer base and a policy of making their software upgrades backward compatible, may be a
better choice even if their product isn’t technically the optimum choice. Where a new company
with a small customer base and questionable future prospects may be the wrong choice even if
their product is technically the best choice. No matter how carefully planned for, a company
going out of business or dropping a product line can cause severe schedule impacts on the
program. If the survival of a vendor or product is questionable, select another vendor and
product with a better outlook.

EVM Issues
1. Selection of a COTS product must not only consider the technical merit of the product but
the

commercial viability of the vendor. If the vendor’s long-term prospects are questionable, a
mitigation plan for replacing the product must be developed and additional funding to cover
the risk built into the project.

2. The project plan must include plans for upgrading any COTS tools. Failure to do so is likely
 to result in unplanned for costs associated with product upgrades, integration and testing.

 24

Software EVM Toolkit

1 Boehm, Dr. Barry, Software Engineering Economics, Prentice-Hall, 1981
2 Abts, Chris, Boehm, Barry, Brown, A. Winsor, Chulanti, Sunita, Clark, Bradford K., Horowitz, Ellis, Madachy,
Ray, Reifer, Donald, Steece, Bert, Software Cost Estimation With COCOMO II, Prentice Hall PTR, 2000
3 Jones, T. Capers, Estimating Software Costs, McGraw-Hill, 1998
4 Nelson, Maj Mike Nelson, Clark, James, Spurlock, Martha A., “Curing the Software Requirements and Cost
 Estimating Blues, The Fix Is Easier Than You Might Think”, Program Manager Magazine, Nov/Dec 1999
5 Jones, T. Capers, “Project Management Tools and Software Failures and Successes”, Crosstalk, July 1998
6 Solomon, Paul, Northrop Grumman Corporation, “Practical Software Measurement, performance Based Earned
Value”, Software Technology Conference presentation, 2 May 2000

 25

7 Guideline’s for the Successful Acquisition of Software Intensive Systems, Version 3, 2000, US Air Force
Software Technology Center, http://www.stsc.hill.af.mil/resources/tech_docs/

Software EVM Toolkit

3. Software Metrics & Measures
The more common software metrics & measures that can be used as a basis to allocate earned
value during the software lifecycle are described in this section. The advantages and
disadvantages of using each metric or measure and how the metric or measure is used to allocate
EV is also presented. This is not an all-encompassing list. It is a sampling of the most
commonly used measures that are the most suitable or most often used in an earned value system
by NAVAIR and its industry partners.

Note – Many of the examples in the following sections have tasks running much longer then 1
month. While it doe not specifically say in the examples, these tasks are rollups of many small
tasks of 1 month or less length. This is to allow demonstration of the significant points of the
example as briefly as possible, which is not possible if every low level task is discussed.

3.1 Requirements
3.1.1 Recommendation

Requirements as an EVM Measure – Good
Recommended strongly as a basis for allocating BCWP

Requirements are an excellent measure for use in determining earned value measures since they
are directly related to evaluating progress in implementing the functionality required by the
system. Other software measures, even though they provide other critical project information,
are further removed from the implementation of the requirements and thus reduce earned value
accuracy.

A COMPREHENSIVE SOFTWARE DEVELOPMENT EXAMPLE USING REQUIREMENTS AS THE BASIS FOR
DETERMINING EARNED VALUE IS PROVIDED IN APPENDIX J.

3.1.2 Overview & Description
Requirements are the primary cost driver of software development efforts. Software
requirements tend to increase by 1–5% per month between the end of requirements analysis and
the start of systems and integration testing, with the national average being about 2%1.
Sometimes changes in requirements continue after testing begins. According to Capers Jones,
approximately 20% of all defects in software are caused by poorly defined and contradictory
requirements.

The requirements of a system are defined at many different levels. Requirements begin with the
Mission Need Statement (MNS), a high level statement of operational capability. The desired
and minimum acceptable levels of requirements of the new or proposed system are documented
in the Operational Requirements Document (ORD). Under the current DoD standard for the

26

Software EVM Toolkit

software development lifecycle2, the following are deliverable products throughout phases of the
software lifecycle that further decompose requirements:

1. Software Requirements Specification (SRS), Requirements Analysis Phase
2. Software Design Description (SDD), Design Phase
3. System Architecture and Requirements Allocation Description (SARD), Design Phase
4. Software Requirements Description (SRD), Design Phase
5. Software Test Description (STD), Testing Phases
6. Software Test Report (STR), Testing Phases

Any changes to the ORD, MNS or SRS which impact system requirements allocated to software
will have an impact on the software requirements. In this case there will be a contractual impact
since the scope of the effort is changing. Changes to the software requirements may also occur
due to an improved understanding on the part of the contractor of the systems requirements, or a
revision in how the software is to be implemented and thus can occur without a corresponding
change in system requirements allocated to software. Software requirements changes, not
caused by systems requirements changes, should not have a contractual impact.

There is no hard and fast rule that changes in software requirements due to improved
understanding of the system by the contractor will not have contractual impacts. The improved
understanding is usually gained through the developer consulting with Government program
office representatives and users. If the Government representatives insist on interpretations of
requirements that call for the most elaborate and complex implementation, or interpretations that
may not be clearly or logically drawn from the system requirements as written, costs and
schedule for the effort may climb beyond what the contractor could have reasonably foreseen.
This is often the case when the Government provides a poorly written and incomplete set of
requirements to the developer. In such situations where the Government cannot adequately
define its requirements, additional time and funding must be made available for prototyping
and/or additional spirals and releases during the development process or the Concept and
Technology Development phase prior to milestone B must be extended to allow the Government
to determine its requirements.

On the other hand, it is unreasonable for a developer to assume that there will be no changes to
software requirements following the software requirements analysis phase and not build at least
some capacity to handle such changes into the project plan. The US average is for about 2%
changes in software requirements per month from the completion of software requirements
analysis until the start of integration testing3. A project plan, which necessitates cost and
schedule slip whenever a software requirement changes, is unexecutable. A reasonable amount
of change should be built into the project plan based on the developer’s and acquisition
organization’s prior project history.

Since requirements are the ultimate driver in determining software cost and schedule, they are
also an excellent choice for determining earned value4. Requirements are applicable to all
phases of the system and software development, which further increases their utility as a means
of determining earned value. Additionally, requirements are directly related to producing the
functionality the Government wants in a new system. Other metrics/measures that are indirectly

27

Software EVM Toolkit

related to implementing the desired functionality can inject errors into the earned value
calculations.

 EXAMPLE:

 Requirement: Build 100 miles of highway in 10 months for $10M
 Contractor Estimate: 10,000 loads of fill, concrete, and other material required to
 complete requirement
 Status: After 5 months, 30 miles have been completed and 5000 truckloads have been used.
 How is the project doing?

 If the measure for EV was defined as follows:
 Government Measure: # of miles completed Contractor Measure: # of truckloads used

 Earned value would be reported as:
 Measure: # of miles completed BCWP = $5M and 60% behind schedule
 Measure: # of truckloads used BCWP = $5M and project on schedule

Earned value allocation must be based on the complete implementation of a requirement(s) in a
development phase. Allocating earned value before the associated task(s) have been completed
virtually always causes errors in earned value measures. This is much more likely to occur when
measures other than requirements are used as the basis for allocating earned value.

If something other than requirements are used as the basis for EVM during the software
development, care must still be taken to ensure the requirements planned for
analysis/design/coding/testing in the phase in question are actually implemented. It is possible
that in a multi build/release development effort, the estimated amount of code could be
implemented but for other than the planned for requirements. In some cases, this could result in
acceptable earned value results, but with programmatic impacts which will not be apparent until
much later, such as:

1. Certain functionality may have been selected for implementation in a certain release in
order to deliver it to the user by a certain date. Changing which requirements are
implemented would impact meeting the users needs.

2. Suppose some of the requirements to be implemented in a release were essential for

allowing software from another developer, reused software or COTS software to be
integrated with the release. If these integration requirements were replaced by other
requirements, the EVM might still look good initially, but it might have severe impacts
on the integration effort and cause significant programmatic delays later in the effort.

IF REQUIREMENTS ARE NOT CONSIDERED WHEN DETERMINING EARNED VALUE, THEN EARNED
VALUE WILL NOT REFLECT ACTUAL PROGRESS IN MEETING THE REQUIREMENTS.

28

Software EVM Toolkit

Obviously if requirements are used as a means of taking earned value, some means of allocating
earned value prior to when a requirement is fully implemented and completely tested is
necessary. Earned value should be allocated based on the completion of the appropriate tasking
for a phase for each requirement.

3.1.3 Phases Using Requirements for EVM
System and software requirements can be used in all software development phases as the basis
for allocating earned value. The developer will need a methodology for estimating the BCWS
for each requirement or logical grouping of requirements in each phase. Many developers do not
break down cost and schedule for individual requirements for each phase. Attempting to
estimate individually for every requirement adds an additional tracking and estimation burden on
the developer, which may not be justified by resulting increases in EVM accuracy. It is also
often impractical or impossible to estimate for individual requirements in isolation. An accurate
estimate may only be possible when the requirements are considered in logical groupings,
modules, Computer Software Components (CSC) or Computer Software Configuration Items
(CSCIs).

If the number of requirements is sufficiently large and sufficiently detailed, the developer may
choose to assume that the amount of effort required for all requirements to be implemented is
equal. This simplifies and reduces the effort required to determine BCWS for each software
requirement. This assumption increases in validity, as the requirements are decomposed to the
level of software requirements as documented in the SRD. These SRD level software
requirements are roughly equivalent to testable requirements, which is one proposed method of
determining software size5. Assuming an equal level of effort for system requirements is riskier
due to the wider range of effort it can take to implement these higher-level requirements.

In order to utilize requirements as the basis for taking earned value, the developer must have a
requirements traceability system able to track requirements from at least the level of the system
requirements through software requirements, builds, CSCIs, design, code & unit test, and test
procedures for all test phases. The ORD and MNS requirements should also be traced to the
SRS systems requirements. Such traceability is essential to insuring that the Government’s
required functionality is fully implemented and tested in the system and should already be done
by any mature developer. In order to reach SW-CMM® Level III6 or CMMI® Level III7 a
developer must have such a requirements traceability program implemented. Since NAVAIR
INST 5234.18 mandates that software developers for NAVAIR be a level III organization, such
traceability will not be an additional burden on the developer in order to use requirements as the
basis for earned value.

3.1.3.1 Software Requirements Analysis Phase
Software requirements analysis is the decomposition of systems requirements into more detailed
software requirements. Software requirement must be both detailed enough so that the software
design can be unambiguously generated from them and so that test procedures can be developed
to verify them. During the Software Requirements Analysis Phase, earned value would be
allocated based on how many of the systems requirements allocated to software (as identified in

29

Software EVM Toolkit

the SRS and the Software Architecture and Requirements Allocation Description) for which the
software requirements analysis had been completed.

If peer reviews of the requirements were performed, the successful completion of the
requirements peer review ALONG WITH THE CORRECTION OF ANY IDENTIFIED PROBLEMS could be
established as the point where all earned value (BCWP) for the requirement(s) would be
allocated. Peer reviews of software requirements are called for in organizations achieving SW-
CMM® Level III6, or CMMI® Level III7. NAVAIR Instruction 5234.18 requires all NAVAIR
ACAT I, IA, II, III and IV programs to be certified at SW-CMM® Level III or its equivalent.
Using successful peer review completion as the milestone for allocating earned value during the
software requirements analysis phase will not place an additional burden on the developer.
Using something other than successful completion of peer review to determine when the
requirements analysis is complete will increase subjectivity and reduce earned value accuracy.

 EXAMPLE:

 Project Requirement: 1000 system requirements in 10 months for $1M
 Assumption: Each system requirement takes the same amount of effort to perform software
 requirements analysis.
 Status: After 8 months, 900 system requirements have been completed with all noted
 defects from peer review corrected.

 What is the earned value for this effort?

 $900K 1000
900 ($1M) BCWP =×=

 CWP = $850K (Monthly expenditures have been higher than planned.)
 BCWS = $800K ($100K per month for 8 months.)

 1.056 $850K
$900K ACWP

BCWP CPI ===

 1.125 $800K
$900K BCWS

BCWP SPI ===

 As stated previously, it is risky to assume that software requirements analysis for all systems
 requirements will take the same amount of effort. The developer may choose to assign
 different BCWS amounts to different systems requirements based on varying amounts of effort
 required to perform software requirements analysis, this increases the overhead required to
 implement the EVM system due to additional tracking effort.

Refer to the following for additional information:
1. Executive Summary
3.2.3.3.1 Software Requirements Analysis Phase (EVM & Function Points Metric)
3.1.4 Deferred Functionality or Requirements
3.1.5 Capacity & Performance Requirements Issues
3.1.6 General Requirements Issues

30

Software EVM Toolkit

3.1.3.2 Software Design
In software design the software requirements are decomposed into a detailed architecture and
design from which the code can be directly, and unambiguously produced. During the Software
Design Phase, both high level and detailed, earned value would be allocated based on how many
of the software requirements (as identified in the SRD(s)) the design has been completed for. If
design peer reviews are utilized, completion of the design and allocation of the BCWP for that
requirement could occur when the peer review and ANY NOTED DEFECTS HAD BEEN CORRECTED.
Allocation of BCWP may or may not be the same for all software requirements depending on the
developer’s evaluation of the amount of effort required to design different software
requirements. Peer reviews of software design are called for in organizations achieving SW-
CMM® or CMMI® Level III. Using something other than successful completion of the peer
review to determine when the software design is complete will increase subjectivity and reduce
accuracy of the earned value.

 EXAMPLE:

 Project Requirement: 400 system requirements in 8 months for $1M
 Assumption: Each software requirement takes the same amount of effort to develop a
 design.
 Status: After 4 months, design for 175 requirements has been completed with all noted
 defects from peer review corrected. What is the earned value for this effort?
 BCWS = $500K
 $437.5K 400

175($1M) BCWP =×=

 ACWP = $450K (Actual expenditures per month are
 less than planned)
 .972 $450K

$437.5K ACWP
BCWP CPI ===

 .875 $500K
$437.5K BCWS

BCWP SPI ===

 Status: After 8 months there is improved understanding of the system requirements
 which results in an increase of total software requirements to 440. No contract
 modification is required to account for the increase. Design for 390 requirements has
 been completed with all noted defects from peer review corrected. What is the earned
 value for this effort at this point?

BCWS = $1M
 $886.4K 440

903($1M) BCWP =×=

 ACWP = $1,003K
 .884 $1,003K

$886.4K ACWP
BCWP CPI ===

 .886 $1M
$886.4K BCWS

BCWP SPI ===

 Status: At the end of 9 months, design for all 440 requirements has been completed.

31

Software EVM Toolkit

 What is the total earned value for this effort?
 BCWS = $1M
 BCWP = $1M
 ACWP = $1,101
 .908 $1,101K

$1M ACWP
BCWP CPI ===

 SPI = 1.

The developer’s plan did not take into consideration the possibility of an increase in software
requirements. This unexpected growth may account for part of the cost and schedule overrun. It
also appears that the planned productivity was higher than was actually achieved.

Refer to the following for additional information:
1. Executive Summary
3.2.3.3.2 Software Design Phase (Function Points Metric)
3.3 Modules (EVM & Modules Metric)

3.1.3.3 Code & Unit Test (C&UT) Phase
During C&UT source code is generated from the software design. Developers then conduct low-
level unit testing to verify that the design has been correctly implemented. During the C&UT
Phase, earned value would be allocated based on how many of the software requirements (as
identified in the SRD(s)) for which the C&UT had been completed. If peer reviews are utilized
in this phase, completion of a peer review and allocation of the BCWP for that requirement could
occur when the peer review and ANY NOTED DEFECTS HAD BEEN CORRECTED. Peer reviews of
software requirements are called for in organizations achieving SW-CMM® or CMMI® Level III.
Using something other than successful completion of the peer review to determine when the
C&UT is complete will increase subjectivity and reduce accuracy of the earned value.

 EXAMPLE:

 Test Plan Requirement: 200 software requirements in 5 months, BCWP = $550K.
 Assumptions: 1) Each software requirement takes the same amount of effort to perform
 C&UT. 2) Task will be evenly spread over the 5-month; BCWS = $110K per month.
 Status: At the end of 2 months, 85 defects in the software requirements discovered through
 C&UT and peer reviews have been corrected. Due to improved understanding of system
 requirements, total software requirements increased to 206 requirements. No contract
 mods are required. What is the earned value for this effort?
 BCWS = $220K
 $226.9K 206

58($550K) BCWP =×=

 ACWP = $230K
 .987 $230K

$226.9K ACWP
BCWP CPI ===

 1.031 $220K
$226.9K BCWS

BCWP SPI ===

32

Software EVM Toolkit

 Status: At the end of 5 months, 210 defects in the software requirements discovered
 through C&UT and peer reviews have been corrected. Total software requirements
 increased to 210 due to an improved understanding of system requirements. No
 contract mods are required. What is the total earned value for this effort?
 BCWS = $550K
 BCWP = $550K
 ACWP = $545K
 1.009 $545K

$550K ACWP
BCWP CPI ===

 SPI = 1.0

Refer to the following for additional information:
1. Executive Summary
2.7 Software Code Issues
3.2.1 Code & Unit Test Phase (SLOC Metric)
3.2.3.3.3 Code & Unit Test Phase (Function Points Metrics)

3.1.3.4 Test Phases
There are a variety of test phases following C&UT which seek to verify that the system and
software requirements have been correctly implemented via the execution of formal test
procedures. IEEE/EIA 12207 identifies the following test phases: software integration testing,
software qualification testing (often referred to as Formal Qualification Testing (FQT) in DoD),
Systems Integration Testing and System Qualification Testing. Avionics systems being
delivered to the fleet will also go through a variety of flight testing, Developmental Testing (DT)
and Operational Testing (OT). During the Software and Systems Test Phases, earned value
would be allocated based on how many of the systems or software requirements (as identified in
the SRD(s)) had been SUCCESSFULLY tested. SUCCESSFUL TESTING FOR A REQUIREMENT MEANS
THAT ALL ASSOCIATED TEST PROCEDURES HAVE EXECUTED TO COMPLETION AND NO DEFECTS
PREVENTING THE EXECUTION OF THE REQUIREMENT HAVE BEEN GENERATED. For software
integration testing, software requirements will be most appropriate for taking earned value. For
systems testing, DT and OT the systems requirements may be more appropriate. The appropriate
type of requirement for taking earned value is dependent upon the type of requirements used as
the basis for developing test procedures for the test phase in question.

As part of the preparation for a test phase, a test plan and test procedures must have been
developed and peer reviewed. AS PART OF THE PEER REVIEW, THE TEST PROCEDURES MUST BE
CHECKED TO ENSURE THAT THE PROCEDURES TEST ALL REQUIREMENTS AND THAT EACH TEST
PROCEDURE IDENTIFIES THE REQUIREMENTS IT TESTS. This information is essential to
determining which requirements have been successfully tested and for which earned value can be
allocated.

Successful completion of a test procedure is not necessarily the same as no defects occurring
during the test. See section 3.5 for a discussion of the different defect priorities. All priority 1
and 2 defects must be corrected prior to Operational Testing and the impact of all priority 3

33

Software EVM Toolkit

defects documented9. ALSO, A PROGRAM SHOULD CONTRACTUALLY IDENTIFY SPECIFIC
SOFTWARE QUALITY TARGETS. Thus priority 4, 5 and to a lesser extent priority 3 defects can
occur during testing without considering the test procedure to have failed.

Refer to the following for additional information:
1. Executive Summary
3.1.3.5 Software Rework (EVM & Requirements Metric)
3.2.3.4 Test Phases (EVM & Function Points)
3.4 Test Procedures/Cases (EVM & Test procedures/Cases Metric)

3.1.3.5 Software Rework
Software rework is the correction of defects. These defects may be in the requirements, design
and other documents, or in the code itself. A defective requirement will cause defective design
and defective code; a defective design will cause defective code. Obviously the sooner a defect
is detected and corrected, the less the cost since it will not snowball into later development
phases. Cutting corners on quality processes in early development phases results in more defects
which are not detected until much later in the development with resulting significant increases in
development costs.

REWORK MUST BE INCLUDED IN THE SCHEDULE FOR ANY SOFTWARE DEVELOPMENT PROJECT.
It is unreasonable to assume that there will be no defects detected in any of the requirements,
design or code. Additionally, if such rework phases are not planned for, it can cause severe
problems to the earned value system when it is attempted to determine how to implement it at the
spur of a moment. Programmatically, any project plan that does not include time for rework is
unexecutable and questions the maturity of the developing organization. The developer must
take into consideration that some percentage of the requirements will not pass testing. The
rework must not only include time to correct the flaw in requirements, design and/or code that
caused the problem, but also to retest the corrected software. In a multi release/build
development, this may mean that some or all of the failed requirements will be rolled into the
next build/release. All of this must be taken into account in the project plan.

Rework should be planned and tracked in separate work packages from the initial development
of requirements, design and code. In planning incremental builds, all builds must include budget
and schedule for rework of requirements, design and code to correct defects that were found in
the current and previous builds. To ensure adequate budget and period of performance, the
planning assumptions for rework should include the planned rate or number of defects expected
and the budgeted resources to fix the defects. Failure to establish a baseline plan for rework and
to objectively measure rework progress has caused many projects to get out of control4.

 EXAMPLE:

 Project Requirement: 1000 software requirements in Build A.
 Assumption: None of the software requirements are on the critical path.
 Program Plan: Based on the developer’s experience, 10% of these requirements will fail
 testing, 5% will be rework, 5% will be deferred to Build B. The program would thus

34

Software EVM Toolkit

 plan the rework phase for build A to include resources and schedule to allow the rework
of defects impacting 50 requirements. At the end of the rework phase in Build A, 95% or
950 of the total of 1000 software requirements would be correctly implemented and the 50
incorrectly implemented requirements are deferred to build B.

Scenario 1: More than 100 requirements failed testing. If the predicted performance in

 correcting each defect is achieved, then one of the following will occur:
1. More time and resources will be required in the rework phase in build A, which

 will drive ACWP up, CPI and SPI down.
2. Less than 950 requirements will be correctly implemented in build A and more

 than 50 requirements will be deferred to build B. This means the BCWP will be
 less than BCWS at the end of Build A with the difference deferred to build B
 which will also reduce CPI and SPI. DO NOT REPLAN WHEN MORE THAN
 THE PLANNED AMOUNT OF FUNCTIONALITY IS DIFFERED TO A LATER PHASE.
 Such a replan will hide the schedule and cost slips caused by excessive deferral
 of functionality.

 Scenario 2: Less than 100 requirements failed testing. If the predicted performance
in correcting these defects is achieved, then one of the following will occur:

1. Less time and resources are needed than was planned to correct all the defects
 except for the 50 planned for deferral to build B; rework will be finished sooner
 than planned. This will reduce ACWP; increase BCWP, which will drive CPI
 and SPI up.

2. The developer will use the planned time and resources for rework in build
 A, resulting in more than 950 requirements being implemented in build A and
 less than 50 being deferred to build B. This will result in BCWP being greater
 than BCWS at the end of Build A which will also drive up CPI and SPI. This
 will require some replanning to adjust the BCWS since BCWP cannot
 exceed BCWS. In any case the project will be below cost and ahead of schedule
 in the rework phase.

 Scenario 3: The developer plans to implement 950 new software requirements in Build
 B, along with the 50 requirements that failed testing in Build A and were deferred to
 Build B.

 Again, they may plan on only successfully implementing 95%, or 950 software
 requirements in order to take 100% of the planned earned value at the end of build B.

Obviously at some point all the defects must be corrected, or at least most of them. All software
contains some defects when released. Additional time may be included in the final release to
clean up defects or one or more releases may be planned at the end of the development for
defect correction.

Usually the amount of time required to correct defects is based on historical data from previous
projects. There is a very wide variance in the amount of time required to fix individual defects,

35

Software EVM Toolkit

however, for large systems with resulting relatively large numbers of defects averages tend to
work out.

Defects are also defined by priority; see section 3.5 for additional discussion of defect priorities.
While it would be nice if software could be released defect free, this is unfortunately impossible.
A disciplined mature development process can significantly reduce the number of defects but not
eliminate them. Priority 1 & 2 defects must be corrected prior to commencing Operational
Evaluation (OPEVAL) since they prevent the execution of essential requirements. Priority 3
defects have workarounds but their impacts on the system must be documented prior to entering
OPEVAL9. If there are too many priority 3 defects, this can have a significant impact on the
operator’s ability to perform the mission and thus make it unlikely the system will pass
OPEVAL. Priority 4 & 5 defects are not required to be corrected prior to OPEVAL9. A
SOFTWARE DEVELOPMENT PROGRAM SHOULD CONTRACTUALLY ESTABLISH QUALITY CRITERIA
DEFINING THE MAXIMUM NUMBER OF DEFECTS OF DIFFERENT PRIORITY FOR THE EFFORT. From
the perspective of using requirements for the allocation of earned value, priority of the defects
determines which defect must be corrected in order for the software requirements to have been
considered successfully implemented.

In the previous example, priority 4 and 5 defects are likely to be completely ignored as far as
EVM is concerned since they have minimal or insignificant impact on requirements
implementation. Determination of which and how many priority 3 defects must be corrected
before the BCWP for a requirement can be earned is at least partially determined by the
contractual quality requirements.

 EXAMPLE:

 Assumptions: Following testing in Build A there are:
 1. 10 priority 1 and 2 defects affecting 5 requirements,
 2. 100 priority 3 defects affecting 50 requirements, and
 3. 100 priority 4 and 5 defects identified.

 In this situation all of the priority 1 and 2 defects must be corrected. If they are not,
 the BCWP associated with those requirements cannot be earned and the software cannot
 go to OPEVAL and will fail if it does.

 Assumption: The system’s quality requirements are such that only 50 of the 100 priority
 3 defects need to be corrected. In this case if all of the priority 1 and 2 defects
 are corrected, and 50 of the priority 3 defects are corrected, all of the BCWP for build
 A would be earned. The remaining priority 3, 4 and 5 defects might only be corrected
 if it was convenient and easy to do so as a result of other work. It is unlikely there
 would be any planned effort to correct priority 4 and 5 defects unless the contractual
 quality requirements made this necessary.

36

Software EVM Toolkit

NOTE – IF QUALITY REQUIREMENTS IDENTIFYING THE MAXIMUM NUMBER OF DIFFERENT
PRIORITY DEFECTS ARE NOT CONTRACTUALLY SPECIFIED, EARNED VALUE ACCURACY WILL BE
REDUCED, MAKING IT POSSIBLE TO EARN BCWP WITH LARGE NUMBERS OF DEFECTS IN THE
SOFTWARE THAT WILL MAKE SUCCESSFULLY PASSING OPEVAL UNLIKELY. THIS IS TRUE NO
MATTER WHAT MEASURE IS USED TO ALLOCATE BCWP.

From an earned value point of view, the most important aspect of rework is the correct
implementation of software requirements; however an estimate of the time and resources
required to perform rework will probably be based on estimates of the number of defects from
historical data on previous projects or actual data from earlier rework phases in the current
development. While defect estimates may be used for estimation purposes, they are not effective
for use in determining BCWP since they are not always directly related to requirements. In some
cases several defects may need to be corrected in order to correct the implementation of a single
software requirement, in other cases correcting a single defect will correct the implementation of
multiple software requirements.

In order to use requirements as the basis for determining BCWP during rework, an effective
requirements tracking system must be in place, which traces individual defects to the
requirements they affect and identifies which defects should be corrected based on priority and
contractual quality requirements. This should not place a significant additional burden on the
developer since such a requirements tracking system should already be in place for any SW-
CMM® or CMMI® Level III organization.

Refer to the following for additional information:
1. Executive Summary
3.2.3.3.5 Rework (EVM & Function Points Metric)
3.5 Software Defects (EVM & Software Defects Metric)

3.1.4 Deferred Functionality or Requirements
When functionality is deferred, requirements intended for implementation as part of a specific
build are delayed until a later build. If systems or software requirements intended to be
implemented in build A, do not have their design completed during the design phase, they cannot
be coded and subsequently tested in Build A (if they are there will be severe quality problems),
they must be deferred for completion to a later build. Requirements which don’t have their code
completed in Build A cannot be tested in Build A. They must be deferred for completion to a
later build. Deferring functional requirements has the following major impacts:

1. If all the requirements planned for a phase are not completed, then the earned value for
these deferred requirements cannot be earned as part of the build.

2. The phase and/or build the requirement is deferred to will require additional time and

resources to complete its planned requirements and the deferred requirements. THE
EARNED VALUE ASSOCIATED WITH THESE DEFERRED REQUIREMENTS, WHICH WAS NOT
EARNED IN THE PHASE OR BUILD IT WAS DEFERRED FROM, WILL INSTEAD BE EARNED IN
THE PHASE AND/OR BUILD IT WAS DEFERRED TO. Unless of course it’s deferred again.

37

Software EVM Toolkit

3. IF THE DEFERRED REQUIREMENT IS ON A CRITICAL PATH FOR THE PROJECT, IT CAN HAVE
A MUCH GREATER IMPACT ON THE PROJECT THAN IS REFLECTED BY THE AMOUNT OF `

 ADDITIONAL TIME AND EFFORT REQUIRED TO COMPLETE IT. The implementation of a
 software requirement will be on the critical path if its delay will cause:
 a. A delay in implementation of other functionality.
 b. A delay in development on another project.
 c. A milestone for product delivery to the operational forces to be missed.

4. Delay in implementing critical path software requirements can rapidly snowball into
much larger cost and schedule impacts due to the resulting delay they cause on the
implementation of other functionality and projects. Thus for critical path requirements
deferring them may be an unacceptable option due to these critical program schedule
disruptions.

5. Although requirements may be deferred to a subsequent build, the earned value must

continue to show a behind schedule condition. THE DEFERRED EFFORT SHOULD NOT BE
REPLANNED beyond the current month4.

Defects are one of the most common causes of requirements deferrals, but others exist such as:

1. Underestimation of technical risk, or it’s a lot harder than originally thought.
2. Overestimated productivity, or it’s going to take more people than originally planned.
3. Staffing shortfall, or all the people planned for aren’t available.
4. A resource isn’t available. GFE or COTS isn’t available or doesn’t show up on time,

thus causing a delay in the development.
5. Funding levels or profile changes.
6. Changes to systems requirements.

A cursory look at the issues that can cause requirements deferrals indicates that they are all
program risks. A mature software development organization can build into its project plan time
and resources for the various software development tasks, including rework based on historical
data from previous projects. Basing the project plan on historical performance data is a method
of mitigating the risk of an overly optimistic budget and schedule by basing it on what has been
achieved previously. Unfortunately risks often identify potential problems on which either no
data is available or the data is very scant, thus making it very difficult to predict what will
happen or if the risk will occur. In such cases actual data from the project may be the only
source of information on the likelihood and impact on the program of these risks. This is why it
is so essential that an effective measurement program, including earned value, must provide
visibility into significant program risks.

If an effective risk management, measurement and earned value program is combined, it can
serve to identify the occurrence of the risks at an earlier date when it is more likely that effective
corrective action which minimizes perturbations to the program plan can be made.
REQUIREMENTS DEFERRAL IS ALWAYS THE RESULT OF A RISK OCCURRING. THE MORE EFFECTIVE
A PROGRAM IS AT MANAGING AND TRACKING ITS RISKS, THE LESS FUNCTIONALITY OR
REQUIREMENTS WILL BE DEFERRED.

38

Software EVM Toolkit

An effective earned value system must account for deferred functionality if it is to accurately
reflect program status and progress. In order to do this, the system or software requirements
planned to be implemented in each software development artifact or phase must be considered in
determining earned value. NO MATTER WHAT SOFTWARE MEASURES ARE USED TO DRIVE EARNED
VALUE, REQUIREMENTS MUST ALSO BE USED IF ACTUAL PROGRAM STATUS IS TO BE DETERMINED.

3.1.5 Capacity & Performance Requirements Issues
Capacity and performance requirements define functionality that impacts how a large percentage
of other software requirements if not all of them are implemented. Failure to meet these
requirements can have a significant negative impact on meeting the systems cost and schedule
objectives and can require significant redesign of the system hardware and/or software. In order
for EVM to be effective, it must be able to reflect the negative cost and schedule impact on the
program if such problems arise.

3.1.5.1 Description
Capacity requirements specify the maximum amount of available processing resources that can
be used by the software application being developed. These processing resources include
computer processing unit (CPU) capacity, random access memory (RAM), both dynamic and
static memory, hard drives and other non RAM static memory, interface or bus throughput and
other computer resources. Usually for all of these resources a maximum percentage of the total
capacity of the resource is identified which the software can utilize, usually 50% for new
developments or major upgrades. For example:

1. No more than 50% of the total CPU capacity will be utilized by the system’s software.
2. No more than 50% of the RAM is utilized by the system’s software.
3. No more than 50% of the available interface/bus throughput is used by the system’s

software.

Many systems include multiple CPUs, blocks or types of memory, interfaces or buses, hard
drives and other computer resources both in a specific computer and also as part of a distributed
network in the system. Capacity requirements apply individually to each of these resources in
the system. If there are multiple CPUs in the system and there is a requirement that no more
than 50% of the processing capacity of the CPUs be used, this applies to each individual CPU
and not the average processing capacity of all CPUs. If a CPU exceeds this requirement, it will
complicate future maintenance and upgrade of the system due to a lack of processing capacity in
this component. In a worse case scenario, it will act as a bottleneck on the entire system due to
lack of processing capacity in the CPU. The same applies to RAM, interfaces/buses, and other
computer resources.

Performance requirements, or real time requirements, mandate some type of response
requirement on the system, usually related to reacting within a specified period of time to some
input or event. For example:

1. Within .25 seconds of receiving operator input the system will provide operator feedback
that the input has been received.

2. The system will be able to process 8 HZ navigation data with no loss of data.

39

Software EVM Toolkit

3. The system will be able to receive and process up to 1000 radar contacts per second and
process with no loss of data.

Functional requirements are requirements that specifically identify a capability that must be
implemented in the software, such as:

1. Display on the tactical plot operator specified latitudes and longitudes.
2. Color all hostile targets on the tactical plot red.
3. Store the location, speed, altitude and course of all tracks and targets with an accuracy of

1 meter.

Failure of the system to meet a capacity or performance requirement will also affect the
implementation of functional requirements.

 EXAMPLES:

 Example 1 - Assumptions:

1. There are 100 functional requirements that are either completely or partially implemented
in software executing on CPU “A”.

2. There is a performance requirement that no more than 50% of the processing capacity of
CPU “A” can be utilized by the systems software.

3. The software running on CPU “A” is using 80% of the processing capacity

 This indicates that all 100 functional requirements implemented on the CPU are at least
 partially incorrect since their implementation has resulted in the CPU utilization requirement
 for CPU A being exceeded by 30%.

 Example 2 - Assumptions:

1. There is a performance requirement that the system respond within .25 seconds to
operator inputs.

2. There are 100 functional requirements related to operator inputs that are not meeting this
performance requirement.

 This indicates that these operator input related functional requirements are at least partially
 incorrect since there implementation does not meet the performance requirement for a
 response to operator input within .25 seconds.

There are several different ways that such capacity and performance problems could potentially
be corrected, such as:

1. REDESIGN THE SOFTWARE TO MAKE IT MORE EFFICIENT. This option can be extremely
expensive, since it could require an extensive rework of the software design and also
possibly the hardware design along with recoding and testing.

40

Software EVM Toolkit

2. RELAX THE CAPACITY OR PERFORMANCE REQUIREMENT. This will likely increase the
cost of future upgrades or maintenance to the system due to a shortage of the resource for
which the requirement was relaxed.

3. INCREASE THE CAPACITY OF THE RESOURCE THAT IS NOT MEETING THE REQUIREMENT.

In a COTS based system this “may” be an attractive option. It “may” be much cheaper
to replace a CPU with a more powerful model, add more RAM, use a wider bandwidth
bus, etc., than performing an extensive software redesign, coding and testing effort.
Hardware upgrade costs could include rugadizing the new hardware components to
insure it meets operational requirements. It will also require that the software be tested
on the new hardware to insure that it is functionally equivalent. Software modifications
may be necessary to get the software to operate on the upgraded hardware. Thus in some
cases hardware upgrades may actually be more costly and time-consuming than software
mods.

4. SOME COMBINATION OF THESE OPTIONS.

Each of these options will have different impacts on cost and schedule for the system and they
may all not be practical for every situation.

3.1.5.2 Technical Performance Measurements (TPM)
TPMs are used to measure progress in achieving the technical objectives of the system. TPMs
are phased over time in order to judge the progress in meeting Key Performance Parameters
(KPP), which are usually associated with measurable performance or capacity requirements,
such as discussed in section 3.1.5. Appendix H contains additional information on TPM as
applied to software.

3.1.6 General Requirements Issues
Like capacity and performance requirements, general requirements can affect the implementation
of large numbers of other functional software requirements. In the cases of the above three
requirements, they will impact how all requirements implementing the operator interface are
implemented. Unlike capacity and performance requirements, there is no single measurement
that can be made to determine if general requirements are being implemented. Therefore, unlike
capacity and performance requirements, it is difficult or impossible to specifically allocate
earned value based on the implementation of such general requirements. Instead,
implementation of the functional requirements should not be considered complete for any of the
development phases unless their implementation also meets the appropriate general
requirements. Thus if the code which implements a specific functional requirement for the user
interface does not implement a general requirement for error checking of the operator inputs, the
code for the specific functional requirement would not be considered complete and the earned
value for code and unit test of the specific functional requirement would not be allocated until
the error checking general requirement had been implemented. A general requirement could be
partially implemented if it is included in some of the functional requirements implementation to
which it applies and not to others.

41

Software EVM Toolkit

1 Jones, T. Caper, Estimating Software Costs, McGraw-Hill, 1998
2 IEEE/EIA 12207, Software Life Cycle Process
3 Estimating Software Costs, T. Capers Jones, McGraw Hill, 1998, pp 25, 40, 148, 193
4 “Practical Software Measurement, Performance-Based Earned Value”
http://www.testablerequirements.com/Articles/solomon.htm, CrossTalk, September 2001, Paul Solomon, Northrop
Grumman Corporation , http://www.stsc.hill.af.mil/crosstalk/2001/09/index.html
5 Sizing Software Using Testable Requirements, http://www.testablerequirements.com/
6 Key Practices for the Capability Maturity Model Version 1.1, CMU/SEI-93-TR-025,
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.025.html
7 CMMI Models, http://www.sei.cmu.edu/cmmi/models/
8 NAVAIR INSTRUCTION 5234.5 NAVAL AIR SYSTEMS COMMAND METRICS FOR SOFTWARE
INTENSIVE PROGRAMS, 30 September 02, https://directives.navair.navy.mil/index.cfm

42

9 SECNAVINST 5000.2B, Part 3 Program Structure Paragraph 3.4.3.1 Navy Criteria for Certification, subparagraph
17, and 3.4.3.2 Marine Corp Criteria for Certification, subparagraph 17. http://neds.nebt.daps.mil/5000.htm

http://www.testablerequirements.com/Articles/solomon.htm
http://www.stsc.hill.af.mil/crosstalk/2001/09/index.html
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.025.html
http://www.sei.cmu.edu/cmmi/models/
https://teamworkflow.navair.navy.mil/cyberdocs/Libraries/Default_Library/Common/frameviewdsp.asp?doc=83622&lib=TEAMWORKFLOW&mimetype=application%2Fx%2D1&rendition=native
http://neds.nebt.daps.mil/5000.htm

Software EVM Toolkit

3.2 Size
Software size is the primary driver of cost and schedule. Initial size estimates, especially in the
early development phases before the software requirements are fully defined, are often incorrect.
Unfortunately, in the vast majority of cases, these size estimates are low compared to actual
implementation size. The tendency of many software developers toward optimistic size
estimates results in the actual software size often being much larger than original estimates, even
when the actual implemented requirements for the system are much less than originally planned.
Estimated size is based on planned requirements while the actual size is dependent on what
requirements are implemented. They are not the same thing!

Software size is usually given in Source Lines of Code (SLOC) or Function Points (FPs).
SLOC, FPs, and other software size measures serve a purpose similar to weight and dimensions
for an aircraft and are generated from the software requirements just as aircraft weight and
dimension estimates are a result of its requirements. Size estimates are often based on the
requirements for a module, Computer Software Configuration Item (CSCI) or build and then
used as the basis for the estimates for the software development phases.

3.2.1 Source Lines Of Code (SLOC)

3.2.1.1 Recommendation

SLOC as an EVM Measure – Poor
Not recommended as a basis for allocating BCWP

Because of the inaccuracy of SLOC estimates, SLOC is a poor measure to use in determining
BCWP in earned value. The inaccuracy of SLOC estimates further degrades the correlation
between the amount of SLOC implemented and the software requirements implemented. If
SLOC are used as the basis for determining BCWP, they are only appropriate for use in the code
& unit test phase and every effort must be made to continually update the SLOC estimate based
on current data to make sure it is as accurate as possible. Additionally, requirements must also
be monitored in order to verify that the software requirements planned for implementation are
actually completed. If SLOC is used as the basis for allocating EVM, the SLOC count should be
updated continuously as new data becomes available. SLOC IS ONLY USEFUL DURING THE CODE
AND UNIT TEST PHASE. EVEN IN THE CODE & UNIT TEST PHASE, IF USED FOR DETERMINING
BCWP IT IS LIKELY TO YIELD VERY INACCURATE RESULTS. It may be of some utility in code
rework in order to correct defects, but applying it to take earned value for such rework is an even
more difficult proposition than its use during code and unit test.

3.2.1.2 Overview & Description
The two main methods of counting SLOC are: (1) physical lines of code, counting each
individual line, and (2) logical lines of code, counting only executable lines and declarations.
There are a wide variety of different procedures and tools available for implementing these

43

Software EVM Toolkit

SLOC counting methods which result in wide variances in SLOC totals. It is essential in any
software development that all parties involved understand how SLOC is being counted on the
project. It is also essential when comparing software developments from different organizations
that the SLOC counting methodology is understood for all of the organizations. The same SLOC
counts generated with different SLOC counting rules are not the same size nor will they require
the same cost and effort to implement.

The primary problem with using a SLOC based EVM approach is the increase in initial size
estimates, often low, over the development cycle. These low estimates are often the result of a
poorly defined and undisciplined SLOC estimation method. It can also be the result of an
inadequate requirements definition and poor requirements control during the life of the program.
The best SLOC estimates will occur when performed by an experienced team of software
engineers with access to:

1. SLOC sizing data from other software efforts of similar functionality,
2. A well-defined set of software requirements and
3. A disciplined methodology for developing the SLOC estimates from the requirements.

The accuracy of the SLOC estimate will degrade if all of these features are not available.
Unfortunately, during the early phases of the system before the software requirements are fully
defined, the accuracy of any SLOC estimate will suffer. This is true of any size estimation
methodology.

Software developers often overestimate their productivity and underestimate the amount of code
required to implement planned functionality. Basing earned value on an estimated SLOC count
that is low results in a high CPI and SPI.

 EXAMPLE:

 Estimated Effort: 10K SLOC in 3 months to implement a set of requirements
 Status: After 3 months, 10K SLOC has been completed, the software has fully implemented
 all planned functionality. How will earned value be credited for the effort?

EV = 100%, CPI = 1.0, and SPI = 1.0

 Now, assume that SLOC was originally underestimated.
 Status: After 3 months, 10K SLOC has been completed, the software has implemented only
 half of the planned functionality. How will earned value be credited for the effort?

EV = 100%, CPI = 1.0, and SPI = 1.0

 Obviously this does not reflect the actual status of the development effort. Earned value
 should be reported as:

EV = 50%, CPI = .5, and SPI = .5

 Scenario 1: Assume that the developer continues to work on the coding effort until
 all planned functional requirements are implemented. In this case, since earned value
 is based on the amount of SLOC completed, EVM indicators would show that the

44

Software EVM Toolkit

 project is on schedule and within cost until the planned amount of SLOC had
 been completed. At that time, BCWS = BCWP = ACWP, 100% EVM allocation.
 However, the developer will continue to expend hours to complete the work
 package. Thus EVM will have given no warning of a problem until the project
 reaches and exceeds the estimated SLOC.

 Scenario 2: Assume that the developer stopped development once earned value
 equaled 100%. In this case there would be no indication of a problem since basing
 earned value on SLOC gives no indication of how much functionality has
 been implemented. The problem would not become obvious until testing when
 large numbers of defects would be discovered due to the incomplete functionality
 of the code. However this would have significantly delayed the discovery of the
 problem.

Use of SLOC as the basis of earned value should also be avoided since it is difficult to account
for revised SLOC estimates without resorting to rebaselining. Instead, earned value should be
based on the percentage of estimated SLOC currently completed rather than total SLOC
estimated. Even using percentage of completed SLOC is far from perfect. It can result in the
BCWP being reduced from one reporting period to the next.

 EXAMPLE:

 Estimated Effort: 10 month linear schedule, BAC = $1M, BCWS = $500K, ACWP =
 $500K
 Status: In Jan 01, month 5, the estimated SLOC to complete a task is 10K. Amount of
 completed SLOC is 5K. Productivity (SLOC/hr) achieved has been the same as the
 prediction used to develop the Performance Measurement Baseline (PMB), and staffing
 levels have matched the plan. What is the earned value at this point?

BCWP = $500K, CPI = 1.0, AND SPI = 1.0.

 Status: In Feb 01, the current SLOC estimate to complete the task increased to 15K.
 Amount of completed SLOC is 6K.

NOW, 40% OF THE CURRENT SLOC ESTIMATE IS COMPLETE.

 Finally, assume that ACWP and BCWS have both increased to $600K. What does this
 Indicate for Feb 01?

 THE BCWP HAS DECREASED TO $400K, CPI AND SPI HAVE DECREASED TO .66.

 Status: In Aug 01, 15K SLOC have been completed. What is the earned value to date?
ACWP = $1.5M, BCWP = $1M, BCWS = $1M, CPI = .66

 We assume that all the originally planned functionality has been implemented, however,
 this cannot be verified from the SLOC alone. Other requirements measures must also

45

Software EVM Toolkit

 be evaluated to determine if this is the case. It is possible that even though the total SLOC
 has increased by 50% that all the functionality has not been fully implemented. In fact
 even if we know that the contractor has reallocated 20% of the planned for functionality to
 another software module, which means the CPI should actually be approximately .53, this
 cannot be directly determined by using SLOC alone. Even in the case where we use a
 percentage of SLOC to determine earned value, there is still a possibility the EVM will
 overstate the progress made on the program.

Coding for all software modules is not completed at the same time. This provides an opportunity
to compare planned SLOC with actual SLOC for modules developed early in the effort. This
comparison provides a means to determine the accuracy of the initial estimate and can then be
used to further refine the size estimate of code yet to be implemented. This is roughly similar to
how EVM is used to estimate the final costs or EAC based on cost and schedule variances. If
modules developed to date have experienced a 25% increase in SLOC in order to implement
planned functionality, the same growth will probably be experienced for the remainder of the
program.

3.2.1.3 SLOC EVM Issues Summary
Following are issues to consider when using a SLOC based EVM approach:

1. Definition of SLOC. Since SLOC can be defined in many ways, there must be agreement
on the counting methods and rules used to determine total lines of code.

2. SLOC Counts. The estimated SLOC must be continuously updated throughout the

software development life cycle, as data becomes available.

3. Effective Use of SLOC. SLOC is only appropriate for use during the code and unit test
phase. Even in the code & unit test phase, if used as the basis of determining BCWP it is
likely to yield very inaccurate results.

4. SLOC Growth. Initial SLOC estimates are often low, this means if they are used, as the

basis for taking earned value, earned value is likely to overestimate the progress made.

5. SLOC & Requirements. SLOC does not directly relate to functionality implemented. If
all the planned functionality is not implemented, earned value based on SLOC will
overestimate the progress made.

Refer to the following for additional information:
1. Executive Summary
2.7 Software Code Issues
3.1.3.3 Code & Unit Test (C&UT) Phase (Requirements Metric)
3.2.1 Code & Unit Test Phase (SLOC Metric)
3.2.3.3.3 Code & Unit Test Phase (Function Points Metrics)

46

Software EVM Toolkit

3.2.2 Equivalent SLOC (ESLOC)

3.2.2.1 Recommendation

ESLOC as an EVM Measure - Poor
Not recommended as a basis for allocating BCWP

ESLOC has all of the disadvantages of SLOC plus additional inaccuracies caused by attempting
to merge together different development methods in order to get a single equivalent SLOC.
ESLOC is not recommended as a method for allocating earned value.

3.2.2.2 Overview & Description
The purpose of ESLOC is to attempt to normalize the size of the development effort for the
different types of code being utilized (new, generated, modified, reused, and deleted, etc.). The
different types of SLOC implementation are normalized to the amount of new SLOC which
would require the same amount of effort to implement. This normalization is not a precise
process.

Most software estimation models (COCOMO (COnstructive COst MOdel) II, SEER-SEM,
SLIM, PRICE-S, etc.) have their own formulas for ESLOC based on analysis of historical data
from hundreds and often thousands of software development efforts. Many software
development companies have their own formulas based on analysis of their previous software
developments. Most of these formulas are considered to be proprietary or sensitive information.

These formulas are essentially a simplification used to make the estimation process easier. The
formulas are most accurate when, based on actual accurate data on the effort and schedule
required for the different types of code to be developed or implemented, is tracked separately
from the other types. The data can then be used to refine and improve the accuracy of the
ESLOC formula. If such data has not been tracked, the accuracy of any ESLOC formula is
questionable. Even if an accurate formula is available, the effort to develop the different types of
code should continue to be tracked individually so that as improved technology and processes
enhances the development process it is possible to continuously verify the accuracy of the
ESLOC formula. See Appendix G for a discussion of the COCOMO II ESLOC formula.

 EXAMPLE:

 For build A, 10K SLOC of new code is developed and 20K SLOC of unmodified
 code is reused. Using the COCOMO II ESLOC equation, the level of effort to integrate
 20K SLOC of reused code into the system is:

 DM = 0, No redesign of reused code.
 CM = 0, No design of reused code.
 IM = 10, Integration effort for reused code.
 AA = 0, code is well documented.

47

Software EVM Toolkit

 UNFM = SU = 0, UNFM and SU are set to 0 when code is reused unmodified.

3)103.0()03.0()04.0(=×+×+×=AAF

AAM = 03.
100

))0002.0(1(30
=

 ××+×+

60003.)100
0-(1 20,000 SLOC Equivalent =××=

 The 20K SLOC reused code is equivalent to 600 SLOC new code, or 10,600 ESLOC
 for new and reused code.

 Assumption: The developer has historical data showing they are able to develop 4.5
 SLOC or ESLOC per day for all development phases and all labor categories. One
 would expect it to require 2,356 staff days to develop build A.

 Scenario: The reused and new code is not differentiated and is instead tracked together.
 In this case, at the end of build A, we have 30K SLOC which took 2,356 staff
 days to produce, which results in a productivity of 12.7 SLOC per day.

 Assumption: Build B will consist of 20K SLOC new code and 10K SLOC unmodified
 reused code. This is equivalent to: 20,300 ESLOC using the COCOMO II
 ESLOC equations with the same DM, CM, IM, AA and UNFM as for build A.
 Once more assuming the developer can produce 4.5 ESLOC a day, build B would require
 4,511 staff days.

 Scenario: The reused and new code is not tracked separately. In this case, the choice may
 be made to revise the amount of staff hours required for build B based on the performance
 experienced in build A, 12.7 SLOC per day. In this case the number of staff hours required
 for build B would be 30,000 SLOC divided by 12.7 SLOC per day for 2362 staff days.
 However, since build A and build B have much different breakdowns of new and reused
 code, using the 12.7 SLOC per day estimate results in a much lower number of staff hours
 than will actually be required. The previous estimate of 4511 staff days is much more
 realistic since it adjusts for the much higher percentage of new code in Build B.

3.2.2.3 ESLOC EVM Issues Summary
EVM issues for ESLOC are very similar to those previously discussed for SLOC. It is possible
for the total number of SLOC to stay constant, but have the amount of new code increase while
reused and modified code decreases, thus resulting in an increase in project time and schedule.
In this same situation, the amount of ESLOC would increase. ESLOC is not recommended as a
method for allocating earned value.
Refer to the following for additional information:
1. Executive Summary

48

Software EVM Toolkit

2.7 Software Code Issues
3.1.3.3 Code & Unit Test (C&UT) Phase (Requirements Metric)
3.2.1 Code & Unit Test Phase (SLOC Metric)
3.2.3.3.3 Code & Unit Test Phase (Function Points Metrics)

3.2.3 Function Points (FP)

3.2.3.1 Recommendation

Function Points as an EVM Measure - Poor
Not recommended as a basis for allocating BCWP

If function points are used as the basis for determining BCWP it is essential that the FP count be
continuously updated based on current system requirements. If this is not done, BCWP accuracy
will decline similar to what happens when SLOC is used. Since FPs are applicable to most
development phases they are likely to be more useful than SLOC for earned value purposes.
However, if FPs are used as the basis for determining BCWP, the software requirements planned
for implementation must still be tracked to insure they actually are implemented. Even though
FPs appear to be a superior measurement to SLOC for use with EVM, they are only used rarely
in software developed for NAVAIR. Most NAVAIR software developers use SLOC for size
estimation. FPs remain inferior to requirements for tracking earned value.

3.2.3.2 Overview & Description
Function Points provide an alternative method to calculate software size. The size estimate is
based on what the system does and as the systems functionality increases the number of function
points increase. A function point could be thought of as a standard unit of software
functionality. Function Points are directly derived from software requirements using a
rigorously defined set of counting rules. The International Function Point Users Group
(IFPUG)1 function point counting rules are the most widely recognized standard. However,
there are several other variations and derivatives for counting function points.

Additionally, where different requirements may take different amounts of effort to implement,
each function point should take the same amount of effort to implement. This assumes that
“ADJUSTED” function points are used. Adjusted function points take into account the domain in
which the software will operate to adjust the function point count for system complexity. The
unadjusted or “RAW” function point count for signal processing and web page software may be
the same, but the adjusted function point count for the signal processing software will be higher
because of its more complex domain. This simplifies determining earned value based on FPs in
comparison to requirements.

A function point count requires expertise in applying the function point counting rules rather
than the domain expertise necessary to do an accurate SLOC estimate. Detailed software
requirements are required to accurately count either function points or SLOC. WHEN
PERFORMING A FP COUNT, AT LEAST ONE OF THE TEAM MEMBERS MUST BE A CERTIFIED

49

Software EVM Toolkit

FUNCTION POINT SPECIALIST (CFPS) AND ALL TEAM MEMBERS SHOULD HAVE HAD A FUNCTION
POINT COUNTING COURSE. In order to become a CFPS, a function point counter must pass a test
administered by IFPUG. A CFPS can count approximately 1000 FPs a day, the equivalent of
approximately 55 KSLOC of C++ code2. Ensuring that a CFPS leads the team results in a high
level of consistency and accuracy in the size estimate, within plus or minus 10% for different
CFPS3. Failure to used trained and certified function point counters looses most of the
advantages a function point count has over a SLOC count in that the accuracy and rigor of the
methodology is degraded. There is no reason that a similar degree of accuracy cannot be
achieved in a SLOC size estimate as for Function Points if a rigorous and disciplined SLOC
estimation method is used. However, many organizations have an inadequately disciplined
SLOC estimation methodology, which often results in SLOC size estimates that are so too low.

3.2.3.3 Phases Using Function Points for EVM

3.2.3.3.1 Software Requirements Analysis Phase
Since the purpose of the Software Requirements Analysis phase is to decompose the systems
requirements allocated to software into software requirements, it is difficult to use function
points as the basis of taking earned value in this phase. This is due to the difficulty of generating
an accurate function point count prior to the completion of the software requirements analysis
phase. Any function point counts done prior to this point would have had to be based primarily
upon analogy or preliminary (immature) systems requirements allocation and software
architecture. This significantly reduces the accuracy of the function point count. This said, this
preliminary function point count might very well be the best available information upon which to
base the size of the software requirements analysis effort. BECAUSE ANY FP COUNTS
AVAILABLE AT THIS POINT ARE LIKELY TO BE VERY INACCURATE, EARNED VALUE SHOULD BE
DONE BASED UPON THE PERCENTAGE OF FPS COMPLETED, VICE A FIXED NUMBER OF FPS. A
logical point at which to consider the requirements analysis complete is when it has
SUCCESSFULLY completed a requirements peer review with all noted defects corrected.

 EXAMPLE:

 Assumptions: 1) Software requirements analysis is performed for 1000 FPs which equates
 to 10 system requirements. 2) An equal number of FPs are required for each system
 requirement. 3) BAC = $1M, 10-month schedule, BCWS = $100K each month.
 Status: In month 5, the current FP estimate has increased to 1100 FPs and software
 requirements analysis has been completed on 500 FPs.

 If percentage of completed FPs is the basis for EVM, what is the earned value at this point?

BCWS = $500K, BCWP = $454. 5K, ACWP = $500K
CPI = .91, SPI = .91

 If earned value were based on the number of FPs completed vice the percentage:
BCWS = $500K, BCWP = $500K, ACWP = $500K
CPI = 1, SPI = 1

50

Software EVM Toolkit

 Obviously this does not accurately reflect the actual state of the program. However this
 situation cannot be corrected without rebaselining using the higher FP counts. This could
 require several rebaselinings as the count was corrected which is highly undesirable.

 Status: In month 10, the current FP estimate has increased to 1200 FPs and software

 requirements analysis has been completed on 1000 FPs.

 Using the percentage of total FPs as the basis for earned value:
 BCWS = $1M, BCWP = $833K, ACWP = $1M
 CPI = .833, SPI = .833

 Assuming the same productivity of 100 FPs per month is maintained, at the 12-month point:
 BCWS = $1M, BCWP = $1M, ACWP = $1.2M
 CPI = .833, SPI = 1.0

 This example assumes that all of the systems requirements allocated to be decomposed into
 software requirements during this phase actually were completed. If this is not the case, then
 the CPI and SPI will be indicating more progress than was actually made. If on the other
hand,
 only 8 of the 10 systems requirements had been decomposed, even after 12 months, then the
 following would be the case:
 BCWS = $1M, BCWP = $800K, ACWP = $1.2M
 CPI = .666, SPI = .8

 Assuming it takes the same number of FPs to implement each systems requirement.

 Because accurately counting FPs at the beginning of this phase is impractical, this can result in
 significant deviations from the expected cost and schedule. This can then ripple through the
 remainder of the program causing cost and schedule increases due to the increased effort
 required to complete the larger effort determined to actually exist at the end of the software
 requirements analysis phase. If such a situation actually occurs, the program should be
 restructured since it is obviously not going to meet its original cost and schedule objectives.

Refer to the following for additional information:
1. Executive Summary
3.1.3.1 Software Requirements Analysis Phase (EVM & Requirements Metric)
3.2.3.3.1 Software Requirements Analysis Phase (EVM & Function Points Metric)
3.1.4 Deferred Functionality or Requirements
3.1.5 Capacity & Performance Requirements Issues
3.1.6 General Requirements Issues

3.2.3.3.2 Software Design Phase

51

Software EVM Toolkit

During the software design phase the software requirements are further developed into a
software architecture and design from which the software source code can be directly developed.
By the start of the design phase, an accurate function point count should be possible based on the
software requirements defined in the software requirements analysis phase. This does not mean
that further requirements changes may not occur as a result of the developers understanding of
the system improving as development progresses. If such software requirements changes occur,
the FP count must be updated to take into account the changes in requirements. Such changes
should not have a contractual impact. If the changes are a result of Government changes in
systems requirements, then they will require an Engineering Change Proposal (ECP) that will
require a rebaselining of the effort to reflect the ECP.

Because the possibility of changing the number of function points to be implemented during
design exists, earned value should be taken based upon a percentage of the current function point
count for the design phase. Because a function point count must be done manually, the only way
to determine how many function points have been designed is by counting the number of
function points for the requirements that have been designed. A logical point at which to
consider the software design completed is when it has SUCCESSFULLY COMPLETED a software
design peer review with all noted defects corrected.

 EXAMPLE:

 Assumptions: 1) Design for 1000 FPs will be developed in the design phase of release A.
 2) The developer’s historical data indicates that they will require $450K (BAC) and 5
 weeks to develop the design and peer review. 3) 200 FPs will be designed each week.
 Status: At the end of week two, the FP count has increased to 1010 due to requirements
 Changes, 410 FPs have been implemented at a cost of $182.7K

 After two weeks we planned to have 40% of the function points designed, in actuality we
 have 40.6% designed.
 BCWS = $180K, BCWP = $182.7K, ACWP = $182.7K
 CPI = 1.0, SPI = 1.015

 After 5 weeks, the number of function points is 1025, and all 1025 have been implemented
 at the planned cost.
 BCWS = $450K, BCWP = $450K, ACWP = $450K
 CPI = 1.0, SPI = 1.0

 Even though the number of function points increased from the original estimate of 1000, the
 amount of earned value earned for completing all of them did not. In this case the increase in
 FPs was due to software requirements changes resulting from an improved understanding
 of the software requirements. Since the FP increase was not caused by a change in the
 Government’s requirements the planned cost to design the requirements, or BCWS for the
 design task, should not be impacted. In this case it appears the developer was very good at
 estimating exactly how much growth in requirements were likely to occur during the design
 phase and taking it into account when developing their project plan.

52

Software EVM Toolkit

 What would have happened if some of these changes were caused by changes to the
 Government’s system requirements, resulting in a change in the software requirements to be
 designed? In that case, an ECP would have been required. Also, the later a requirements
 change is made, the higher the cost of that change. When a requirement is deleted late in the
 development, the design, coding and some of the testing may have been completed. Once it is
 deleted the design and code must be revised to remove the requirements functionality, retested
 and any defects resulting from the deletion corrected. In fact, deletion of requirements late in
 the development may actually be more costly in some cases than completing them.

Refer to the following for additional information:
1. Executive Summary
3.1.3.2 Software Design (Requirements Metric)
3.3 Modules (EVM & Modules Metric)

3.2.3.3.3 Code & Unit Test Phase
The differences between using function points as the basis for earned value during the code and
unit test phase and during the design phase are slight. Earned value should be allocated based on
the percentage of the most recent function point count for the software requirements to be
implemented as part of the code and unit test phase. Again, changes in the number of function
points can occur during the phase as the software requirements are further refined or if the
customer changes their requirements for the system. THE LOGICAL POINT TO DETERMINE WHEN
A UNIT OF CODE HAS BEEN COMPLETED, AND EARNED VALUE CAN BE TAKEN FOR THE NUMBER
OF FUNCTION POINTS IT IMPLEMENTS IS WHEN IT HAS SUCCESSFULLY COMPLETED A PEER
REVIEW AND UNIT TEST WITH ALL DEFECTS CORRECTED.

 EXAMPLE:

 C&UT Schedule: 9 months, 111 FPs planned for completion each month.
 Assumptions: 1) C&UT must be performed for 1000 FPs 2) BCWS = $600K per month or
 $5.4M for the entire effort.
 Status: At the end of 4 months, C&UT for 450 FPs has been completed along with Peer
 Review and all noted defects corrected at accost of $2.55M.. What is the earned value at
this point?
 $2.646M 1000

490($5.4M) =×=BCWP

BCWS = $2.4M
ACWP = $2.55M

038.1 $2.55M
$2.646M ACWP

BCWP CPI ===

103.1 $2.4M
$2.646M BCWS

BCWP SPI ===

 Status: At the end of 7 months, C&UT for 850 FPs has been completed along with Peer
 Review and all noted defects corrected. However, a series of changes to software
 and systems requirements have resulted in an increase in the number of software
 requirements to 1090 and made changes and deletions which reduced the number of FPs

53

Software EVM Toolkit

 for which C&UT was complete to 750. 110 FPs are changes due to Government changes.
 Schedule has been increased to 10 months and total BCWS for the effort to $6M. BCWS
 per month remains $600K. This schedule and funding increase is only for C&UT, not other
 development phases. What is the earned value at this point?

$4.128M 1090
750($6M) BCWP =×=

BCWS = $4.2M
ACWP = $4.67M

884. $4.67M
$4.128M ACWP

BCWP CPI ===

983. $4.2M
$4.128M BCWS

BCWP SPI ===

 Status: At the end of 10 months, C&UT for the total 1090 FPs has been completed along with
 Peer Review and all noted defects corrected. What is the earned value at this point?

BCWP = $6M
BCWS = $6M
ACWP = $6.538M

918. $6.538M
$6M ACWP

BCWP CPI ===

.01 $6M
$6M BCWS

BCWP SPI ===

Refer to the following for additional information:
1. Executive Summary
2.7 Software Code Issues
3.1.3.3 Code & Unit Test (C&UT) Phase (Requirements Metric)
3.2.1 Code & Unit Test Phase (SLOC Metric)

3.2.3.3.4 Test Phases
Earned value should be allocated during testing phases when the software requirements have
been successfully tested. Once the SUCCESSFUL test has occurred, the earned value for the
number of FPs for the requirements tested can be taken. Remember, running a test is not the
same as successfully completing the test. Earned value can’t be taken until the requirements
have been successfully tested.

 EXAMPLE: Determining Progress In Test Plan and Test Procedure Development

 Schedule: 21 months, 1000 FPs need test procedures developed.
 Assumptions: BCWS = $.152M per month and $3.192M for entire effort.
 Status: At the end of 10 months, test procedures and peer review for 475 FPs are completed at
a cost of $1.5M.
 What is the earned value at this point?

54

Software EVM Toolkit

$1.516M 1000
475($3.192M) BCWP =×=

BCWS = $1.52M
ACWP = $1.5M

011.1 $1.5M
$1.516M ACWP

BCWP CPI ===

997. $1.52M
$1.516M BCWS

BCWP SPI ===

 Status: At the end of 20 months, test procedures and peer review for 950 FPs have been
 completed, however the total number of FPs has increased to 1400. What is the earned
 value at this point?

$2.166M 1400
950($3.192M) BCWP =×=

BCWS = $3.04M
ACWP = $3M

722. $3M
$2.166M ACWP

BCWP CPI ===

7125. $3.04M
$2.166M BCWS

BCWP SPI ===

 Status: At the end of 29 months, test procedures and peer review for all 1400 have been
 Completed. What is the earned value at this point?

BCWP = $3.192M
BCWS = $3.192M
ACWP = $4.421M

722. $4.421M
$3.192M ACWP

BCWP CPI ===

0.1 $3.192M
$3.192M BCWS

BCWP SPI ===

 Obviously this task experienced a large overrun on schedule and cost. It may further have
 delayed the start and/or completion of testing due to the procedures not being ready. Delay
 in testing would depend on how much overlap there was in the test procedure development
 and test schedules. The more overlap, the more likely that there would be a delay in testing.

 EXAMPLE: Determining Progress In Test Completion

 Scenario: Software integration testing conducted on 1000 FPs, 6-month schedule, BCWS =
 $1.52M per month or $9.12M for the total task. Test phase includes not only personnel and
 resources for conducting the test, but also personnel and resources for correcting defects
 found during testing and the reexecution of appropriate test procedures. The project plan
 calls for 95% of the 1000 FPs to be successfully tested; the remainder will be deferred for
 correction to a later build. Some of the code must pass testing in order to avoid critical path

55

Software EVM Toolkit

 impacts on later builds.
 Assumptions: Only non-critical path code is deferred. Quality requirements for software –
No
 more than 10 priority 3 defects when code delivered or one priority 3 defects per 100 FPs.
 This means that there can be no more than 9 uncorrected priority 3 defects in 950 FPs which
 pass testing. All priority 1 and 2 defects must be corrected.
 Status: At the end of 3 months of testing, test procedures have been performed for 610 FPs.
 There are two priority 2 defects and 10 priority 3 defects currently open. The two priority 2
 defects must be corrected along with at least 4 of the priority 3 defects. 485 of the tested
 FPs are considered to have been successfully tested since they are not affected by the
 priority 2 defects and have less than 1 priority 3 defects per 100 FPs. What is the earned
 value at this point?

$4.656M 950
485($9.12M) BCWP =×=

BCWS = $4.56M
ACWP = $4.51M

032.1 $4.51M
$4.656M ACWP

BCWP CPI ===

021.1 $4.56M
$4.656M BCWS

BCWP SPI ===

Status: At the end of 6 months of testing, test procedures on all of the FPs have been completed.
 There is one priority 1 defect open and 11 priority 3 defects. 60 FPs of software containing
 the priority 1 defect and 2 of the priority 3 defects have been deferred to a later build. What
 is the earned value at this point?
 $9.024M 950

940($9.12M) BCWP =×=

BCWS = $9.12M
ACWP = $9.16M

985. $9.16M
$9.024M ACWP

BCWP CPI ===

989. $9.12M
$9.024M BCWS

BCWP SPI ===

 Since more than 5% or 50 FPs were deferred to a later build, all of the BCWS cannot be earned
 at this time. The remainder will not be earned until the extra 10 deferred FPs are successfully
 tested in a later build.

As can be seen by the previous example, quality requirements can have a significant impact on
the determination of earned value. Determining how many FPs are affected by defects increases
the level of traceability needed by the program, thus increasing costs. A defect is more naturally
and easily traced to the specific software requirements it impacts. The software requirement
must be than traced to the number of FPs of code that implements it. This step can be avoided if
software requirements are instead used as the basis for allocating earned value. Determining the
number of FPs affected by a defect can also be rather subjective with a tendency to minimize the

56

Software EVM Toolkit

number of FPs in order to improve the earned value numbers. This can result in reduced
accuracy. Do not replan if the amount of differed functionality exceeds the project plan.
Replanning will negate earned values ability to indicate cost and schedule slips caused by
excessive functionality deferral.

Refer to the following for additional information:
1. Executive Summary
3.1.3.4 Test Phases (EVM & Requirements Metric)
3.4 Test Procedures/Cases (EVM & Test procedures/Cases Metric)

3.2.3.3.5 Rework
As with requirements, while it may be possible to predict the number of function points worth of
requirements which will fail testing and require rework. It is very difficult to determine how
much time to allocate for rework based upon this prediction. Time and effort for rework is
usually based on the developers estimate of the number of defects likely to occur and the average
amount of time required to correct such defects.

Refer to the following for additional information:
1. Executive Summary
3.1.3.5 Software Rework (EVM & Requirements Metric)
3.5 Software Defects (EVM & Software Defects Metric)

3.2.3.3.6 Capacity, Performance and General Requirements Issues
The issues associated with capacity, performance and general requirements are the same as
defined in sections 3.1.5 and 3.1.6 for requirements. Function points simply provide a means of
determining the amount of effort necessary to implement different requirements.

3.2.3.4 FP EVM Issues Summary
Following are issues to consider when using a FP based EVM approach:

1. Trained personnel should perform FP counting. At least one of the team members must
be a Certified Function Point Specialist (CFPS).

2. FP counts are best performed on adequately defined software requirements.

Requirements should be specified at the level of detail found in a Software Requirements
Specification prior to attempting to perform a function point count. Other methods such
as analogy will be used prior to this point.

3. FP counts must be continually updated to reflect changes in software requirements.

Unforeseen slips in the critical path can result even though the number of completed
function points indicates that the project is ahead of schedule. Failure to update the FP
counts when requirements change negates most of the advantages of FPs as a sizing tool.

57

Software EVM Toolkit

4. Using FPs to determine EVM is applicable to all phases of software development. There
may be specific tasks in each phase, which are not well suited to measuring EVM using
FPs.

5. Unlike SLOC, FPs cannot be automatically counted (currently). Thus the only way to

know how many FPs of work have been completed in each phase is by using a trained
team of functions point counters led by a CFPS to insure that the current count reflects
any changes to the software requirements. Additionally, the number of FPs required to
implement a requirement(s) must be tracked to the requirement(s) so that it is possible to
determine how much earned value should be allocated for the completion of that
requirement(s) in each development phase. This is not any different than what should be
done with SLOC in order to maintain an accurate estimate, except when the code is
actually finished an automatic counting tool can be executed in order to get the actual
final SLOC count.

6. Keep in mind that at this time FPs are only rarely used by NAVAIR software developers,

either in industry or in house.

7. FPs are recommended with reservations for allocating BCWP.

3.3 Modules
3.3.1 Recommendation

Modules as an EVM Measure – Poor
Not recommended as a basis for allocating BCWP

Modules share many of the same disadvantages as SLOC in that they are often not directly
correlated to the implementation of software requirements. Modules are often declared finished
even though they do not implement all of the planned requirements in order to preserve the
illusion of being on schedule. If the completion of modules is used for determining BCWP in
this case, the results will be unrealistically high values for CPI and SPI. Thus if modules are
used, software requirements implementation must also be tracked in order to insure the modules
implement all of the requirements they were planned to prior to earning all of the associated
BCWP. This makes them a poor metric for allocating BCWP.

3.3.2 Overview & Description
The term modules will be used to collectively refer to Computer Software Components (CSCs),
Computer Software Units (CSUs), classes, packages or other similar units of code below the
Computer Software Configuration Item (CSCI) level. CSCIs are divided into CSCs and CSUs
that represent the lowest sub-function of the software. Refer to Figure 3-1.

58

Software EVM Toolkit

SYSTEM

SUBSYSTEM A SUBSYSTEM B SUBSYSTEM C

CSCI 1 CSCI 2

CSC 31 CSC 21 CSC 11

CSCI 3

CSU 111 CSU 311 CSU 211

Figure 3-1: System Hierarchy for Software Development

When using CSC/CSUs as the basis for allocating earned value, earned value would be earned
when a specific task in the CSC/CSUs development had been completed. Thus when the design
of the CSC/CSU was complete, earned value for the design phase would be earned, when code
and unit test for the CSC/CSU was complete, earned value for the code and unit test phase would
be earned. For the design and code and unit test phases, completion could be determined by the
successful completion of the peer reviews for each phase. During CSCI or software integration
testing, earned value would be awarded based on successful completion of the CSC/CSUs
testing.

When using SLOC for earned value purposes it is assumed that each line of SLOC requires the
same amount of effort, this assumption is not necessarily the case for CSC/CSUs. Different
modules can include varying degrees of functionality and the effort to design and code them can
vary widely. Unless the developer makes a conscious decision as part of their development
effort to make all CSC and CSUs the same size, assuming that all CSCs or CSUs will require a
similar amount of effort is a risky assumption. In the case where CSCs and CSUs vary in the
amount of functionality they implement, it will be necessary to individually estimate the amount
of effort required to implement each, based on the requirements traced to them and/or their size
estimates.

Earned value should be allocated for CSC/CSUs upon completion of each development phase
(design, code and unit test, software integration test) for the module, essentially using the
milestone method, where no earned value is earned until the milestone is achieved. The full-
earned value, or BCWS, for the phase should also only be allocated if all of the software
requirements or design planned for implementation in the CSC/CSU was actually included. If a
CSC/CSU includes only 50% of its designed functionality, only 50% of the module’s BCWS can
be allocated, even if the ACWP exceeds the BCWS. The remainder of the BCWS for the module
cannot be earned until the missing requirements or design are implemented in either the
CSC/CSU in question or some other CSC/CSU.

59

Software EVM Toolkit

Attempting to allocate earned value during software integration testing based on CSUs may also
give an inaccurate picture of progress. Many test procedures may be executed successfully, but
because they only partially exercise the functionality in several CSC/CSUs, no earned value will
be awarded based on completing testing for the CSC/CSU. Thus during initial testing, very little
earned value may be awarded, while later in the testing phase earned value is earned very
quickly as the functionality of the various CSC/CSUs finally complete testing. In this case
earned value may indicate less progress being made than is actually the case, especially if this is
not considered in laying out work packages and cost accounts for the testing phase.

As with other non-requirements methods, allocating BCWP based on completion of modules
does not provide direct insight into which or how many software requirements have been
implemented. Requirements must still be tracked in order to verify what has been implemented
in comparison to the plan and to insure modules are not allocated all the planned BCWP if they
don’t include all the planned requirements. Allocating BCWP based on Modules is thus more
complicated than basing it on requirements since it adds extra non-value added steps to the
process.

3.3.3 Modules EVM Issues Summary
1. Use of module completion alone as a basis for allocating BCWP will not guarantee all of the

requirements planned for the module are completed. Modules have often been declared as
completed even though all requirements are not implemented. Thus requirements must also
be tracked to verify their implementation.

2. Can be used as basis for allocating BCWP in design, code & unit test and software

integration testing as long as it is also verified that the planned requirements for the module
have actually been implemented in each of these phases.

3.4 Test Procedures/Cases
3.4.1 Recommendation

Test Procedures/Cases as an EVM Measure – Good
Highly recommended as a basis for allocating BCWP

If each individual test procedure/case identifies the software or systems requirements that it is
intended to verify, using the “successful” completion of a test procedure is a good method for
determining when to allocate BCWP during test phases. Successfully passing the test
procedure/case will also identify what requirements have been successfully implemented. If
more than one test procedure/case is required to verify the requirement in question, all of the test
procedures must be successfully completed. It is also important to insure that requirements are
fully verified by one or more test procedures/cases.

3.4.2 Overview & Description
Test plans and procedures are intended to verify the correct implementation of system and
software requirements. Test plans must include adequate time and resources to allow for re-

60

Software EVM Toolkit

testing of any failed test procedures. This also includes rework of requirements, design and code
to correct defects found in testing. This requires the developer to estimate the likely amount of
rework time for different builds and test phases based on historical data.

Historical data from previous development efforts can be used to estimate the average number of
test cases. Typically, unit test cases are included with coding and both are considered complete
once a peer review of the code has been completed and unit test cases have been completed.
Unit test procedures should not be used as a method allocating BCWP and are not considered as
part of this discussion.

BCWP should be allocated only for the test procedures/cases that have been successfully
completed. Including the number of failed test procedures/cases provides no useful information
and results in the earned value indicating more progress has been made than is actually the case.
Successful completion of a test procedure/case is determined by the software contractual quality
requirements. At a minimum this means that if any priority 1 or 2 defects occur during the test
procedure/case, the test has been unsuccessful9. How many priority 3, 4 and 5 defects are
permissible are determined by contractual quality requirements. As long as the number of and
priority of defects occurring in a test phase are low enough, so that when summed with the
uncorrected defects from other test phases are within program quality requirements, the test
procedures/cases may still be considered to have passed and the associated requirements to have
been adequately implemented. This requires the developer to estimate what an acceptable
number of priority 3, 4 and 5 defects are for earlier test phases that will keep the final totals of
open defects within program quality requirements. This suggests that the developer strive to
correct as many defects as possible as early as possible in order to avoid the build up of a huge
bow wave of defects that must be corrected prior to entering OPEVAL.

As part of the development of test plans and procedures, it must be verified that all of the
software requirements are tested. As with all other EVM methods the primary objective is to
determine the progress being made in implementing the Governments requirements. If test
procedures do not test all of the software requirements, EVM will provide an incomplete and
inaccurate view of test progress.

3.4.3 Test Procedures/Cases EVM Issues Summary

1. PROGRAM QUALITY REQUIREMENTS MUST BE CONTRACTUALLY SPECIFIED IN ORDER TO

MINIMIZE SUBJECTIVITY IN DETERMINING IF A PARTICULAR DEFECT HAS CAUSED THE TEST
PROCEDURE/CASE TO FAIL OR NOT. THIS IS NECESSARY NO MATTER WHAT METHOD IS USED TO
ALLOCATE EARNED VALUE.

2. Applicable only to non-code and unit test, test phases.

3. Each test procedure/case must be traced to the system/software requirement it verifies in

order to determine which requirements have been correctly implemented. This should be
done in any case by any organization which has achieved a SW-CMM® or CMMI® level 3.

Refer to the following for additional information:

61

Software EVM Toolkit

3.1.3.4 Test Phases (EVM & Requirements Metric)
3.2.3.3.4 Test Phases (EVM & Function Points Metric)

3.5 Software Defects
3.5.1 Recommendation

Software Defects as an EVM Measure – Poor
Not recommended as a basis for allocating BCWP

During the planning phase the number of defects expected to occur is probably based on the size
of the effort. Thus defect estimates are twice removed from requirements, this makes the
correlation to actual requirements implementation for earned value purposes even weaker than
that for SLOC. In some cases several defects may need to be corrected before a requirement is
considered to be correctly implemented, in other cases correcting a single defect can result in
several requirements being correctly implemented. This further complicates allocating BCWP
based on defect correction. Defect correction will occur during rework phases along with
subsequent requirements analysis, design and code & unit test phases in later builds. Using
defects to allocate BCWP in these non-rework phases is even more difficult than in using them
in pure rework phases and should be avoided. WHILE DEFECT ESTIMATES ARE USEFUL FOR
PLANNING PURPOSES IN ALLOCATING RESOURCES AND TIME TO CORRECT DEFECTS, THEY ARE
UNSUITABLE FOR USE AS THE BASIS OF ALLOCATING BCWP AND SHOULD BE AVOIDED.

3.5.2 Overview & Description
For efforts in excess of 10,000 function points, (55,000 KSLOC C++), the effort required for
defect removal/repair can easily exceed twice that for the initial coding4. Time and resources
must be allocated in the project schedule for rework of requirements, design, and coding to
correct defects. Historical data on error rates from previous software development efforts should
be used as a basis for predicting resources required for defect removal.

For the purpose of this discussion, only defects detected following the code & unit test (C&UT)
phase are considered. Defects discovered during peer reviews or via unit test are corrected as
part of the development process and should be avoided as an EVM measure.

Attempting to take earned value based on the correction of defects is difficult due to the wide
variance of time and effort required to fix different defects. Some defects can be fixed easily in a
few minutes; others will take hundreds of hours of analysis, requirements rework, design and
code corrections followed by extensive regression testing. If the program is large, with large
numbers of defects predicted, using an average amount of time and/or resources, as the basis of
estimating rework resource and schedule needs may be an adequate method. For smaller
projects, with fewer defects, this becomes increasingly inaccurate.

Programs may establish different difficulty levels for defects. The more difficult the defect the
more time and/or resources required to correct the problem. The program may then attempt to
predict the numbers of the different difficulty levels of defects that will occur and the amount of

62

Software EVM Toolkit

time and resources needed to correct them. By grouping defects by difficulty, the variance in
effort to correct them can be reduced.

 EXAMPLE:

 Effort: 100 defects are predicted to occur during software integration testing of Build 1.
 Based on historical data, it will take on average 50 staff hours to correct each defect.
 Correcting includes any rework of requirements, design, code and regression testing
 necessary to repair the defect. Assume the contractors standard labor rate is $100 per
 staff hour. Further assume that the project plan calls for correcting 20 defects per month,
 or 1000 hours of defect correction per month, or $100,000 BCWS per month. See Table
 3-1 for additional project EVM data. All defects in the example need to be corrected to
 meet program quality requirements.

 Status: At the end of month 1:
 BCWS = $100,000
 ACWP = $75,000
 BCWP = $75,000
 CPI = 1, SPI = .75

 What does this mean? It depends:

1. What if only 15 defects had been detected? Remember the 20 defects per month was
 a prediction. If it was too high, as in this case, it makes the effort look as if it is
 behind schedule, however the defect correction test has corrected all available defects.

2. The first reaction from hearing that there are fewer defects than predicted is that this
 is a good thing. Not necessarily, until we know why this is the case. What if Build 1
 software integration testing is running behind schedule? This could account for the
 low number of defects and would further justify the low SPI. If on the other
 hand software integration testing is on schedule, the SPI is falsely indicating the
 rework effort is running behind.

3. What if 30 defects were outstanding during the first month as a result of the Build 1
 software integration testing? Thus there are actually 50% more defects to correct
 than predicted. If testing is on schedule, this means that the SPI is too high in
 comparison to actual progress. On the other hand, what if testing was ahead of
 schedule? If testing was ahead of schedule by about 50%, this could account for the
 additional defects. However, even if this is the case, defect correction is still behind.
 But how far behind? Should it be considered to be behind by 25%, since only 15
 of the planned 20 defects have been corrected, or should it be considered to be
 50% behind because it isn’t keeping up with the accelerated testing?

 For the remainder of the example assume that testing is on schedule but that 30 defects
 have been discovered to date vice the predicted 20.

 Status: At the end of month 3:

63

Software EVM Toolkit

BCWSCUM = $300,000 CPICUM = .81
BCWS = $100,000 CPI = .71
BCWPCUM = $300,000 SPICUM = 1.00
BCWP = $125,000 SPI = 1.25
ACWPCUM = $370,000
ACWP = $175,000

 What does this mean?
 1. EVM indicates the project is over budget but on or ahead of schedule. The project is
 definitely spending faster than predicted; costs per defect have risen from the original
 predicted $5000 per defect to $7000. What is causing this? Is it taking more time
 than expected to fix defects? Has the cost of the staff working on defects correction
 increased? Has the experience level, and thus the cost of the staff fixing
 defects increased?
 2. By this time it was predicted that 60 defects would have been corrected. This is actually
 the case, however the total number of defects detected is 85. Thus while the correction
 level is keeping up with predictions, the number of defects that need to be corrected
 is greater than predicted. This would seem to indicate that the defect correction task
 is behind schedule.

 Status: At the end of month 6:

BCWSCUM = $500,000 CPICUM = .75
BCWS = $0 CPI = .71
BCWPCUM = $675,000 SPICUM = 1.35
BCWP = $125,000 SPI =
ACWPCUM = $895,000
ACWP = $175,000

 What does this mean?

1. Since the second month of the effort, EVM has shown the rework effort to be on or ahead
of schedule. However, since over a third more defects were discovered than were
predicted, the task ended up taking a month longer than predicted.

2. Obviously taking EVM in the method shown here does not accurately reflect the
schedule situation. What could have been done to correct this?

3. Since the second month of the effort, EVM has shown the rework effort to be on or ahead
of schedule. However, since over a third more defects were discovered than were
predicted, the task ended up taking a month longer than predicted.

4. Obviously taking EVM in the method shown here does not accurately reflect the
schedule situation. What could have been done to correct this?

64

Software EVM Toolkit

Month 1 2 3 4 5 6
Predicted # of
defects per
month 20 20 20 20 20 0
Predicted
Cumulative #
of defects 20 40 60 80 100 100
Actual # of
defects
corrected per
month 15 20 25 25 25 25
Actual
cummulative #
of corrected
defects 15 35 60 85 110 135
Actual # of
defects per
month
detected 30 30 25 25 25 0
 Actual
cumulative #
of defects
detected 30 60 85 110 135 135
Predicted $
per defect $5,000 $5,000 $5,000 $5,000 $5,000 $5,000
Actual $ per
defect $5,000 $6,000 $7,000 $7,000 $7,000 $7,000
BCWS $100,000 $100,000 $100,000 $100,000 $100,000 $0
BCWP $75,000 $100,000 $125,000 $125,000 $125,000 $125,000
ACWP $75,000 $120,000 $175,000 $175,000 $175,000 $175,000
BCWSCUM $100,000 $200,000 $300,000 $400,000 $500,000 $500,000
BCWPCUM $75,000 $175,000 $300,000 $425,000 $550,000 $675,000
ACWPCUM $75,000 $195,000 $370,000 $545,000 $720,000 $895,000
CPI 1 0.83 0.71 0.71 0.71 0.71
SPI 0.75 1.00 1.25 1.25 1.25
CPICUM 1 0.90 0.81 0.78 0.76 0.75
SPICUM 0.75 0.88 1.00 1.06 1.10 1.35

Table 3-1: Defect Earned Value Example

As noted in the previous example, taking earned value based on defects is likely to cause
problems if the number of defects predicted is different from what actually occurs. Similar
problems were also noted as being a possibility for SLOC and FPs. As with SLOC and FPs, the
problem can be at LEAST PARTIALLY CORRECTED BY USING THE PERCENTAGE OF DEFECTS
CORRECTED RATHER THAN A FIXED ESTIMATED VALUE. Like with SLOC, using percentages of
defects corrected can cause unusual side affects as the defect estimate changes such as BCWP
reducing in subsequent months after a reestimation of defects.

65

Software EVM Toolkit

Defects are assigned priorities depending on their impact on meeting systems requirements. The
five different priorities are defined in IEEE/EIA 12207.25 and Table 3-3 below. Priority 1 and 2
defects must be corrected in order to commence OPEVAL9. In addition, all priority 3 defects
must be documented with an impact analysis. Thus clearly, all priority 1 and 2 defects must be
corrected as part of the development process. Priority 3 defects are more flexible. The program
should have established some contractual quality criteria in which the maximum number of
priority 3, 4 and 5 defects that could be open prior to acceptance and commencement of
OPEVAL would be identified. While priority 3 defects don’t necessarily have to be corrected
prior to entering OPEVAL, if there are large numbers of them, the system is unlikely to pass
OPEVAL. Priority 4 and 5 defects are not required to be corrected prior to OPEVAL. Thus
which defects are required to be corrected are dependent on their priority.

Priority Applies if a problem could

1 a) Prevent the accomplishment of an essential capability
b) Jeopardize safety, security, or other requirement designated “critical”

2 a) Adversely affect the accomplishment of an essential capability and no work-around
solution is known

b) Adversely affect technical, cost, or schedule risks to the project or to life cycle
support of the system, and no work-around solution is known

3 a) Adversely affect the accomplishment of an essential capability but a work-around
solution is known

b) Adversely affect technical, cost, or schedule risks to the project or to life cycle
support of the system, but a work-around solution is known

4 a) Result in user/operator inconvenience or annoyance but does not affect a required
operational or mission-essential capability

b) Result in inconvenience or annoyance for development or maintenance personnel
but does not prevent the accomplishment of the responsibilities of those personnel

5 Any other effect

Table 3-2: IEEE/EIA 12207.2 Defect Priorities

The predicted number of defects, and subsequently any BCWS for defect correction is generally
based upon historical data and the number of defects generated per unit of size. If the size
estimate for the effort is low, then the number of defects will also probably be low. THUS ANY
RE-ESTIMATION OF SOFTWARE SIZE SHOULD BE ACCOMPANIED BY A RE-ESTIMATION OF THE
REWORK EFFORT REQUIRED TO CORRECT DEFECTS.

In the discussion of the use of SLOC as a method of determining earned value, it was pointed out
that the primary problem with using SLOC is that it is often underestimated and is not directly
related to insuring that requirements are implemented. Defect estimates are often based on a
SLOC, or some other size estimate, even further removing them from a direct correlation with
requirements implementation. While metrics and measurements for tracking software defects are
an essential part of tracking the status of and managing the software development, they are
difficult to use in the determination of earned value.

66

Software EVM Toolkit

3.5.3 Software Defects EVM Issues Summary
Software defects as a measure are only applicable to rework phases.

3.6 Schedule Milestones
3.6.1 Recommendation

Schedule Milestones as an EVM Measure – Poor
Not recommended as the basis for allocating BCWP

Using Schedule Milestones is an extensively abused methodology where BCWP is allocated
based on reaching some project milestone. Unfortunately the milestone is often declared to have
been met even though all of the requirements of the milestone have not been achieved. This
results in earned value giving an unrealistically positive view of the project status. Schedule
Milestones are not recommended as a method for allocating BCWP.

3.6.2 Overview & Description
Builds, releases and other software schedule milestones are often considered completed without
all of the planned requirements being accomplished. All of the earned value credit should not be
taken at a milestone unless all of the requirements planned for that milestone have in fact been
completed. If only a subset of the work is completed, only a subset of the earned value should be
allocated. Requirements that have not been completed must then be implemented in a
subsequent milestone.

 EXAMPLE:

 Estimated Effort: 1K requirements for the first build or release of a development
 Status: Release or build delivered on time by the scheduled milestone date within budget
 But contains only 750 requirements.

 If schedule milestones is the basis of earned value, how much can be allocated to this effort?

 Earned value would indicate that the milestone was met and 100% earned value would be
 allocated although 250 requirements have not been implemented. The remaining 250
 requirements must be implemented at a later point in the development, which will contribute
 to a cost and schedule overrun of the total effort. To declare that schedule milestones have
 been met even though all requirements for the milestone have not been met reduces visibility
 into cost and schedule overruns.

3.6.3 Schedule and Milestone EVM Issues Summary
Following are issues to consider when using a milestone schedule based EVM approach:

Requirements Completion – Milestones are often declared complete even though all planned for
functionality and requirements are not implemented. EVM systems must account for these
incomplete requirements or it will indicate more progress than has actually occurred.

67

Software EVM Toolkit

3.7 Level of Effort (LOE)
3.7.1 Recommendation

Level of Effort as an EVM Measure – Poor
Not recommended as the basis for allocating BCWP

3.7.2 Overview & Description
By definition, LOE is work that does not result in a final or tangible end product. The basis of
measurement is time so the earned value automatically starts to accumulate when the effort
begins. LOE has no schedule variance so a meaningful schedule analysis cannot be performed,
BCWP = BCWS. Theoretically, since LOE can generate a cost, ACWP can still be compared to
the BCWP to get a meaningful result for variance analysis. However, because SPI will always
be 1, anything the CPI tells us is automatically suspect. If CPI is less than one, it may mean
labor rates have unexpectedly increased, or that the work is actually ahead of schedule, or it is
taking a greater amount of hours to get done what was planned to be accomplished.

Level of effort should never be used for any task in which a product or artifact is being produced
against which to measure program progress. In labor categories directly related to performing
tasks such as: requirements analysis, design, code & unit test, software integration testing,
systems testing, DT and OT, LOE should not be used. All of these areas are developing an
intermediary product, or artifact leading to the completion of the project.

Level of effort may be more appropriate as a measure in indirect support development activities
such as Management, Administrative Support, Software Configuration Management (SCM),
Software Quality Assurance (SQA), Systems and Network Administration, Software
Engineering Environment Administration and Support, Software Integration Test Environment
Administration and support, etc.. . Even in these situations using LOE should be avoided if at all
possible. It may be possible to take advantage of activity based costing systems when available
to apportion these labor categories to specific tasks. The total management, SCM, SQA and
other supporting tasks could be apportioned to tasks which directly contribute to the
development of a requirements based software development artifact, such as: software
requirements analysis, design, C&UT, test, etc..

 EXAMPLE:

 Effort: A program has identified Management, SQA, SCM and Software Engineering
 Environment Support tasks. These tasks while essential to the development do not
 directly produce any software products or deliverables; they will be referred to as support
 tasks.
 Status: During the current month, $100K of BCWS is allocated to these tasks and the
 . total BCWS for other tasks, which do produce software products and deliverables, are
 $1M, they will be referred to as direct tasks. Assume during the current month for
 software requirements analysis the BCWS is $500K or 50% of the direct task BCWS for

68

Software EVM Toolkit

 the month. This would mean that half of the BCWS for the support tasks is apportioned
 to the software requirements analysis task. Assume that at the end of the current month,
 the software requirements analysis tasks BCWP is $450K and its ACWP is $550K. For
 the other direct tasks, BCWP = $500K and ACWP = $500K. Assume for the support
 tasks the ACWP is $100K. This would result in the following:

 SW requirements Analysis task CPI = .818
 SW Requirements Analysis task SPI = .9
 Other direct tasks CPI = 1.0
 Other direct tasks SPI = 1.0

K
KKKKKKBCWP

95$
)]500$/500($%50100$[()]500$450$(%50100[$ TasksSupport

=
××+××=

Support Tasks CPI = .95
Support Tasks SPI = .95

Instead of using level of effort for the support tasks, BCWP is thus allocated based on the
progress made in tasks that directly produce software development artifacts. If level of effort
had been used, the CPI and SPI for the support tasks would have been 1.0. Since the tasks the
support tasks were supporting did not perform according to the project plan, it is unreasonable to
give the support tasks full credit for achieving the project plan.

1 http://www.ifpug.org/
2 Applied Software Measurement, Capers Jones, McGraw Hill, 1996, page 84.
3 Curing the Software Requirements and Cost Estimating Blues, Mike Nelson, James Clark, Martha Spurlock,
Program Manager Magazine, Nov/Dec 1999.
4 Jones, T. Capers, Estimating Software Costs, McGraw-Hill, 1998
5 IEEE/EIA 12207 The Software Life Cycle Process, page 94 – 96.

69

Software EVM Toolkit

Intentionally left blank

70

Software EVM Toolkit

APPENDIX A. ACRONYMS AND DEFINITIONS

ACAT Acquisition Category

ACWP Actual Cost of Work Performed (Actual Cost)

Costs actually incurred and recorded in accomplishing the work performed within a given
time period. (Cost of work accomplished)

AE Apportioned Effort
Effort that by itself is not readily divisible into short-span work packages but which is
related in direct proportion to measured effort.

BAC Budget at Completion
 Sum of all budgets established for the contract.

BCWP Budgeted Cost for Work Performed (Earned Value)

Sum of the budgets for completed work packages and completed portions of open work
packages, plus the applicable portion of the budgets for level of effort and apportioned
effort. (Value of work accomplished)

BCWS Budgeted Cost for Work Scheduled
Sum of the budgets for all work packages, planning packages, etc., scheduled to be
accomplished (including in-process work packages), plus the amount of level of effort
and apportioned effort scheduled to be accomplished within a given time period.

C&UT Code & Unit Test

CFPS Certified Function Point Specialist
CMM® Capability Maturity Model®
 A measure of software process maturity developed by the Software Engineering

Institute (SEI) at Carnegie Mellon University.

CMMI® Capability Maturity Model Integration®

CMU Carnegie Melon University

COCOMO COnstructive COst MOdel

COTS Commercial Off The Shelf
 May refer to either hardware or software and is typically purchased through a

licensing agreement that may or may not include the source code, but, may
require effort to maintain the configuration.

CPI Cost Performance Index
 Performance index calculated as:
 BCWP / ACWP

71

Software EVM Toolkit

CPU Computer Processing Unit or
 Central Processing Unit

CSC/ Computer Software Component/
CSCI/ Computer Software Configuration Item/
CSU Computer Software Unit
 A system is partitioned into various subsystems, which are further partitioned into
 CSCIs. A CSCI is a program, or group of programs, which satisfies a common end-use

function and is managed separately. Since CSCIs may contain over 10,000 lines of code,
they are further partitioned into CSCs and CSUs. CSUs are the lowest level software
entities and usually contain between 100 and 200 lines of code.

DoD Department of Defense

DT Developmental Test

EAC Estimate at Completion

Actual direct costs, plus indirect costs allocable tot he contract, plus the estimate of costs
(direct and indirect) for authorized work remaining.

ECP Engineering Change Proposal

EV Earned Value

EVM Earned Value Management

EVMS Earned Value Management System

FP Function Points

IBR Integrated Baseline Review

IFPUG International Function Point Users Group

IPT Integrated Process Team

KPP Key Performance Parameter
KSLOC One Thousand Source Lines of Code

LOE Level of Effort

MNS Mission Needs Statement

A formatted non-system specific statement containing operational capability needs and
written in broad operational terms. It describes required operational capabilities and
constraints to be studied during the Concept and Technology Development Phase.

MR Management Reserve

72

Software EVM Toolkit

An amount of the total allocated budget withheld for management control purposes rather
than designated for the accomplishment of a specific task or set of tasks. It is not part of
the performance measurement baseline.

OPEVAL Operational Evaluation

ORD Operations Requirements Document

A formatted statement containing performance and related operational performance
parameters for the proposed concept or system. Prepared by the user or user's
representative at Milestone B and Milestone C.

OT Operational Test

PMB Performance Measurement Baseline

The time-phased budget plan against which contract performance is measured. It is
formed by the budgets assigned to schedule cost accounts and the applicable indirect
budgets. For future effort, not planned to the cost account level, the performance
measurement baseline also includes budgets assigned to higher level CWBS elements,
and undistributed budgets. It equals the total allocated budget less management reserve.

PSM Practical Software Measurement/
 Practical Software and Systems Measurement

RAM Random Access Memory

SEI Software Engineering Institute

SLOC Source Lines of Code

SPI Schedule Performance Index
 Performance index calculated as:
 BCWP / BCWS

SRD Software Requirements Description
 Per IEEE/EIA 12207

SRS Systems Requirements Specification
 Per IEEE/EIA 12207

SW Software

SW-CMM® Capability Maturity Model for Software

TPM Technical Performance Measure

TRL Technical Readiness Level
WBS Work Breakdown Structure

73

Software EVM Toolkit

A product-oriented family tree division of hardware, software, services, and other work
tasks which organizes, defines, and graphically displays the product to be produced as
well as the work to be accomplished to achieve the specified product.

WP Work Package
Detailed jobs, or material items, identified by the contractor in order to complete
contractually required tasks. A work package has the following characteristics:
• It represents units of work at levels where work is performed.
• It is clearly distinguished from all other work packages
• It is assigned to a single organizational element.
• It has scheduled start and completion dates and, as applicable, interim milestones, all

of which are representative of physical accomplishment.
• It has a budget or assigned value expressed in terms of dollars, man-hours, or other

measurable units.
• Its duration is limited to a relatively short span of time or is subdivided by discrete

value milestones to facilitate the objective measurement of work performed.

74

Software EVM Toolkit

APPENDIX B. SEI CAPABILITY MATURITY MODELS

The Software Capability Maturity Model (SW-CMM®)1 and the Capability Maturity Model
Integrated (CMMI®)2 were developed under the auspices of the Software Engineering Institute
(SEI) of Carnegie Melon University.

The SW-CMM is a model for judging the maturity of the software processes of an organization
and for identifying the key practices that are required to increase the maturity of these processes.
This model is one of the three that provide the basis for the initial CMMI® product suite.

The SW-CMM® has become a de facto standard for assessing and improving software processes.
Through the SW-CMM®, the SEI and community have put in place an effective means for
modeling, defining, and measuring the maturity of the processes used by software professionals.

The Capability Maturity Model® Integration (CMMI®) project is a collaborative effort to provide
models for achieving product and process improvement. The primary focus of the project is to
build tools to support improvement of processes used to develop and sustain systems and
products. The output of the CMMI project is a suite of products, which provides an integrated
approach across the enterprise for improving processes, while reducing the redundancy,
complexity and cost resulting from the use of separate and multiple capability maturity models
(CMM®s).

Under both SW-CMM® and the CMMI® organizations are ranked at maturity levels 1 – 5
depending on the maturity of the organization. The higher the level, the more mature the
organization. Maturity is determined by evaluating the organization to determine what proven
best practices have been adopted by the organization in order to acquisition, development,
upgrade and maintenance of systems and software by the organization. The CMMs do not tell an
organization how to implement these practices; they simply specify what practices must be in
place in order to reach a specific maturity level.

Determination of an organizations maturity level is done by an independent organization
licensed by the SEI to conduct maturity level assessments by the SEI. Assessments done
internally to the organization are considered to be informal and do not justify the claiming or a
maturity level by the assessed organization.

1. A listing of all SEI certified lead assessors for CMMI can be found at
http://www.sei.cmu.edu/managing/scampi.html.

2. A listing of all SEI certified lead assessors for SW-CMM can be found at
http://www.sei.cmu.edu/managing/assessors.html.

3. Information on the most recent results of SW-CMM and CMMI assessments are
available at http://www.sei.cmu.edu/sema/profile.html.

75

http://www.sei.cmu.edu/managing/scampi.html
http://www.sei.cmu.edu/managing/scampi.html
http://www.sei.cmu.edu/managing/scampi.html
http://www.sei.cmu.edu/sema/profile.html

Software EVM Toolkit

CMM LEVELS

MATURITY
LEVEL

CHARACTERISTICS RESULT

5

OPTIMIZING

• Improvement fed back into the process
• Automated tools used to identify weakest process elements
• Numerical evidence used to apply technology to critical

tasks
• Rigorous defect-casual analysis and defect prevention

P Q
R U
O A

4

MANAGED

(Quantitative)
• Measured process
• Minimum set of quality and productivity measurements
• Process data stored, analyzed, and maintained

D L
U I
C T

3

Defined

(Qualitative)
• Process defined and institutionalized
• Software Engineering Process Group leads process

improvement

T Y
 I
V
 I

2
REPEATABLE

(Intuitive)
• Process dependent on individuals
• Basic project controls established
• Strength in doing similar work, but new challenges present

major risk
• Orderly framework for improvement lacking

T
Y R
Y
 I

1

INITIAL

(Ad hoc/chaotic process)
• No formal procedures, cost estimates, project plans
• No management mechanism to ensure procedures are

followed
• Tools not well integrated; change control is lax
• Senior management does not understand key issues

 S

 K

Figure B-1: SEI CMM Levels

1 Capability Maturity Model® for Software (SW-CMM®)
2 Welcome to the CMMI® Web Site

76

http://www.sei.cmu.edu/cmm/
http://www.sei.cmu.edu/cmmi/

Software EVM Toolkit

APPENDIX C. MIL-HDBK-881 SECTION 2.2.5 AVOIDING PITFALLS IN
CONSTRUCTING A WORK BREAKDOWN STRUCTURE

2.2.5 Avoiding Pitfalls in Constructing a Work Breakdown Structure

A sound work breakdown structure clearly describes what the program manager wants to
acquire. It has a logical structure and is tailored to a particular defense materiel item. It can tie
statement of work, CLIN structure, and the system description documents together. Remember:
the work breakdown structure is product oriented. It addresses the products required, NOT the
functions or costs associated with those products.

Elements not to include

The following paragraphs expand the explanation of what elements are to be excluded from the
WBS elements:

Do not include elements, which are not products. A signal processor, for example, is clearly a
product, as are mock-ups and Computer Software Configuration Items (CSCIs). On the other
hand, things like design engineering, requirements analysis, test engineering, aluminum stock,
and direct costs, are not products. Design engineering functional efforts; aluminum is a material
resource; and direct cost is an accounting classification. Thus none of these elements are
appropriate work breakdown structure elements.

Program phases (e.g. design, development, production, and types of funds, or research,
development, test and evaluation) are inappropriate as elements in a work breakdown
structure.

Rework, re-testing and refurbishing are not separate elements in a work breakdown
structure. They should be treated as apart of the appropriate work breakdown structure element
affected.

Non-recurring and recurring classifications are not work breakdown structure elements.
The reporting requirements of the CCDR will segregate each element into its recurring and non-
recurring parts.

Cost saving efforts such as total quality management initiatives, could cost, and warranty
are not part of the work breakdown structure. These efforts should be included in the cost of
the item they affect, not captured separately.

Do not use the structure of the program office or the contractor’s organization as the basis
of a work breakdown structure.

77

Software EVM Toolkit

Do not treat costs for meetings, travel, computer support, etc. as separate work breakdown
structure elements. They are to be included with the work breakdown structure elements with
which they are associated.

Use actual system names and nomenclature. Generic terms are inappropriate in a work
breakdown structure. The work breakdown structure elements should clearly indicate the
character of the product to avoid semantic confusion. For example, if the Level 1 system is Fire
Control, then the Level 2 item (prime mission product) is Fire Control Radar.

Treat tooling as a functional cost, not a work breakdown structure element. Tooling (e.g.,
special test equipment, and factory support equipment like assembly tools, dies, jigs, fixtures,
master forms, and handling equipment) should be included in the cost of the equipment being
produced. If the tooling cannot be assigned to an identified subsystem or component, it should
be included in the cost of integration, assembly, test, and checkout.

Include software costs in the cost of the equipment. For example, when a software
development facility is created to support the development of software, the effort associated with
this element is considered part of the CSCI it supports or, if more than one CSCI is involved, the
software effort should be included under the integration, assembly, test, and checkout. Software
developed to reside on specific equipment must be identified as a subset of that equipment.

78

Software EVM Toolkit

APPENDIX D. MIL-HDBK-881 SECTION 3.2 CONTRACTUAL ISSUES AND
SECTION 3.2.1 SOFTWARE AND SOFTWARE INTENSIVE SYSTEMS

3.2 CONTRACTUAL ISSUES

The contractor’s expanded work breakdown structure must address all Program WBS elements.
Contractors should include lower breakdown levels where they identify risks associated with
technical issues or resources, and identify control plans whether or not the items are reported
back to the government. For example, software development tends to be high technical risk and
high cost. Since all software that is an integral part of any specific equipment system and
subsystem specification or specifically designed and developed for system test and evaluation
should be identified with that system, subsystem, or effort, it may be appropriate to collect lower
level information when it exists. In such cases, the following structure and definitions could be
used:

LEVEL 4 LEVEL 5
Build 1…n (Specify names) CSCI 1…n (Specify names)
 CSCI to CSCI Integration and Checkout

Integration, Assembly, Test and Checkout

3.2.1 Software and Software Intensive Systems

The importance of software in today’s government acquisition environment is growing. As a
result software is identified in two ways for development of a work breakdown structure: the
first type of software is that which operates or runs on a specific piece of equipment, and the
second type of software is that which may be contracted for separately from the operating
equipment or is a stand alone (software intensive system). Software that is being developed to
reside on specific equipment must be identified as a subset of that equipment. Multi-function
software will be identified as a subset of the equipment work breakdown structure element,
which either includes the software in the element specification or exercises the most critical
performance constraint. Refer to Figure 3-1 for an example of how software should be
addressed as part of specific equipment. In cases where the application of this rule results in a
conflict in the selection of the proper element, the specification relationship will take
precedence. For example, an aircraft’s electronic equipment typically has software included in
each of the subsystem elements. Software that resides and interfaces with more than one
equipment, i.e., applications software, and overall system software which facilitates the
operation and maintenance of the computer systems and associated programs (e.g., operating
systems, compilers, and utilities) will be called out at the appropriate work breakdown level
within the program.

It is incorrect to summarize all software on a program or contract in a work breakdown structure.
By separating these elements from the hardware they support, performance measurement and
management control over each equipment is difficult to maintain. The true cost of each

79

Software EVM Toolkit

equipment is not readily available for decision concerning that equipment. Rather than
separately summarizing software, it is important to identify software with the hardware it
supports. (When needed, a contractor’s management system can use an identifier for each
software element to produce summaries for software management purposes.)

A separately contracted or stand alone software will include the software, data, services, and
facilities required to develop and produce a software product for a command and control system,
radar system, information system, etc. Where software is considered stand-alone (i.e., does not
reside or support a specific equipment, or is considered a pure software upgrade, etc.), the
government should use the same product-oriented work breakdown structure format. Figure D-1
provides an example of a work breakdown structure for a stand alone software system.

 SOFTWARE INTENSIVE SYSTEM WBS

 1 2 3 4 5
SOFTWARE INTENSIVE SYSTEM
 PRIME MISSION PRODUCT
 APPLICATIONS SW
 BUILD 1
 CSCI 1…n
 CSCI TO CSCI INTEG. AND CHKOUT

BUILD 2…n
 CSCI 1…n
 CSCI TO CSCI INTEG. AND CHKOUT
 APPLICATIONS S/W INTEG, ASSEMBLY, TEST, & CHKOUT
 SYSTEM SW

BUILD 1
 CSCI 1…n
 CSCI TO CSCI INTEG. AND CHKOUT

BUILD 2…n
 CSCI 1…n
 CSCI TO CSCI INTEG. AND CHKOUT
 SYSTEM S/W INTEG, ASSEMBLY, TEST, & CHKOUT
 INTEG. ASSEMBLY, TEST AND CHECKOUT
 HW/SW INTEGRATION
 SYSTEMS ENGINEERING/PROGRAM MANAGEMENT
 SYSTEMS TEST AND EVALUATION
 TRAINING
 DATA
 PECULIAR SUPPORT EQUIPMENT
 COMMON SUPPORT EQUIPMENT
 INITIAL SPARES AND REPAIR PARTS

Figure D-1: Example of Software Intensive System WBS

80

Software EVM Toolkit

APPENDIX E. SOFTWARE IN THE WORK BREAKDOWN STRUCTURE

Contracts With Hardware and Software
Software that is being developed to reside on specific equipment must be defined as a subset of
that equipment. Multi-function software will be identified as a subset of the equipment work
breakdown structure element, which either includes the software in the element specification or
exercises the most critical performance constraint. In cases where the application of this rule
results in a conflict in the selection of the proper element, the specification relationship will take
precedence. For example, an aircraft’s electronic equipment typically has software included in
each of the subsystem elements. Software that resides and interfaces with more than one
equipment, i.e., applications software, and overall system software which facilitates the
operation and maintenance of the computer systems and associated programs (e.g., operating
systems, compilers, and utilities) will be called out at the appropriate work breakdown level with
the program (ref. ANSI/IEEE Std 610.12 for definitions of applications and system software).

It is incorrect to summarize all software on a program or contract in a work breakdown structure.
By separating these elements from the hardware they support, performance measurement and
management control over each equipment is difficult to maintain since the true cost of each
equipment is not readily available. Rather than a separate summarization, software should be
identified with the hardware it supports. (When needed, contractor management systems can use
an identifier for each software element to produce internal summaries for software management
purposes).

Software Only Contracts
Separately contracted or stand alone software will include the software, data, services, facilities
required to develop and produce a software product for a command and control system, radar
system, information system, etc.

81

Software EVM Toolkit

APPENDIX F. SAMPLE SOFTWARE WORK BREAKDOWN STRUCTURE

This sample WBS was taken from “A Practical Guide To Estimating Software Cost”, Version
1.2, prepared jointly by the Software Engineering Division and NAVAIR Cost Department, 25
July 2000. Only the WBS areas for software metrics, software development, and software
integration and testing are listed in their entirety. Refer to the Guide for the element breakout of
other WBS areas of interest.

The following Work Breakdown Structure (WBS) is oriented to the development of a MIL-STD-
498 or DoD-STD-2167A software product. The Work Breakdown Structure (WBS) is a slightly
modified version of the WBS presented in the Software Estimation Process Version 2.2, [Ref 1]
from the Software Engineering Process Office at the Naval Command, Control, and Ocean
Surveillance Center (NCCOSC), Research, Development, Test and Evaluation Center
(RDTEDIV) which is now part of the SPAWAR organization in San Diego. The process has
been modified to reflect the Software Size Estimation Process presented in “A Practical Guide
To Estimating Software Cost”, Version 1.2, prepared jointly by the Software Engineering
Division and NAVAIR Cost Department, 25 July 2000. It is highly detailed and based on the
waterfall model for software development. It is meant to be tailored to each project's specific
tracking needs and requirements. The WBS contains adequate detail to enable tracking tasks
with duration as small as two to three weeks. This WBS is more representative of day to day
management utilized by software developers and is not indicative of the level of detail that
would be provided in EVM reporting. This level of detail would be representative of task
management necessary to develop the Integrated Master Schedule .

PROJECT MANAGEMENT
SOFTWARE ESTIMATION
RISK MANAGEMENT
SOFTWARE METRICS
 Software Metrics plan
 Tailor basic metrics process
 Define risk metrics process
 Update/revise Metrics Plan
 Track/analyze cost/schedule variance
 Track/analyze progress
 Track/analyze code size
 Track/analyze documentation size
 Track/analyze requirements testability
 Track/analyze requirements traceability
 Track/analyze Engineering Change Proposal (ECP)/System Change Notices (ECPs)
 Track/analyze build/release content
 Track/analyze staffing
 Track/analyze computer resource utilities
 Track/analyze defects
 Formal reports

82

Software EVM Toolkit

 Report final project analysis
SYSTEM ENGINEERING
CONFIGURATION MANAGEMENT
SOFTWARE QUALITY ASSURANCE
SOFTWARE DEVELOPMENT PLAN (SDP)
INTERFACE REQUIREMENTS
DATABASE REQUIREMENTS
DEVELOPMENTAL SOFTWARE
 Analyze system requirements
 Identify software requirements
 Determine derived software requirements
 Identify candidate COTS software
 Identify candidate reusable software
 Perform feasibility studies * 1 days
 Select computer language(s)
 Allocate functions/identify CSCIs
 Determine software requirement testability
 CSCI 1 - N
 FUNCTIONAL REQUIREMENTS
 Analyze CSCI requirements
 Preliminary Software Requirements Specification(SRS)
 Identify internal interfaces
 Identify functional/derived requirements
 engineering
 data elements
 safety
 security
 human engineering
 Identify software quality factors
 Identify design constraints
 Identify qualification methods
 Trace requirements to SSS
 SRS inspection(s)/review(s)
 Software Specification Review
 Update SRS
 Baseline SRS
 PRELIMINARY DESIGN
 Preliminary Design analysis
 Identify Software Units (SU)
 Identify internal interfaces
 Identify external interfaces
 Preliminary System Design Document (SDD)
 Overview
 Architecture
 Memory/processing time allocation
 CSCI design description

83

Software EVM Toolkit

 SU 1 - N
 Identify allocated requirements
 Identify SUs
 Identify relationships between SUs
 Data flow and execution control
 Identify derived requirements
 Trace requirements to SRS
 SU inspection(s)/walkthrough(s)
 SU design rework
 Preliminary SDD inspection(s)/review(s)
 Preliminary Design Review
 Update Preliminary SDD
 DETAILED DESIGN
 Detailed SDD
 SU 1 - N
 Describe constraints
 Describe input/output data elements
 Describe local data elements
 Describe interrupts and signals
 Describe algorithms
 Describe data structures
 Describe local datafiles/database
 Describe limitations
 Trace requirements to Preliminary SDD
 SU inspection(s)/walkthrough(s)
 SU design rework
 SDD inspection(s)/review(s)
 SDD rework
 Critical Design Review
 Update SDD
 Baseline SDD
 CODE and UNIT TEST
 SU 1 - N
 Design/document unit test
 Code and compile
 Write comments/header
 Code inspection(s)/walkthrough(s)
 Rework
 Testing and analysis
 Rework
 Maintain SDF
 Turn over accepted SU to CM
 TEST READINESS REVIEW
 SU INTEGRATION and TESTING
 Analyze Software Test Report
 Perform necessary rework

84

Software EVM Toolkit

 Perform SU regression testing
 Update SDFs
 TEST READINESS REVIEW
 CSCI INTEGRATION and TESTING
 Analyze Software Test Report
 Perform necessary rework
 Perform SU regression testing
 Update SDFs
SOFTWARE INTEGRATION & TESTING
 Software Test Plan
 Determine general test requirements
 Determine test classes
 stress
 timing
 erroneous input
 maximum capacity
 Determine test levels
 CSCI
 CSCI to CSCI integration
 CSCI to Hardware CI (HWCI) integration
 system
 Determine test definitions
 determine objective
 determine special requirements
 identify test type/class
 determine qualification method
 cross reference to SRS requirements
 determine type of data to record
 identify assumptions/constraints
 determine test schedule
 identify data analysis techniques
 Perform Integration & Testing
 System
 Integrate CSCIs
 Write System Test Description
 Conduct Test Readiness Review
 Perform testing and analysis
 Write System Test Report
 Rework
 Regression testing
 CSCI
 Integrate SUs
 Write Software Test Description
 Conduct Test Readiness Review
 Perform testing and analysis
 Write Software Test Report

85

Software EVM Toolkit

 Rework
 Regression testing
 SU
 Integrate SUs
 Write Software Test Description
 Conduct Test Readiness Review
 Perform testing and analysis
 Write Software Test Report
 Testing and analysis
 Rework
 Regression testing

86

Software EVM Toolkit

APPENDIX G. COCOMO II ESLOC
As an example of a formula for calculating ESLOC, we will discuss the COCOMO II ESLOC
formula, which is provided in the public domain1,2. As stated previously, there are many
different versions and types of ESLOC formula; the COCOMO II formula provides a good
example of the various considerations for such a formula.

AAM××=)100

AT-(1 KSLOC Adapted KSLOC Equivalent

)3.0()3.0()4.0(IMCMDMAAF ×+×+×=

50,
100

))02.0(1(
≤

 ××+×+ AAFforUNFMSUAAFAA

AAM =
50,

100
)(

>

 ×++ AAFforUNFMSUAAFAA

Percentage values when entered in the formula should be as a percentage not as fractional
or decimal value. If AT is 23% use 23 not .23 in the formula.

Definitions for terms in the previous formulas follow below.

Adapted KSLOC – Number of KSLOC of code to be modified, reused or automatically
generated.

AAM – Adaptation Adjustment Modifier.

AAF – The amount of modification. If DM, CM and IM are 100% (new code) then AAF
will be 100%.

AT – Automatically Translated, the percentage of modified software, which will be
automatically translated or converted for use in the system. The COCOMO II formula
does not attempt to include automatically translated code as part of its ESLOC. It is used
only to subtract the automatic translation effort from the remainder of the development.
It must be estimated separately.

DM – Is the percentage of the adapted software’s design that is modified in order to adapt
it to the new requirements of the environment.

CM – Is the percentage of the adapted software’s code that is modified in order to adapt
it to the new requirements of the environment. DM will probably be greater than or
equal to CM. If it’s not, it raises questions into the quality of the modification effort. If
adequate upfront redesign is not performed, than the code modification becomes little
more than a hacking effort with subsequent low quality and much more extensive testing
requirements.

87

Software EVM Toolkit

IM – Is the percentage of effort required to integrate the adapted software into an overall
product and to test the resulting product as compared to the normal amount of integration
and test effort for software of comparable size. Expect IM to be greater than DM and
CM. Not only must the modified design and code be tested, but in addition the
integration of that modified code to the unmodified code must also be verified. For
complex applications that have been extensively modified, IM can be in access of 100%.
Even if CM and DM are 0 (completely unmodified code), IM will still be in excess of 0
since the integration of the unmodified reused code with the remainder of the system
must still be verified. In this case IM should be relatively low.

SU – Software Understanding Increment. Expressed as a percentage obtained from Table
G-1 below. If the software is rated very high on structure, applications clarity and self-
descriptiveness, SU is 10%. If the software is rated very low on these factors SU is 50%.
SU is determined by taking the subjective average of the three categories. The SU
identifies how hard it will be for the developers attempting to modify the code to
understand the code. The harder it is to understand the higher the SU, which means the
harder it will be to modify which will in turn increase the ESLOC. If the code is being
reused with no modification (DM = 0, CM = 0), SU is set to 0.

 Very Low Low Nominal High Very High

Structure Very low
cohesion, high
coupling,
spaghetti code

Moderately low
cohesion, high
coupling

Reasonably
well-
structured;
some week
areas

High cohesion,
low coupling

Strong
modularity,
information
hiding in
data/control
structures

Application
Clarity

No match
between
program and
application
world-views

Some
correlation
between
program and
application

Moderate
correlation
between
program and
application

Good
correlation
between
program and
application

Clear match
between
program and
application

Self

Descriptivenes
s

Obscure cold;
documentation
missing, obscure
or obsolete

Some code
commentary and
headers; some
useful
documentation

Moderate
level of code
commentary

Good code
commentary and
headers; useful
documentation;
some week
areas

Self-descriptive
code;
documentation
up-to-date, well
organized, with
design rational

SU Increment
to ESLOC

50 40 30 20 10

Table G-1: Rating Scale for Software Understanding Increment (SU)

AA – Assessment and Assimilation, determines whether a reused software module is appropriate
to the application, and to integrate its description into the overall product description. Table G-
2.

88

Software EVM Toolkit

AA Increment Level of AA Effort

0 None

2 Basic Module Search and documentation

4 Some module Test and Evaluation (T&E) documentation

6 Considerable module T&E, documentation

8 Extensive module T&E documentation

Table G-2: Rating Scale for Assessment and Assimilation Increment (AA)

UNFM – Programmers relative unfamiliarity with the software. See Table G-3 for guidance on
determination of UNFM. If the programmer works with the software every day, the 0.0
multiplier for UNFM will add no software understanding increment. If the programmer has
never seen the software before, the 1.0 multiplier will add the full software understanding effort
increment. If the software is being used unmodified (DM = 0, CM = 0) then UNFM = 0.

UNFM Increment Level of Unfamiliarity

0.0 Completely familiar

0.2 Mostly familiar

0.4 Somewhat familiar

0.6 Considerably familiar

0.8 Mostly unfamiliar

1.0 Completely unfamiliar

Table G-3: Rating Scale for Programmer Unfamiliarity (UNFM)

Figure G-1 shows how the AAM, (Adaptation Adjustment Modifier) changes with respect to
AAF, the percentage of modification. The figure reflects how changes in: the quality of the
code, documentation quality, developer understanding, and similarity of the domain of the code
to be modified to the new system requirements impact the ESLOC. Since AAM is multiplied by
the amount of adapted code, it shows how these factors affect the equivalent size of the code. In
the figure a best case and a worse case scenario are plotted. Notice the equivalent SLOC for the worse
case, where developer understanding is low, code quality is low, documentation is poor and the
domain similarity low is much higher than it is for the best case scenario. The worse case
scenario shows a break-even point of about 46%, above which the amount of ESLOC will

89

Software EVM Toolkit

actually be greater than the amount of adapted code. This is the break-even point at which it
becomes easier to develop the code from scratch rather than perform modification.

One flaw in the COCOMO II ESLOC equations is, if the developer is very familiar with the
code, UNFM is zero. Then it doesn’t make any difference how poorly written and documented
the code is. In this case the COCOMO II ESLOC formula will arrive at the same ESLOC for
both poorly written and documented code as it would for well-written and documented code.
This is false. No matter how familiar the developer is with the code, low quality code is
inherently more difficult to modify and test than high quality code. In this regard, the COCOMO
II ESLOC formula underestimates the difficulty of modifying such low quality code.

0

ESLOC Reuse Effects

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Relative Modification Size (AAF)

R
el

at
iv

e
Si

ze
 (A

A
M

)

Best Case Worse Case

Worse Case
AA = 8
SU = 50
UNFM = 1

Best Case
AA = 0
SU = 10
UNFM = 0

Figure G-1: ESLOC Reuse Effects

1 Software Estimation With COCOMO II, Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani,
Bradford K. Clark, Ellis Horowitz, Ray Madachy, Donald Reifer, Bert Steece, Prentice Hall PTR, 2000, ISBN 0-13-
026692, page 19 - 27
2 COCOMO II Model Definition Manual, page 21 - 26, http://sunset.usc.edu/research/COCOMOII/index.html

90

Software EVM Toolkit

APPENDIX H. Technical Performance Measurements (TPM)
TPMs are used to measure progress in achieving the technical objectives of the system. TPMs
are phased over time in order to judge the progress in meeting Key Performance Parameters
(KPP), which are usually associated with measurable performance or capacity requirements.

As applied to software, a TPM could estimate what amount of capacity or performance will be
achieved in early releases if the specified capacity or performance requirement is to be met in the
final release. For these earlier builds or releases, the estimated capacity or performance will be
lower than the final requirement, since these early releases include only a subset of the total final
functionality. In later releases, the TPM increases permissible capacity or performance allowed
until in the final release it reaches the level of the KPP identified in the appropriate requirements
document. If at some point a software release is unable to meet its TPM requirement, the TPM
provides an early warning that the system has a problem that may prevent it from reaching the
KPP. If a TPM is not used, these potential capacity and performance requirements problems
might not be detected until late in the development cycle when it would be extremely difficult to
correct them in time to meet the project schedule and correcting them would be very costly.

The system or software requirements may identify a desired performance level in addition to a
minimally acceptable performance level. In this case a TPM may also include upper and lower
acceptable bounds for the requirement in question. For earned value purposes the lower bound
or minimally acceptable performance should be used as the basis for allocating BCWP. If a
higher performance level than the minimum acceptable is used, the project’s CPI and SPI will
show unsatisfactory progress even if the minimum acceptable performance is being achieved.
Desired performance in excess of the minimum acceptable should be rewarded via performance
awards rather than used in earned value calculations.

Figure H-1 is an example of a software TPM. In this case there is a capacity requirement for the
software to use no more than 50% of the total processing capacity of CPU “A” once the software
is completed. Further assume that there are four software releases or builds planned for the
development of the software. Each consecutive build adds more of the systems requirements and
utilizes a higher percentage of the CPUs processing capacity. The TPM for CPU “A’s”
processing requirement might then specify that no more than 25% of CPU “A’s” processing
capacity be used at the completion of build 1, 35% at the completion of build 2, 45% at the
completion of Build 3, and 50% at the end of build 4. Thus if the software is using 25% of CPU
“A’s” processing capacity at the completion of Build 1, it would be meeting its TPM. If over
25% of the processing capacity is being used, this would indicate that some corrective action
needs to be taken in order to ensure the final 50% CPU “A” processing requirement is to be met.
This TPM is “one sided”, if the CPU utilization is greater than specified in the TPM, this
indicates a problem which the earned value should reflect, if it’s lower than the TPM value for
the point in time, this is good, but will not cause any improvement in the earned value beyond
meeting the TPM.

91

Figure H-1: Example CPU Utilization TPM

Software EVM Toolkit
CPU Utilization TPM

25%

35%

45%
50%

32%

41%

59%

74%

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
 C

PU
 U

til
iz

at
io

n

Planned Utilization Profile Actual Utilization Max CPU Utilization

Planned Utilization Profile 25% 35% 45% 50%

Actual Utilization 32% 41% 59% 74%

Max CPU Utilization 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%

Jan-
03

(Buil

Feb-
03

Mar-
03

Apr-
03

May-
03

(Buil

Jun-
03

Jul-
03

Aug-
03

Sep-
03

(Buil

Oct-
03

Nov-
03

Dec-
03

(Buil

92

Failure to meet TPMs must be taken into account when determining earned value since they
indicate that the planned for progress in meeting the programs performance, and therefore its
cost and schedule goals are not being achieved. This being the case, an effective EVM system
must identify these problems so that corrective action can be taken.

Earned Value Determination
The software implementing a requirement cannot be considered complete and full-earned value
awarded until any capacity or performance requirements affected by the implementation of that
requirement are also met. For example: there is a requirement to allow the operator to enter a
latitude and longitude that will than be marked on the systems map display. Assume the
software correctly implements this functionality. However, the RAM utilized by the software,
which includes this requirement, is 60% utilized when according to the TPM for the RAM it
should be only 40% utilized. This latitude/longitude requirement’s implementation is not
complete. Additional effort and time must be expended to revise the system or software so that
the RAM’s TPM is met. There will also be many other requirements, which are also affected by
this TPM and cannot be considered to have been completely and correctly implemented.
Therefore all of the earned value for completing the requirements that must execute in the RAM
covered by this TPM cannot be earned until the TPM is met. Some considerations for using
TPMs as a basis for earned value are:

1. The project needs a well-defined program Work Breakdown Structure (WBS) that is directly

associated with the KPPs of the system being designed, and has clear links to the associated
EVMs control accounts1. For example: if there is a utilization requirement on how much of
the processing capacity of a CPU can be utilized, the WBS should be structured so that this
KPP can be directly associated with the software executing on that CPU.

Software EVM Toolkit

2. Time phased TPMs must be established prior to the Integrated Baseline Review (IBR)10. It
may be difficult to develop these TPMs at this phase of the development, but it is necessary
if they are to be used to determine earned value and ensure software related KPPs are being
met. As the systems and software design develops, TPMs may be adjusted and corrected
based on more complete information.

Note - While this may be a difficult task, not establishing TPMs essentially means that the
program has decided to ignore the risk of not meeting the KPP associated with the TPM and
makes no effort to track its progress. This means if the KPP is not achieved, the problem will
not be detected until late in the software integration or systems testing when it will be
extremely difficult to correct and there will be little schedule and funding with which to
correct it. Earned value cannot warn of a problem, unless a measure that calibrates earned
value to the problem is used as its basis.

3. The progress of software in meeting its TPMs is most effectively measured during systems

testing, or any test phase where the software that the TPM is associated with, is tested on its
actual target software. This means that TPMs are most likely to be useful in a software
development when an incremental, evolutionary, or spiral development lifecycle is being
implemented. These lifecycle models provide multiple test phases in which time phased
releases of the software, each implementing progressively more of the planned for
functionality can be measured. A Waterfall lifecycle model on the other hand essentially
provides only a single opportunity to evaluate the software against the associated TPM.

4. By the time it is discovered that a software release has not achieved its TPMs performance

requirement, BCWP for that release’s requirements analysis, design, and code & unit test
phases will have already been earned and allocated based on the implementation of
functional requirements. Rather than attempt to correct the BCWP for these previous phases,
instead the BCWP should be reduced for the test phase in which the problem was discovered
and in all subsequent phases until the next opportunity to evaluate the software’s progress in
meeting the TPM.

If TPMs have been established for a software development, how can they be integrated with
earned value in order to insure deviations from the TPM are reflected? Ferraro 200210, Kulick
97 and 982, and Coleman, Kulick and Pisano 19963 discuss different means of calibrating TPMs
with earned value. Each of these methods utilizes similar approaches of varying degrees of
complexity. None of these methods are specifically developed for use with software but as
generic methods of applying TPMs to earned value in systems. The following discussion and
example will utilize the method discussed by Ferraro 200210. This is the least complex
implementation. Considering the accuracy of the various assumptions and estimates likely to be
made in developing the TPM and its impact on EVM, Ferraro’s method provides a similar level
of accuracy to more complex methods. Further, the simpler method discussed by Ferraro 200210,
which does not consider Technical Readiness Levels (TRL) is used since TRLs are not
applicable to software development. The following TPM earned value discussion will only
consider its application to software performance and utilization KPPs.

93

Following are the steps to adjust earned value based on TPMs:

Software EVM Toolkit

1. Determine BCWP, ACWP, CPI and SPI for the WBS without considering TPM impact. In
other words, calculate the CPI and SPI using the same methods as would be utilized if no
TPMs existed.

2. Determine each TPM’s impact on the WBS element. TPM impact is a percentage, which
when summed with the coverage of all TPMs for the WBS element and the percentage not
covered by the TPMs comes to 100%. The percentage not covered by the TPMs will be
referred to as “Other”. The Other category can be considered to be that part of the
development directly related to developing the functional requirements rather than the
utilization and performance requirements. This value will be determined by analysis on the
part of project systems and software engineers.

3. Determine the BCWP affected by the TPM by multiplying the TPMs impact by the BCWP.
The sum of the BCWP affected for each TPM and the Other category will be the BCWP for
the WBS element.

4. Determine the TPM Technical Score. This is 100% minus the percentage of deviation from
the appropriate value on the time phased TPM. The technical score for the Other category is
always 100%. Maximum value for the technical score is 100%. So if the software’s
performance exceeds the TPM requirement, its technical score is no better than if it had met
it. Rather than rewarding the developer with more earned value for exceeding performance
requirements, which may obstruct the ability of EVM to highlight other problems, consider
using award fees to encourage the developer to exceed KPPs.

5. Multiply the TPM Technical Score by the BCWP affected to arrive at the New BCWP or
BCWP that is “TPM informed”.

6. Sum the New BCWP for each TPM and the Other category to arrive at the New BCWP for
the entire WBS.

7. Calculate New CPI and SPI for the WBS based on the New BCWP for the WBS.
8. Determine Composite Technical Score by dividing New BCWP by BCWP.

Example:
In this example we will apply two TPMs, one for CPU utilization, Figure H-1 and one for RAM
utilization, Figure H-2 to adjust the earned value for the CSCI A that utilizes these processing
resources.

94

Software EVM Toolkit

RAM Utilization TPM

0%

10%

20%

30%

40%

50%

60%

%
 R

A
M

 U
til

iz
at

io
n

Planned Utilization Profile Actual Utilization Max RAM Utilization

Planned Utilization Profile 25% 35% 45% 50%

Actual Utilization 29% 38% 44% 49%

Max RAM Utilization 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50%

Jan-03
(Build 1) Feb-03 Mar-03 Apr-03 May-03

(Build 2) Jun-03 Jul-03 Aug-03 Sep-03
(Build 3) Oct-03 Nov-03 Dec 03

(Build 4)

Figure H-2: RAM Utilization TPM

WBS TPMs TPM Impact BCWP TPM New BCWP
Contract (effect on and Affected T.S. "TPM Informed"

coverage of WBS) by TPMs
CSCI A Build 1
System Test Current New CPU Utilization 25% $25 72.00% $18

CUM ($K) ($K) RAM Utilization 25% $25 84.00% $21
BAC $100 TOTAL 50% $50 $39

BCWP $100 $89
BCWS $100 Other (Not Affected 50% $50 100.00% $50
ACWP $120 by TPMs)

CPI 83% 74% New TOTAL 100% $100 $89
SPI 100% 89% Composite Technical Score 89%

January 03

Table H-1: EVM Adjustment Following CSCI A Build 1 System Test

In the Table H-1 “Current CUM” column we have earned value unadjusted for TPM
performance. In our example the developer has achieved all of his CSCI A Build 1 System Test
objectives as far as verifying functional requirements implementation. BCWP and BCWS are
equal. However these numbers do not reflect the impact of the developer not being entirely
successful in achieving the TPM objectives for RAM and CPU utilization requirements. Even
though testing showed that the functional requirements were correctly implemented, their
implementation is using more CPU processing capacity and RAM than planned for. Thus the
BCWP must be reduced to account for these requirements not being correctly implemented and
the project not having achieved its planned objectives. This is done using the previous eight

95

Software EVM Toolkit

steps, with the adjusted BCWP appearing in the “New” column. In our example the project
systems and software engineers have determined that the CPU Utilization and RAM Utilization
TPMs each have a 25% impact on the System Test and subsequent phases. The further the
actual values of CPU and RAM utilization deflect from the planned values in their TPM’s the
lower the TPM Technical Score and the New BCWP, which results in a lower New CPI and SPI.

Notice how in Table H-1 the New BCWP, CPI and SPI are significantly lower after being
adjusted for the effect of the TPMs. What would the effect be on the technical score if the
performance was better than expected? The Technical Score would be set to 100% for the TPM,
since this is its maximum value. The adjustment in Table H-1 is occurring only for the CSCI
Build 1 System Test. In order for the actual impact on the program of not meeting the TPM
performance requirement for January 03 to be determined, the earned value must continue to be
adjusted based on these results until such time as another test can be executed to determine if the
corrective action has been effective. This is assuming that the current performance deficiency
will continue at the same level, until empirical test data showing it has been corrected, is
improving, or is worsening is available. In our example, we will assume that such a test
opportunity will not occur until Systems Testing for CSCI Build 2 in May 03.

WBS WBS WBS
Contract Contract Contract

CSCI A Build 2 CSCI A Build 2 CSCI A Build 2
Req Analysis Current New Design Current New C&UT Current New

CUM ($K) ($K) CUM ($K) ($K) CUM ($K) ($K)
BAC $25 BAC $100 BAC $150

BCWP $25 $22 BCWP $100 $89 BCWP $150 $134
BCWS $25 BCWS $100 BCWS $150
ACWP $25 ACWP $150 ACWP $200

CPI 100% 89% CPI 67% 59% CPI 75% 67%
SPI 100% 89% SPI 100% 89% SPI 100% 89%

April 03February 03 March 03

Table H-2: EVM Adjustment for CSCI A Build 2 Pre Test Phases

Since in our example, there will be no opportunity to recompute the Composite Technical Score
based on new test results until CSCI A Build 2 Systems Testing, for CSCI A Build 2
Requirements, Design and Code & Unit Test phases, we will take a shortcut and compute their
New BCWP for each phase by taking the Composite Technical Score arrived at in Table H-1 and
multiplying it by the BCWP for the phase to arrive at the New BCWP, CPI and SPI, see Table
H-2. Again this results in significant declines in the CPI and SPI in comparison with where they
would be without considering the TPM. Notice that in our example ACWP exceeds BCWP in
the design and C&UT phases. This is very likely to occur in such a situation as additional
resources are expended in trying to correct the TPM problems noted in the previous Build 1
System Test.

96

Software EVM Toolkit

WBS TPMs TPM Impact BCWP TPM New BCWP
Contract (effect on and Affected T.S. "TPM Informed"

coverage of WBS) by TPMs
CSCI A Build 2
System Test Current New CPU Utilization 25% $25 82.86% $21

CUM ($K) ($K) RAM Utilization 25% $25 91.43% $23
BAC $100 TOTAL 50% $50 $44

BCWP $100 $94
BCWS $100 Other (Not Affected 50% $50 100.00% $50
ACWP $150 by TPMs)

CPI 67% 62% New TOTAL 100% $100 $94
SPI 100% 94% Composite Technical Score 94%

May 03

Table H-3: EVM Adjustment for CSCI A Build 2 System Test

As a result of CSCI A Build 2 Systems Testing, we note an improvement in the overall
Composite Technical Score, which indicates an improvement in meeting the TPMs and a
subsequent reduction on the TPMs impact on EVM, see Table H-3. While the TPMs negative
impact on EVM is reducing, the higher than planned ACWP, likely resulting from an effort to
correct the performance deficit indicated by the TPM, is still causing the CPI and SPI to be low.
In our example, notice that the New SPIs indicate the program is behind, even though it seems to
be meeting its development and test schedule. This is an example of passing a schedule
milestone without meeting all of the milestone requirements. In this case, the system is not
meeting the utilization requirements for RAM and the CPU. At some point in the development
in addition to the rising costs to correct the problem as indicated by the New CPIs, there are also
likely to be schedule slips. Note that in Figure H-1, the CPU utilization is 74% in build 4 while
the maximum value is 50%. If this problem is to be corrected, the schedule will have to slip.

What priority defect should this problem be considered? The closer CPU and RAM utilization
gets to 100%, the more likely it will impact other performance requirements. The system may
no longer be able to respond quickly to operator inputs. It may start to loose essential navigation
and contact data. In this situation, it is a priority 1 or 2 defect. If the utilization is still well
below 100%, even though it still exceeds system requirements, it may be considered a priority 3
defect. It will have an impact on future costs of maintenance and the ability to add new
capabilities to the system, but it is not preventing the system from meeting its current
performance requirements. In this case, program management may decide to relax the
requirement and accept higher maintenance costs in the future and hope technology advances
allow for a correction of the problem at a later date.

In the previous example, relaxing the performance or utilization requirement looks like the ideal
way of solving the problem since it immediately negates the impact of not meeting the TPM at
no cost. THIS SHOULD BE DONE WITH EXTREME CAUTION! If the requirement is relaxed early in
the program, then there is no incentive for the developer to attempt to correct the problem nor
will the earned value indicate there is a problem. However, if the problem continues to worsen it
may reach a point where relaxing the requirement is no longer an option due to the impact on the
implementation of essential mission requirements, making it a priority 1 or 2 defect. In this case
the time earlier in the development when the developer could have been working to mitigate or

97

Software EVM Toolkit

eliminate the problem has been lost along with any emphasis to control this issue. Thus relaxing
the requirement early in the effort may actually aggravate the problem. Instead, relaxing the
requirement should not be done until late in the development thus continuing to emphasize to the
developer the importance of working to reduce this problem throughout the development cycle.
This increases the odds that the difference between the planned and actuals for these
performance and utilization requirements will be small enough so they will not impact essential
mission requirements and preserve the option of reducing the performance or utilization
requirement prior to OPEVAL.

NOTE – RELAXATION OF PERFORMANCE AND UTILIZATION REQUIREMENTS SHOULD BE DONE AS
LATE AS POSSIBLE IN THE PROGRAM IN ORDER TO PRESERVE THE EMPHASIS ON MEETING THESE
REQUIREMENTS AND INSURING THAT ANY PROBLEMS DO NOT REACH UNACCEPTABLE LEVELS
THROUGH NEGLECT.

The methods of quantitatively correlating TPMs with EVM discussed above have only been tried
in a limited number of cases and have had limited success in predicting final results. These
problems were at least partially caused by the pilot programs having poorly structured WBSs,
poorly defined TPMs and loss of visibility due to rebaselinings of the program. While the
method of quantitatively correlating EVM and TPMs may not be perfect, the alternative is to not
consider KPPs in project EVM calculations. THIS MEANS EVM WILL GIVE NO WARNING OF SUCH
PROBLEMS, AND WILL BE UNABLE TO PREDICT THE RESULTS OF THE PROGRAMS NOT MEETING
THESE KEY PERFORMANCE PARAMETERS. Even a methodology with a few flaws is better than
this alternative. Refusing to use TPMs in EVM because of these possible flaws is similar to
refusing to wear a parachute when skydiving because it doesn’t 100% guarantee your safety.

As with any measurement method, if an adverse prediction is acted upon and corrected early,
you won't see the effect, which is of course what is desired. Some may then argue that the
'prediction' was not accurate and the correction therefore unnecessary. This is the same as
arguing that steering corrections are unnecessary because the car didn’t go off the road.

1 “Technical Performance Measures – A Program Managers Barometer”, Mike Ferraro, Program Manager
Magazine, November – December 2002, http://www.dau.mil/pubs/pm/pmpdf02/Nov_Dec/NO-DE02.pdf
2 “Technical Performance Measurement – A Systematic Approach to Planning, Integration and Assessment – Part
I”, “Technical Performance Measurement – A Systematic Approach to Planning, Integration and Assessment – Part
II – Linking Technical Performance to Cost and Schedule”, and “Technical Performance Measurement – A
Systematic Approach to Planning, Integration and Assessment – Part III – Assessment Techniques and Earned
Value Calculation”, Kathryn Kulick, http://www.acq.osd.mil/pm/tpm/papers.htm
3 “Technical Performance Measurement (TPM) Retrospective Implementation and Concept Validation on the
T45TS Cockpit-21 Program”, Charles Coleman, Kathryn Kulick, and CDR Nick Pisano, Published April 1996,
http://www.acq.osd.mil/pm/tpm/papers.htm

98

Software EVM Toolkit

APPENDIX I. Comparison of Software Life Cycle Standards
Comparison of MIL-STD-498 development activities to 12207:

MIL-STD-498 Development Activities IEEE/EIA 12207.0 Development Activities

5.1 Project planning and oversight 5.2 Establish software
devel. environment

5.3.1 Process implementation

5.3 System requirements analysis 5.3.2 System requirements analysis
5.4 System design 5.3.3 System architectural design
5.5 Software requirements analysis 5.3.4 Software requirements analysis
5.6 Software design 5.3.5 Software architectural design 5.3.6 Software

detailed design
5.7 Software implementation and unit testing 5.3.7 Software coding and testing
5.8 Unit integration and testing 5.3.8 Software integration
5.9 CSCI Qualification testing 5.3.9 Software qualification testing
5.10 CSCI/HWCI integration and testing 5.3.10 Software integration
5.11 System qualification testing 5.3.11 System qualification testing
5.12 Preparing for software use 5.3.12 Software installation
5.13 Preparing for software transition 5.3.13 Software acceptance support
5.14 Software configuration management 6.2 CM Process
5.15 Software product evaluation 6.7 Audit Process
5.16 Software quality assurance 6.3 QA Process
5.17 Corrective action 6.8 Problem resolution Process
5.18 Joint technical and management reviews 6.6 Joint review Process
5.19.1 Risk management .2 Annex L - Risk Management
5.19.2 Software management indicators .2 Annex H - Software measurement categories
5.19.3 Security and privacy
5.19.4 Subcontractor management 6.3.3.3 Assure prime requirements passed to subs
5.19.5 Interface with software IV&V agents
5.19.6 Coordination with associate developers
5.19.7 Improvement of project processes 7.3 Improvement Process

Comparison of Reviews:

DoD-STD-2167A/MIL-STD-
1521B Formal Reviews

MIL-STD-498: Joint Reviews 12207.0 Joint Review Process

 Joint Technical Reviews Technical reviews
 Joint Management Reviews Project management reviews
 Software plan reviews Software plan reviews
System Requirements Review (SRR)

Operational concept reviews,
System/subsys reqts review

Operational concept reviews,
System/subsys reqts review

System Design Review (SDR) System/subsys design review System/subsys design review
Software Specification Review (SSR) Software requirements review Software requirements review
Preliminary design Review (PDR) Software design review Software design review
Critical Design Review (CDR)
Test Readiness Review (TRR) Test readiness review

Test results review
Software usability review Software
supportability review
Critical requirements review

Test readiness review
Test results review
Software usability review Software
supportability review
Critical requirements review

Functional Configuration Audit
(FCA)

Physical Configuration Audit (PCA)

99

Software EVM Toolkit

Comparison of documents among software standards:

MIL-STD-
2167
Document

, MIL-STD-498, J-
STD-016 Document

MIL-STD-
498 DI-
IPSC-

016
Annex

12207.0
Clause

12207.1 Information Item

SDP Software Development
Plan (SDP)

81427 E.2.1 5.3.1.4
5.2.4

6.5 Development process plan
6.11 Project management plan

STP Software Test Plan
(STP)

81438 E.2.2 5.3.8 6.18 Software integration plan

IP Software Installation
Plan (SIP)

81428 E.2.3 5.5.5.2
5.3.12.1
7.4.1.1

Migration plan, Software installation
plan, Training plan

CRISD Software Transition Plan
(STrP)

81429 E.2
4.

5.5.1.1
5.5.5.2
5.5.5.2
5.4

Maintenance plan, 6.8 Maintenance
process plan, Migration plan 6.9
Operation process plan

SSDD Operational Concept
Description (OCD)

81430 F.2.1 5.1.1.1 6.3 Concept of operations description

SSS System/Subsystem Spec
(SSS)

81431 F.2.2 5.1.1.2
5.3.2

6.26 System requirements specification

IRS Interface Requirements
Spec (IRS)

81434 F.2.3 5.1.1.4
5.3.4

6.22 Software requirements description

SRS Software Requirements
Spec (SRS)

81433 F.2.4 5.1.1.4
5.3.4
5.3.5.5
5.3.6
5.3.7
6.5

6.22 Software requirements description,
6.27 Test or validation plan

SSDD System/Subsys. Design
Description (SSDD)

81432 G.2.1 5.3.3.1
5.3.3.2

6.25 Software arch.& reqts alloc descr

IDD Interface Design
Description (IDD)

81436 G.2.2 5.3.5.2
5.3.6.2

6.19 Software interface design descr

-- Database Design
Description (DBDD)

81437 G.2.3 5.3.5.3
5.3.6.3
5.3.7.1

6.4 Database design description

SDD Software Design
Description (SDD)

81435 G.2.4 5.3.5
5.3.6

6.12 Software arch. description, 6.16
Software design description

STD Software Test
Description (STD)

81439 H.2.1 5.1.5.1
5.3.7.1
5.3.8
5.3.10
6.5

6.28 Test or validation procedures

STR Software Test Report
(STR)

81440 H.2.2 5.3.7.2
5.3.8.2
5.3.9.1
5.3.10.1
5.3.11.1
5.3.13.1
6.5

6.29 Test or validation results report

SPS Software Product
Specification (SPS)

81441 I.2.1 5.3.1.2
6.2.2.1

Software product description

VDD Software Version
Description (SVD)

81442 I.2. 6.2 6.13 Software config. index record

SPM Computer Prog'mg
Manual (CPM)

81447 I.2.3 -- --

FSM Firmware Support
Manual (FSM)

81448 I.2.4 -- --

100

Software EVM Toolkit

SUM Software User Manual
(SUM)

81443 J.2.1 5.3.4.1
5.3.5.4
5.3.6.4
5.3.7.3
5.3.8.3
5.3.8.5
5.3.9.2

6.30 User documentation description

-- Software Input/Output
Manual (SIOM)

81455 J.2.2 -- --

-- Software Center Operator
Mnl (SCOM)

81444 J.2.3 5.4 6.9 Operation process plan

CSOM Computer Operation
Manual (COM)

81446 J.2.4 5.4 6.9 Operation process plan

101

Software EVM Toolkit

APPENDIX J. COMPREHENSIVE SOFTWARE EARNED VALUE EXAMPLE

The following is a comprehensive example of performing Software earned value for a multi
build software development effort. Earned value determination for selected key WBS elements
at key points in the development will be discussed in order to provide insight into how earned
value is applied.

NOTE - A BEFORE AND AFTER PROJECT SUMMARY ALONG WITH EVM SUMMARY AND ROLLUP
DATA TABLES FOR THE EFFORT ARE INCLUDED AT THE END OF THE EXAMPLE. ALL CALCULATIONS
IN THE EXAMPLE ARE BASED ON THE NON-ROUNDED NUMBERS IN THE ROLL UP TABLES. THUS IF
YOU TRY TO CALCULATE CPI, SPI, ETC., BASED ON THE ROUNDED VALUES IN THE BODY OF THE
EXAMPLE, THEY MAY BE SLIGHTLY DIFFERENT THAN WHAT YOU SEE IN THE EXAMPLE.

BUILD #1 EVM DISCUSSION

Build #1 consists of two CSCIs, A and B. For the purpose of this example only CSCI A will be
discussed in detail. A summary of CSCI B will be provided as an input to Build #1 Integration
Testing.

BEGINNING OF PROJECT MONTH 1.
1. Start Build #1, CSCI A, Software Requirements Analysis Phase.

a) 50 Systems Requirements have been allocated for implementation in Build #1, CSCI A.
For the purpose of the example it will be assumed that the same amount of effort is required
to decompose all systems requirements into software requirements.
b) 5 Months have been scheduled for the effort, Starting at the beginning of month 0 of the
project through the end of month 5 of the project.
c) BCWS for the entire task is $1.064M or $212.8K per month.
d) Software requirements analysis of a systems requirement is considered complete when the
requirements peer review is completed and all defects corrected.

END OF PROJECT MONTH 2.
1. Build #1, CSCI A, Software Requirements Analysis Phase.

a) Software Requirements analysis of 21 systems requirements have been completed.
b) BCWSB#1, CSCI A, SW Req = $425.6K
c) $446.9K 50

21($1.064M) BCWP Req SW A, CSCI B#1, =×=

d) ACWP B#1, CSCI A, SW Req = $436K

e) 1.025 $436K
$446.9K ACWP

BCWP CPI
ReqSW A, CSCI B#1,

ReqSW A, CSCI B#1,
ReqSW A, CSCI B#1, ===

f) 1.05 $425.6K
$446.9K BCWS

BCWP SPI
ReqSW A, CSCI B#1,

ReqSW A, CSCI B#1,
ReqSW A, CSCI B#1, ===

BEGINNING OF PROJECT MONTH 4.

102

Software EVM Toolkit

1. Start of Build #1, CSCI A, Software Design Phase.
a) Design plan based on 250 software requirements occurring as a result of software
requirements analysis. Project plan will also assume approximately 30 software requirements
will be added, deleted or modified during the phase due to refinement of software
requirements during design. For the purpose of the example it is assumed that the same
amount of effort is required to decompose all software requirements into design.
b) 12 months have been scheduled for software design, starting at the beginning of project
month 4 and finishing at the end of project month 15.
c) BCWS for the entire task is $7.4784M or $623.2K per month.
d) Software design for a software requirement is considered complete when the peer review
is completed and all defects corrected.

END OF PROJECT MONTH 4.
1. Build #1, CSCI A, Software Requirements Analysis Phase.

a) Software Requirements analysis and Peer Reviews of 41 systems requirements have been
completed. However, 2 new systems requirements have been added and 3 existing ones
modified, including two that had already been implemented. Since these changes are from
Government ECP #1, the schedule is increased to 5.5 months, and the BCWS for the entire
task is increased to $1.1704M. BCWS per month remains $212.8K.
b) BCWSB#1, CSCI A, SW Req = $851.2K
c) $877.8K 52

93($1.1704M) BCWP ReqSW A, CSCI B#1, =×=

d) ACWP B#1, CSCI A, SW Req = $875K

e) 1.003 $875K
$877.8K ACWP

BCWP CPI
ReqSW A, CSCI B#1,

ReqSW A, CSCI B#1,
ReqSW A, CSCI B#1, ===

f) 1.031 $851.2K
$877.8K BCWS

BCWP SPI
ReqSW A, CSCI B#1,

ReqSW A, CSCI B#1,
ReqSW A, CSCI B#1, ===

2. Build #1, CSCI A, Software Design Phase.

a) Software Design of 22 software requirements completed. As noted under Software
requirements analysis for this month, an ECP has added 2 new systems requirements and
modified 3. None of the modified systems requirements affect the design completed to date.
It is now estimated there will be 260 software requirements which will need to be designed.
Project schedule is increased to 12.5 months. BCWS has been increased to $7.79M, BCWS
per month remains the same.
b) BCWS B#1, CSCI A, SW Des = $623.2K
c) $659.2K 260

22($7.79M) BCWP DesSW A, CSCI B#1, =×=

d) ACWP B#1, CSCI A, SW Des = $699K

e) .943 $699K
$659.2K ACWP

BCWP CPI
DesSW A, CSCI B#1,

DesSW A, CSCI B#1,
DesSW A, CSCI B#1, ===

f) 1.058 $623.2K
$659.2K BCWS

BCWP SPI
DesSW A, CSCI B#1,

DesSW A, CSCI B#1,
DesSW A, CSCI B#1, ===

3. Build #1, CSCI A EVM Summary

103

Software EVM Toolkit

a)
$1.4744M

$623.2K $851.2K BCWS BCWS BCWS Des SW A, CSCI B#1,Req SW A, CSCI B#1,A CSCI B#1,

=

+=+=

b)
$1.537M

$659.2K $877.8K BCWP BCWP BCWP Des SW A, CSCI B#1,Req SW A, CSCI B#1,A CSCI B#1,

=

+=+=

c)
$1.574M

$699K $875K ACWP ACWP ACWP Des SW A, CSCI B#1,Req SW A, CSCI B#1,A CSCI B#1,

=

+=+=

d) 976. $1.574M
$1.537M ACWP

BCWP CPI
A CSCI B#1,

A CSCI B#1,
A CSCI B#1, ===

e) 1.042 $1.4744M
$1.537M BCWS

BCWP SPI
A CSCI B#1,

A CSCI B#1,
A CSCI B#1, ===

f) Software design and software requirements analysis phases have been increased in length
by .5 months. Since the start of software design did not change, to date the schedule has only
slipped overall by .5 months.

END OF PROJECT MONTH 6.
1. Build #1, CSCI A, Software Requirements Analysis Phase.

a) Software Requirements analysis and Peer Reviews of 52 systems requirements have been
completed. Task finished on time at the end of 5.5 months. Total number of software
requirements is 260.
a) BCWSB#1, CSCI A, SW Req = $1.1704M
b) BCWP B#1, CSCI A, SW Req = 1.1704M
c) ACWP B#1, CSCI A, SW Req = $1.17M

d) 0.1 $1.17M
$1.1704M ACWP

BCWP CPI
ReqSW A, CSCI B#1,

ReqSW A, CSCI B#1,
ReqSW A, CSCI B#1, ===

e) SPIB#1, CSCI A, SW Req = 1.0

2. Build #1, CSCI A, Software Design Phase.
a) 63 of the total of 260 software requirements have had their design completed.
a) BCWS B#1, CSCI A, SW Des = $1.8696M
b) $1.8876M 260

63($7.79M) BCWP DesSW A, CSCI B#1, =×=

c) ACWP B#1, CSCI A, SW Des = $2.0973

d) .9 $2.0973M
$1.8876M ACWP

BCWP CPI
DesSW A, CSCI B#1,

DesSW A, CSCI B#1,
DesSW A, CSCI B#1, ===

e) 1.01 $1.8696M
$1.8876M BCWS

BCWP SPI
DesSW A, CSCI B#1,

DesSW A, CSCI B#1,
DesSW A, CSCI B#1, ===

FOR DETAILS ON SUBSEQUENT EVM CALCULATIONS SEE COMPREHENSIVE EXAMPLE
SPREADSHEET AT END OF EXAMPLE.

3. Build #1, CSCI A EVM Summary

a) BCWSB#1, CSCI A = $3.04M
b) BCWP B#1, CSCI A = $3.058M

104

Software EVM Toolkit

c) ACWP B#1, CSCI A = $3.2673M
d) CPI B#1, CSCI A = .936
e) SPI B#1, CSCI A = 1.006

END OF PROJECT MONTH 11.
1. Build #1, CSCI A, Software Design Phase

a) The design has been completed for 165 software requirements. However 36 additions and
modifications of requirements have been made to the software requirements. None of these
were due to government ECPs. As a result of these changes the design of 14 software
requirements must be reworked and the total number of requirements has increased to 282.
b) BCWSB#1, CSCI A, SW Des = $4.9856M
c) BCWP B#1, CSCI A, SW Des = $4.1712M
d) ACWP B#1, CSCI A, SW Des = $5.5928M
e) CPI B#1, CSCI A, SW Des = .746
f) SPI B#1, CSCI A, SW Des = .837

2. Build #1, CSCI A EVM Summary

a) BCSWB#1, CSCI A = $6.156M
b) BCWP B#1, CSCI A = $5.3416M
c) ACWP B#1, CSCI A = $6.7628M
d) CPI B#1, CSCI A = .79
e) SPI B#1, CSCI A = .868

BEGINNING OF PROJECT MONTH 12.
1. Start of Build #1, CSCI A, C&UT Phase.

a) The original C&UT plan was based on 250 software requirements occurring as a result of
software requirements analysis it also assumed approximately 30 software requirements will
be added, deleted or modified during the C&UT phase due to refinement of software
requirements during design. For the purpose of the example it is assumed that the same
amount of effort is required to decompose all software requirements into design.
b) Originally 12 months have been scheduled for C&UT, starting at the beginning of project
month 12 and finishing at the end of project month 23.
c) Original BCWS for the entire task is $7.6608M or $638.4K per month.
d) Due to the ECP noted in project month 4, the schedule for this task was increased to 12.5
months and the total BCWS for the task was increased to $7.98M, BCWS per month remains
the same. Since the task start date did not change, the schedule has only slipped overall by .5
months at this time. Current plan assumes there will be 260 software requirements initially
which will increase to 290 by the end of C&UT.
e) The software requirements increase to 282, noted in project month 11, was not caused by
a Government ECP. Thus a replan is not performed to take them into account.
f) Software C&UT for a software requirement is considered complete when the peer review
is completed and all defects corrected.

END OF PROJECT MONTH 14.
1. Build #1, CSCI A, Software Design Phase

105

Software EVM Toolkit

a) The design has been completed for 243 software requirements. However 19 additions and
modifications of requirements have been made to the software requirements. None of these
were due to government ECPs. As a result of these changes the design of 11 software
requirements must be reworked and the total number of requirements has increased to 290.
b) BCWSB#1, CSCI A, SW Des = $6.8552M
c) BCWP B#1, CSCI A, SW Des = $6.232M
d) ACWP B#1, CSCI A, SW Des = $8.7112M
e) CPI B#1, CSCI A, SW Des = .715
f) SPI B#1, CSCI A, SW Des = .909

2. Build #1, CSCI A, C&UT
a) The C&UT had been completed for 72 software requirements. Due to the software
requirements changes noted in Project month 14, 1.a), the total number of requirements has
increased to 290. Additionally the code for 3 software requirements will need to be reworked
due to requirements modifications.
b) BCWSB#1, CSCI A, C&UT = $1.9152M
c) BCWP B#1, CSCI A, C&UT = $1.8987M
d) ACWP B#1, CSCI A, C&UT = $1.9000M
e) CPI B#1, CSCI A, C&UT = .999
f) SPI B#1, CSCI A, C&UT = .991

3. Build #1, CSCI A EVM Summary

a) BCSWB#1, CSCI A = $9.9408M
b) BCWP B#1, CSCI A = $9.3011M
c) ACWP B#1, CSCI A = $11.7812M
d) CPI B#1, CSCI A = .789
e) SPI B#1, CSCI A = .936

END OF PROJECT MONTH 16.
1. Build #1, CSCI A, Software Design Phase

a) The design has been completed for all 290 software requirements.
b) BCWSB#1, CSCI A, SW Des = $7.79M
c) BCWP B#1, CSCI A, SW Des = $7.79M
d) ACWP B#1, CSCI A, SW Des = $10.7905M
e) CPI B#1, CSCI A, SW Des = .722
f) SPI B#1, CSCI A, SW Des = 1.0

2. Build #1, CSCI A, C&UT
a) The C&UT had been completed for 117 software requirements.
b) BCWSB#1, CSCI A, C&UT = $3.192M
c) BCWP B#1, CSCI A, C&UT = $3.2195M
d) ACWP B#1, CSCI A, C&UT = $3.1667M
e) CPI B#1, CSCI A, C&UT = 1.017
f) SPI B#1, CSCI A, C&UT = 1.009

3. Build #1, CSCI A EVM Summary

106

Software EVM Toolkit

a) BCSWB#1, CSCI A = $12.1524M
b) BCWP B#1, CSCI A = $12.1799M
c) ACWP B#1, CSCI A = $15.1271M
d) CPI B#1, CSCI A = .805
e) SPI B#1, CSCI A = 1.002

END OF PROJECT MONTH 19.
1. Build #1, CSCI A, C&UT

a) The C&UT had been completed for 189 software requirements. ECP #2, resulting in 2
new systems requirements is implemented. It is assumed that this will result in 10 new
software requirements. Due to staffing limitations, the C&UT phase schedule must be
extended in order to implement these requirements. An additional 1 month will be required
for requirements analysis, design and C&UT of the new requirements. Additionally, cost for
the task will increase by $680.2K, total BCWS for the task will increase to $8.470.2M and
BCWS per month to $646K for subsequent months. An additional 15 software requirements
were added and changed due to defect correction and refinement of the requirements analysis,
not through ECPs. These changes result in the code for 9 software requirements requiring
revision and 6 new requirements. The end result is that the C&UT for 180 software
requirements are complete and the total number of software requirements has increased to
306.
b) Additionally, due to the delay from the original schedule, the CSCI Integration testing
which was planned to start at the beginning of month 20 must be delayed for two months until
the beginning of month 22. This delay is justified as being a result of the two previous
Government ECPs so the project is replanned to account for them.
c) BCWSB#1, CSCI A, C&UT = $5.1072M
d) BCWP B#1, CSCI A, C&UT = $5.0942M
e) ACWP B#1, CSCI A, C&UT = $5.0667M
f) CPI B#1, CSCI A, C&UT = 1.005
g) SPI B#1, CSCI A, C&UT = .997

2. Build #1, CSCI A EVM Summary

a) BCSWB#1, CSCI A = $14.0676M
b) BCWP B#1, CSCI A = $14.0546M
c) ACWP B#1, CSCI A = $17.0271M
d) CPI B#1, CSCI A = .825
e) SPI B#1, CSCI A = .999

END OF PROJECT MONTH 21.
1. Build #1, CSCI A, C&UT

a) The C&UT had been completed for 226 software requirements.
b) BCWSB#1, CSCI A, C&UT = $6.3992M
c) BCWP B#1, CSCI A, C&UT = $6.3961M
d) ACWP B#1, CSCI A, C&UT = $6.2998M
e) CPI B#1, CSCI A, C&UT = 1.015
f) SPI B#1, CSCI A, C&UT = 1.0

107

Software EVM Toolkit

2. Build #1, CSCI A EVM Summary
a) BCSWB#1, CSCI A = $15.3596M
b) BCWP B#1, CSCI A = $15.3565M
c) ACWP B#1, CSCI A = $18.2603M
d) CPI B#1, CSCI A = .841
e) SPI B#1, CSCI A = 1.0

BEGINNING OF PROJECT MONTH 22.
1. Start of Build #1, CSCI A, CSCI Integration Testing

a) The original plan called for the CSCI Integration testing to commence during the 20th
project month. As previously discussed, requirements growth to date and associated schedule
slips made this impractical and the start of CSCI Integration testing was delayed by 2 months.
Original assumptions were that the number of software requirements to be tested in this phase
would have grown to 310, take 7 months to test and would have a BCWS for the entire task of
$7.1288M. The schedule has been revised to assume the requirements will grow to 318,
schedule for testing will remain 7 months, but BCWS for the entire task will increase to
$7.448M or $1.0697 per month. Rework of defects found during CSCI Integration Testing is
included in the estimate rework includes retesting to verify the software was correctly
reworked. It is assumed that each requirement will need the same testing and rework effort
for the purpose of this example.
b) The project plan calls for 95% or 302 (if there end up being 318 total software
requirements) of all software requirements to pass their test procedures. The rework and
testing for the remaining 5% or 16 software requirements will be deferred until build #2. If
302 software requirements do pass CSCI testing than full-earned value for the phase will be
earned. This means that any software requirements affected by a priority 1 or 2 defect have
failed. Additionally, there can be no more than 15 open priority 3 defects at the end of CSCI
integration testing on the code for the 302 software requirements. If there are more than 15
open priority 3 defects, than the number of software requirements considered to have passed
will be reduced, which will reduce the total BCWP earned during task. The remaining BCWP
for the failed software requirements will not be earned until the defects are corrected in a later
testing phase.

END OF PROJECT MONTH 25.
1. Build #1, CSCI A, C&UT

a) The C&UT has been completed for all 306 software requirements.
b) BCWSB#1, CSCI A, C&UT = $8.6602M
c) BCWP B#1, CSCI A, C&UT = $8.6602M
d) ACWP B#1, CSCI A, C&UT = $8.6M
e) CPI B#1, CSCI A, C&UT = 1.007
f) SPI B#1, CSCI A, C&UT = 1.0

2. Build #1, CSCI A, CSCI Integration Testing

a) The CSCI Integration testing had been completed for 140 of 306 software requirements.
These 140 requirements are the software requirements that have successfully completed their
test procedures with no priority 1 or 2 defects and no more than 1 priority 3 defect for every
20 software requirements. In this case test procedures have actually been executed on 212

108

Software EVM Toolkit

software requirements, but 62 of them have priority 1 or 2 defects, or an excessive number of
priority 3 defects. Since the testing was planned for 318 software requirements, in order to be
on schedule for successfully testing 95% of them, or 302, 173 should have successful
completed testing by this time. With 306 total requirements, at a minimum 166 should have
been successfully tested at this point, so they are still behind even for the smaller number of
requirements currently existing.
b) BCWSB#1, CSCI A, Int tes = $4.256M
c) BCWP B#1, CSCI A, Int tes = $3.5956M
d) ACWP B#1, CSCI A, Int tes = $4.3M
e) CPI B#1, CSCI A, Int tes = 0.836
f) SPI B#1, CSCI A, Int tes = 0.845

3. Build #1, CSCI A EVM Summary

a) BCSWB#1, CSCI A = $21.8766M
b) BCWP B#1, CSCI A = $21.2162M
c) ACWP B#1, CSCI A = $24.8605M
d) CPI B#1, CSCI A = .853
e) SPI B#1, CSCI A = .97

END OF PROJECT MONTH 28.
1. Build #1, CSCI A, CSCI Integration Testing

a) The CSCI Integration testing had been completed for 245 of 306 software requirements.
Testing was scheduled to be completed at this point, however to earn 100% of the available
earned value, 95% or 290 of the software requirements must have been successfully tested. If
testing stopped at this point, the remaining earned value could not be earned until the testing
for these software requirements were successfully completed. In our example we will assume
that testing must continue due to the critical nature of the remaining 45 software
requirements, which must be tested. Additionally, Build #1 Integration Testing, which would
perform Integration testing of the two CSCIs in Build #1, CSCIs A & B, was scheduled to
start at the beginning of project month 29 after the CSCI Integration testing for Builds A and
B had completed. This must now be delayed until Build A CSCI Integration testing can be
completed.
b) BCWSB#1, CSCI A, Int test = $7.448M
c) BCWP B#1, CSCI A, Int tes = $6.2923M
d) ACWP B#1, CSCI A, Int tes = $7.556M
e) CPI B#1, CSCI A, Int tes = 0.833
f) SPI B#1, CSCI A, Int tes = 0.845

2. Build #1, CSCI A EVM Summary

a) BCSWB#1, CSCI A = $25.0686M
b) BCWP B#1, CSCI A = $23.9129M
c) ACWP B#1, CSCI A = $28.1165M
d) CPI B#1, CSCI A = .85
e) SPI B#1, CSCI A = .954

MIDWAY THROUGH PROJECT MONTH 30.

109

Software EVM Toolkit

1. Start of Build #1 Integration testing.
a) For the purpose of the example, a detailed EVM example for Build #1, CSCI B will not be
provided. Build B’s EVM situation will be assumed to be identical to that of CSCI A at the
beginning of Build #1 Integration testing. Including the total current number of Software
requirements.
b) The original project plan called for Build #1 Integration Testing to start at the beginning
of the 27th month. The last replan following the ECP #2 discussed in the 19th project month
called for Build #1 Integration Testing to start at the beginning of the 29th month. Due to
problems during CSCI Integration testing the start was delayed until the middle of the 30th
month. The project was not replanned due to this issue, which means for the first month and a
half of Build #1 integration testing no BCWP was earned for the effort.
c) The Integration Testing was planned to take 5 months with a total BCWS for the task of
$10.64M, or $2.128M per month. Project plan called for 636 software requirements to be
tested, 318 in each CSCI. Rework of defects found during CSCI Integration Testing is
included in the estimate rework includes retesting to verify the software was correctly
reworked. It is assumed that each requirement will need the same testing and rework effort
for the purpose of this example.
d) The project plan calls for 95% or 604 (if there end up being 636 total software
requirements) of all software requirements to pass their test procedures. The rework and
testing for the remaining 5% or 32 software requirements will be deferred until build #2. If
604 software requirements do pass CSCI testing than full-earned value for the phase will be
earned. Any software requirements affected by a priority 1 or 2 defect have failed.
Additionally, there can be no more than 30 open priority 3 defects at the end of Build #1
integration testing on the code for the 504 software requirements. If there are more than 15
open priority 3 defects, than the number of software requirements considered to have passed
will be reduced, which will reduce the total BCWP earned during task. The remaining BCWP
for the failed software requirements will not be earned until the defects are corrected in a later
testing phase.

END OF PROJECT MONTH 30.
1. Build #1, CSCI A, CSCI Integration Testing

a) The CSCI Integration testing had been completed for 290 of 306 software requirements
after 8.5 months. This meets the project plan of having successfully tested 95% of the
software requirements during this phase.
b) BCWSB#1, CSCI A, Int tes = $7.448M
c) BCWP B#1, CSCI A, Int tes = $7.448M
d) ACWP B#1, CSCI A, Int tes = $8.945M
e) CPI B#1, CSCI A, Int tes = 0.833
f) SPI B#1, CSCI A, Int tes = 1.0

2. Build #1, CSCI A EVM Summary

a) BCSWB#1, CSCI A = $25.0686M
b) BCWP B#1, CSCI A = $25.0686M
c) ACWP B#1, CSCI A = $29.5055M
d) CPI B#1, CSCI A = .85
e) SPI B#1, CSCI A = 1.0

110

Software EVM Toolkit

3. Build #1, CSCI B EVM Summary

a) BCSWB#1, CSCI B = $25.0686M
b) BCWP B#1, CSCI B = $25.0686M
c) ACWP B#1, CSCI B = $29.5055M
d) CPI B#1, CSCI B = .85
e) SPI B#1, CSCI B = 1.0

4. Build #1 Integration Testing
a) At this time 51 of 612 software requirements have been successfully tested.
b) BCWSB#1, Int tes = $4.256M
c) BCWP B#1, Int tes = $0.9340M
d) ACWP B#1, Int tes = $1.336M
e) CPI B#1, Int tes = 0.699
f) SPI B#1, Int tes = 0.219

5. Build #1 Summary
a) BCSWB#1 = $54.3932M
b) BCWP B#1, CSCI B = $51.0712M
c) ACWP B#1, CSCI B = $60.3465M
d) CPI B#1, CSCI B = .846
e) SPI B#1, CSCI B = .939

END OF PROJECT MONTH 33.
1. Build #1 Integration Testing

a) At this time 350 of 612 software requirements have been successfully tested. The plan
was to have completed testing by this time. However due to a delayed start and lower than
expected progress, the task is well behind schedule. The slower than expected progress being
experienced during testing indicates one off two things. The original plans were not realistic,
or there is a quality problem in the development resulting in more defects being injected in
earlier phases. At this point it appears that that it will take close to three months to finish the
remainder of the testing.
b) BCWSB#1, Int tes = $10.64M
c) BCWP B#1, Int tes = $6.4096M
d) ACWP B#1, Int tes = $7.498M
e) CPI B#1, Int tes = 0.855
f) SPI B#1, Int tes = 0.602

2. Build #1 Summary
a) BCSWB#1 = $60.7772M
b) BCWP B#1, CSCI B = $56.5468M
c) ACWP B#1, CSCI B = $66.5089M
d) CPI B#1, CSCI B = .85
e) SPI B#1, CSCI B = .93

END OF PROJECT MONTH 36.

111

Software EVM Toolkit

1. Build #1 Integration Testing
a) At this time 581 of 612 software requirements have been successfully tested. This meets
the original project plan of successfully testing 95% of the software requirements during the
phase. However there has been a 3-month schedule slip. Partially due to a late start and
partially due to slower than expected progress during testing.
b) BCWSB#1, Int test = $10.64M
c) BCWP B#1, Int test = $10.64M
d) ACWP B#1, Int test = $12.473
e) CPI B#1, Int test = 0.853
f) SPI B#1, Int test = 1.00

2. Build #1 Summary
a) BCSWB#1 = $60.7772M
b) BCWP B#1, CSCI B = $60.7772M
c) ACWP B#1, CSCI B = $71.4839
d) CPI B#1, CSCI B = .85
e) SPI B#1, CSCI B = .1.00

BUILD #2 EVM DISCUSSION

Build #2 consists of two CSCIs, A and B. For the purpose of this example only CSCI A will be
discussed in detail. A summary of CSCI B will be provided as an input to Build #2 Integration
Testing. These are the same CSCIs discussed in Build #1, Build #2 will add additional
functionality to these CSCIs and complete their testing prior to release. Build #2 will also finish
any rework deferred from Build #1.

The original project plan calls for Build #2 CSCI A C&UT to start at the end of Build #1
Integration testing. Since in the original plan, Build #1 Integration testing was supposed to end
at the end of the 31st project month, this means Build #2, CSCI A Software requirements
Analysis should start at the beginning of the 24th project month.

END OF PROJECT MONTH 19.
1. ECP Impacts.

a) Two ECPs have occurred at this time, #1 and #2. These ECPs impacts on Build #1 CSCI
A were discussed in Build #1 project months 4 and 19 discussions previously. However they
have also had an impact on Build #2 CSCI A system requirements. The end result of these
ECPs has been to increase the total number of systems requirements for Build #2, CSCI A to
46 from the original 40 systems requirements. Additionally, ECP #3, which affects only
Build #2, is expected to be approved in the next couple of months. Assuming this occurs, the
total number of systems requirements to be implemented by Build #2 CSCI A will increase to
48. Additionally, Build # 1 Integration testing is now not scheduled to end until the end of
the 33rd project month due to these ECP impacts. Based on this information it is decided to
revise the start date for the Build #2 CSCI A to the beginning of the 25th project month.

BEGINNING OF PROJECT MONTH 25.

112

Software EVM Toolkit

1. Start Build #2, CSCI A, Software Requirements Analysis Phase.
a) At the beginning of the project 40 systems requirements had been allocated for
implementation in Build #2, CSCI A.
b) In the original project plan 4 months had been scheduled for the effort, starting at the
beginning of the 24th project month and extending to the end of the 27th project month.
BCWS for the entire task is $1.0336M or $258.4K per month.
c) During the 19th month the project schedule for Build #2 CSCI A was revised based on
ECPs #1, and #2. Since that time ECP #3 has been approved and the three of them have
resulted in an increase to 48 systems requirements for Build #2 CSCI A. In the replan based
on these ECPs, the start of the software requirements phase was slipped to the beginning of
the 25th project month, and will end four months later at the end of the 28th project month.
BCWS for the entire task has increased to $1.216M or $304K per month.
d) It is expected that the current 48 systems requirements will decompose into approximately
240 software requirements.
e) For the purpose of the example it will be assumed that the same amount of effort is
required to decompose all systems requirements into software requirements.

BEGINNING OF PROJECT MONTH 27.
1. Start Build #2, CSCI A, Software Design Phase.

a) The original project plan called for the Build #2 CSCI A Software Design Phase to start at
the beginning of the 26th project month. The task was scheduled to last 9 months and be
completed at the end of the 34th project month. This included time for rework of designs for
requirements that were deferred from Build #1 CSCI A. BCWS for the entire task was
$6.688M or $743.1K per month.
b) As a result of the replan in the 19th project month based on ECPs #1, #2 and #3, the start
of the task was changed to the beginning of the 27th month. The schedule was increased to 10
months resulting in a planned finish at the end of the 36th project month. The revised project
plan was based on their being approximately 279 software requirements by the end of the
phase, including requirements deferred from Build #1 CSCI A for rework. The total revised
BCWS for the task is $7.904M or $790.4K per month.

END OF PROJECT MONTH 27.
1. Build #2, CSCI A, Software Requirements Analysis Phase.

a) Requirements analysis has been completed for 33 systems requirements, which have
generated at total of 181 software requirements. Based on this it is now expected that the
total number of software requirements will increase to 264 from the originally predicted 240.
Task is behind schedule and over cost.
b) BCWSBuild #2, CSCI A, SW Req Anal = $912K
c) BCWPBuild #2, CSCI A, SW Req Anal = $836K
d) ACWPBuild #2, CSCI A, SW Req Anal = $905K
e) CPIBuild #2, CSCI A, SW Req Anal = .924
f) SPIBuild #2, CSCI A, SW Req Anal = .917

2. Build #2, CSCI A, Software Design Phase.
a) At this time design has been completed for 28 software requirements. However the total
number of software requirements expected to be generated out of the Build #2 CSCI A

113

Software EVM Toolkit

software requirements analysis phase has increased to 264. Taking into account further
requirements growth during the design phase and reword of deferred Build #1 CSCI A
requirements it is now predicted there will be a total of 306 software requirements that must
be designed by the end of the design phase. The number of requirements to be deferred from
Build #1 CSCI A is still unknown at this point due to testing being incomplete. Earned value
will be determined based on the actual current number of known requirements.
b) BCWSBuild #2, CSCI A, SW Des = $790.4K
c) BCWPBuild #2, CSCI A, SW Des = $838.3K
d) ACWPBuild #2, CSCI A, SW Des = $795K
e) CPIBuild #2, CSCI A, SW Des = 1.054
f) SPIBuild #2, CSCI A, SW Des = 1.061

3. Build #2 CSCI A Summary
a) BCWPBuild #2, CSCI A = $1.7024M
b) BCWPBuild #2, CSCI A = $1,6743M
c) ACWPBuild #2, CSCI A = $1.7M
d) CPIBuild #2, CSCI A = .985
e) SPIBuild #2, CSCI A = .983

END OF PROJECT MONTH 28.
1. Build #2, CSCI A, Software Requirements Analysis Phase.

a) Requirements analysis has been completed for 45 systems requirements, which have
generated at total of 247 software requirements. Total final estimate of software requirements
remains 264. Task was expected to be completed at this time, there appears to be at least a
week or more work remaining.
b) BCWSBuild #2, CSCI A, SW Req Anal = $1.216M
c) BCWPBuild #2, CSCI A, SW Req Anal = $1.140M
d) ACWPBuild #2, CSCI A, SW Req Anal = $1.199
e) CPIBuild #2, CSCI A, SW Req Anal = .951
f) SPIBuild #2, CSCI A, SW Req Anal = .938

2. Build #2, CSCI A, Software Design Phase.
a) At this time design has been completed for 55 software requirements.
b) BCWSBuild #2, CSCI A, SW Des = $1.5808M
c) BCWPBuild #2, CSCI A, SW Des = $1.6467M
d) ACWPBuild #2, CSCI A, SW Des = $1.59M
e) CPIBuild #2, CSCI A, SW Des = 1.036
f) BCWPBuild #2, CSCI A, SW Des = 1.042

3. Build #2 CSCI A Summary
a) BCWPBuild #2, CSCI A = $2.7968M
b) BCWPBuild #2, CSCI A = $2.7867M
c) ACWPBuild #2, CSCI A = $2.789M
d) CPIBuild #2, CSCI A = .999
e) SPIBuild #2, CSCI A = .996

114

Software EVM Toolkit

END OF PROJECT MONTH 29.
1. Build #2, CSCI A, Software Requirements Analysis Phase.

a) Requirements analysis has been completed for all 48 systems requirements, which have
generated at total of 270 software requirements. Task finished approximately a week behind
schedule.
b) BCWSBuild #2, CSCI A, SW Req Anal = $1.216M
c) BCWPBuild #2, CSCI A, SW Req Anal = $1.216M
d) ACWPBuild #2, CSCI A, SW Req Anal = $1.280
e) CPIBuild #2, CSCI A, SW Req Anal = .95
f) SPIBuild #2, CSCI A, SW Req Anal = 1.0

2. Build #2, CSCI A, Software Design Phase.
a) At this time design has been completed for 85 software requirements of the current total
of 270.
b) BCWSBuild #2, CSCI A, SW Des = $2.3712M
c) BCWPBuild #2, CSCI A, SW Des = $2.4883M
d) ACWPBuild #2, CSCI A, SW Des = $2.411M
e) CPIBuild #2, CSCI A, SW Des = 1.032
f) BCWPBuild #2, CSCI A, SW Des = 1.049

3. Build #2 CSCI A Summary
a) BCWPBuild #2, CSCI A = $3.5872M
b) BCWPBuild #2, CSCI A = $3.7043M
c) ACWPBuild #2, CSCI A = $3.691M
d) CPIBuild #2, CSCI A = 1.004
e) SPIBuild #2, CSCI A = 1.033

END OF PROJECT MONTH 33.
1. Build #2, CSCI A, Software Design Phase.

a) At this time design has been completed for 196 software requirements. Build #1 CSCI A
CSCI Integration testing was finished in the 30th month with 16 software requirements
deferred to Build #2 CSCI A. Of these 16 requirements 12 require rework of their design.
This design rework will require additional rework of eight of the software requirements
already designed in this phase. Further an additional 24 new software requirements are
necessary as a result of further software requirements analysis occurring during design. The
total number of requirements has increased to 300 software requirements. Additionally, the
software requirements design has been completed for has dropped to 188 do to the rework
required because of those requirements deferred from build #1 CSCI A.
b) The project plan had called for starting Build #2, CSCI A C&UT at the beginning of the
34th project month after the completion of Build #1 Integration Testing. However, it now
appears that it will take another 3 months before Build #1 Integration testing will be
completed. Further, Build #2 CSCI A software design is running behind schedule due to the
higher than expected number of software requirements. It now appears that Build #2 CSCI A
software design will take an extra month to complete. C&UT will therefore be delayed until
the beginning of the 35th project month, the additional risk associated with starting C&UT
prior to completing Build #1 Integration Testing will be accepted and monitored in order to

115

Software EVM Toolkit

avoid loss of additional schedule. Since these delays were not caused by Government ECPs,
a replan will not be conducted.
c) BCWSBuild #2, CSCI A, SW Des = $5.5328M
d) BCWPBuild #2, CSCI A, SW Des = $4.9532M
e) ACWPBuild #2, CSCI A, SW Des = $5.809M
f) CPIBuild #2, CSCI A, SW Des = .853
g) BCWPBuild #2, CSCI A, SW Des = .895

2. Build #2 CSCI A Summary
a) BCWPBuild #2, CSCI A = $6.7488M
b) BCWPBuild #2, CSCI A = $6.1692M
c) ACWPBuild #2, CSCI A = $7.089M
d) CPIBuild #2, CSCI A = .87
e) SPIBuild #2, CSCI A = .914

BEGINNING OF PROJECT MONTH 35.
1. Start Build #2, CSCI A, C&UT Phase.

a) The original plan called for C&UT to begin at the beginning of the 34th project month.
The effort was scheduled to last 9 months, completing at the end of the 42nd project month.
Schedule and resources were based on the assumption that there would be approximately 279
software requirements including deferred requirements from Build #1 CSCI A to be coded
during the phase. It was further assumed that 25 software requirements would be added or
modified by the end of the phase. Schedule and personnel to implement these requirements
was sized accordingly. BCWS for the entire task was $9.179M or $1.02M per month.
b) Due to delays in software design for Build #2 CSCI A and Build #1 Integration testing the
start of Build #2 CSCI C&UT was delayed until the beginning of the 35th project month. The
base project plan has not been replanned or rebaselined to insure EVM continues to provide
useful information. Additionally these delays were not caused by an ECP so rebaselining to
account for increased scope is inappropriate. This means that no BCWS or ACWP will
accumulate the during the 34th project month when this task was supposed to have started.
This means a likely slip of one month on the end of the effort. There are currently 300
software requirements expected to complete the Build #2 CSCI A software design phase.
This included 12 software requirements deferred from build #1 CSCI A. There are also an
additional 4 software requirements that were deferred from Build #1, CSCI A which while
they didn’t need design rework, do need to be reworked during the Build #2, CSCI A C&UT
phase. Thus there are a total of 304 software requirements. The task was originally planned
based on starting with 279 with 25 additions and changes, almost all of the preplanned growth
has already been used up. If requirements growth continues at previous rates this will result
in cost overruns and probably additional schedule slips.

END OF PROJECT MONTH 37.
1. Build #2, CSCI A, Software Design Phase.

a) Software design for all 300 requirements was completed 1 month late.
b) BCWSBuild #2, CSCI A, SW Des = $7.904
c) BCWPBuild #2, CSCI A, SW Des = $7.904
d) ACWPBuild #2, CSCI A, SW Des = $9.128

116

Software EVM Toolkit

e) CPIBuild #2, CSCI A, SW Des = .866
f) BCWPBuild #2, CSCI A, SW Des = 1.0

2. Build #2 CSCI A, C&UT Phase
a) C&UT for 111 of 304 software requirements have been completed. As a result of the
completion of Build #1, Integration testing 15 software requirements were deferred for
additional rework in Build #2 CSCI A. Of these 15, 10 were determined to have been related
to issues previously identified and deferred from Build #1, CSCI A CSCI Integration testing
and are already included in the Build #2 CSCI A, C&UT implementation. The remaining 5
deferred software requirements are additional tasking for this phase, resulting in the total
number of software requirements increasing to 309. Additionally, 4 other software
requirements have been changed and 4 new software requirements have been added.
Bringing the total number of software requirements to 313. An ECP is also currently in work.
b) BCWSBuild #2, CSCI A, C&UT = $4.0799M
c) BCWPBuild #2, CSCI A, C&UT = $3.2554M
d) ACWPBuild #2, CSCI A, C&UT = $3.047
e) CPIBuild #2, CSCI A, C&UT = 1.068
f) BCWPBuild #2, CSCI A, C&UT = .798

3. Build #2 CSCI A Summary
a) BCWPBuild #2, CSCI A = $13.1999M
b) BCWPBuild #2, CSCI A = $12.3754M
c) ACWPBuild #2, CSCI A = $13.455M
d) CPIBuild #2, CSCI A = .92
e) SPIBuild #2, CSCI A = .938

END OF PROJECT MONTH 40.
1. Build #2 CSCI A, C&UT Phase

a) C&UT for 203 of 313 software requirements have been completed. Based on this data, it
appears that the C&UT phase will extend at least into the beginning of the 44th project month.
b) ECP #4 was approved and will be considered by EVM in all future months. This ECP
adds 5 new systems requirements. This will increase BCWP for the task by $1.7539M to
$10.9336M. BCWS per month for all subsequent months of the task will be $948.5K.
Schedule will increase by 2 months from 9 months to 11 months.
c) The project plan amended for ECPs #1, 2 and 3, called for Build #2 CSCI A, CSCI
Integration Testing to commence at the beginning of the 41st month. As a result of ECP #4,
this will be delayed until the beginning of the 43rd month.
d) BCWSBuild #2, CSCI A, C&UT = $7.1398M
e) BCWPBuild #2, CSCI A, C&UT = $5.9536M
f) ACWPBuild #2, CSCI A, C&UT = $5.8729M
g) CPIBuild #2, CSCI A, C&UT = 1.014
h) BCWPBuild #2, CSCI A, C&UT = .834

2. Build #2 CSCI A Summary
a) BCWSBuild #2, CSCI A = $16.2598M
b) BCWPBuild #2, CSCI A = $15.0736M

117

Software EVM Toolkit

c) ACWPBuild #2, CSCI A = $16.2809M
d) CPIBuild #2, CSCI A = .926
e) SPIBuild #2, CSCI A = .927

END OF PROJECT MONTH 42.
1. Build #2 CSCI A, C&UT Phase

a) As a result of the software requirements analysis of the 5 new systems requirements in
ECP #4, 20 new software requirements were generated and the design and code for 8 existing
requirements were revised. At this point there are 333 software requirements of which 263
have been successfully completed C&UT.
b) BCWSBuild #2, CSCI A, C&UT = $9.0367M
c) BCWPBuild #2, CSCI A, C&UT = $7.7133M
d) ACWPBuild #2, CSCI A, C&UT = $8.2322M
e) CPIBuild #2, CSCI A, C&UT = .937
f) BCWPBuild #2, CSCI A, C&UT = .854

2. Build #2 CSCI A Summary
a) BCWSBuild #2, CSCI A = $18.1567M
b) BCWPBuild #2, CSCI A = $16.8333M
c) ACWPBuild #2, CSCI A = $18.6402M
d) CPIBuild #2, CSCI A = .903
e) SPIBuild #2, CSCI A = .927

Discussion of the remaining test phases will be skipped since they provide no additional insight
not provided in previous discussion. The remaining phases are included in the following
schedule and EVM summary tables.

118

Software EVM Toolkit

Project Schedule

Project Schedule Key
9 Gray - Initial Project Schedule.
9 Blue – Actual Project Schedule. Schedule caused by approved ECPs and those caused by overruns of initial project schedule

are not differentiated.

Project Schedule Notes
9 While each build includes CSCI A and a CSCI B, CSCI B is not shown on the schedule, just as it is not discussed in the

example.
9 While CSCI B is not included in the schedule, its integration with CSCI A is considered to be included in Build #1 Integration

Test and Build #2 Integration Test.

119

Software EVM Toolkit

Comprehensive Example EVM Summary Table Interpretation

Interpretation:
9 Phase Table – A task table shows EVM data for specific project phase.
9 Summary Table – Shows summary or rollup data from several phases. CSCI Summary

tables roll up data from the: software requirements analysis, software design, C&UT, and
CSCI Integration Testing phases for the current build. Build Summary tables roll up data
from all phases and CSCIs in the build. The Project Summary Table rolls up data from
all phases in all builds and CSCIs of the project.

9 Project Month column – Current month of the project for which the EVM data in the
associated row was collected. Month 1 is the 1st month of the project. EVM data is
always as of the end of the project month.

9 Total BCWS column – Total BCWS allocated for a particular task. In a summary table it
is the total BCWS for all started and completed tasks to date. Changes in the Total
BCWS from one month to another indicate that an ECP has been approved and the
project budget revised. In the discussion for the example, in some cases, the initial Total
BCWS is different than the values in the tables. This occurs when the initial budget has
been revised prior to the start of the task. Only the Total BCWS at the time the task is
currently scheduled to start and any changes after the currently scheduled start will
appear in the phase table.

9 Schedule Length in months column– Specifies the planned length of the phase in months.
Appears only in phase tables. Changes in the length from month to month indicate an
ECP has been approved which changed the project schedule.

9 Total Requirements column – The total number of requirements, software or system,
which are planned for implementation in the phase. Appears only in phase tables.
Changes in the total number of requirements can occur due to ECPs, or due to non-
contractual changes in the number of requirements to be implemented.

9 System or Software Requirements Completed to Data column – Total number of
requirements for which peer reviews in the phase have been successfully completed in
the current project month. Appears only in phase tables.

9 BCWS column – In phase tables, identifies BCWS up to and including the current project
month. In Summary table rollups, it includes the BCWS for all summarized tasks started
and completed prior to or during the current project month.

9 BCWP column – In phase tables, identifies BCWP up to and including the current project
month. In Summary table rollups, it includes the BCWP for all summarized tasks started
and completed prior to or during the current project month.

9 ACWP column – In phase tables, identifies ACWP up to and including the current
project month. In Summary table rollups, it includes the ACWP for all summarized tasks
started and completed prior to or during the current project month.

9 CPI column – Self explanatory.
9 SPI column – Self explanatory.
9 Start Month column – Project month during which the phase is planned to begin.

Appears only in phase tables. In a few cases in the textual description of the project, it
specifies that the phase was originally planned to start prior to the planned start month.

120

Software EVM Toolkit

This indicates that an ECP was approved prior to the start of the phase, which resulted in
a replan of the project schedule. Once a phase starts, this column does not change.

9 End Month Column – Project month during which the phase was planned to be
completed. Only appears in phase tables. If the end month changes, it indicates that an
ECP was approved resulting in

121

Software EVM Toolkit

Comprehensive Example EVM Summary

Build #1, CSCI A, SW Requirements Analysis

Project
Month Total BCWS

Schedule length
in months Total requirements

System
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

2 $1,064,000 5 50 21 $425,600 $446,880 $436,000 1.025 1.050 0 5
4 $1,170,400 5.5 52 39 $851,200 $877,800 $875,000 1.003 1.031 0 6
6 $1,170,400 5.5 52 52 $1,170,400 $1,170,400 $1,170,000 1.000 1.000 0 6

Original Schedule: Start month 0, End Month 5, BCWS = $1,064,000
Final Schedule: Start Month 0, End Month 5.5, BCWS = $1,170,400
Schedule extended and BCWS revised due to ECP #1 in Month 4

Build #1, CSCI A, SW Design

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

4 $7,790,000 12.5 260 22 $623,200 $659,154 $699,000 0.943 1.058 4 16
6 $7,790,000 12.5 260 63 $1,869,600 $1,887,577 $2,097,308 0.900 1.010 4 16

11 $7,790,000 12.5 282 151 $4,985,600 $4,171,241 $5,592,821 0.746 0.837 4 16
14 $7,790,000 12.5 290 232 $6,855,200 $6,232,000 $8,711,242 0.715 0.909 4 16
16 $7,790,000 12.5 290 290 $7,790,000 $7,790,000 $10,790,468 0.722 1.000 4 16

Original Schedule: Start month 4, End Month 15, BCWS = $7,478,400
Final Schedule, Start Month 4, End Month 15.5, BCWS $7,790,000
Schedule Extended and BCWS revised due to ECP #1 in month 4.

Build #1, CSCI A, C&UT

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

14 $7,980,000 12.5 290 69 $1,915,200 $1,898,690 $1,900,000 0.999 0.991 12 24
16 $7,980,000 12.5 290 117 $3,192,000 $3,219,517 $3,166,677 1.017 1.009 12 24
19 $8,660,200 13.5 306 180 $5,107,200 $5,094,235 $5,066,683 1.005 0.997 12 25
21 $8,660,200 13.5 306 226 $6,399,200 $6,396,095 $6,299,844 1.015 1.000 12 25
25 $8,660,200 13.5 306 306 $8,660,200 $8,660,200 $8,600,000 1.007 1.000 12 25

Original Schedule: Start Month 12, End Month 23, BCWS = $7,660,800
Final Schedule: Start Month 12, End Month , BCWS = $8,660,200
Schedule Extended and BCWS revised due to ECP #1 in month 4 and ECP #2 in month 19.

122

Software EVM Toolkit

Build #1, CSCI A, CSCI Integration Test

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

25 $7,448,000 7 306 140 $4,256,000 $3,595,586 $4,300,000 0.836 0.845 22 28
28 $7,448,000 7 306 245 $7,448,000 $6,292,276 $7,556,000 0.833 0.845 22 28
30 $7,448,000 8.5 306 290 $7,448,000 $7,448,000 $8,945,000 0.833 1.000 22 30

Original Schedule: Start Month 20, End Month 26, BCWS = $7,128,800
Final Schedule: Start Month 22, End Month 30, BCWS = $7,448,000
Schedule Extended and BCWS revised due to ECP #1 in month 4 and ECP #2 in month 19.

Build #1, CSCI A Summary
Project
Month Total BCWS BCWS BCWP ACWP CPI SPI

2 $1,064,000 $425,600 $446,880 $436,000 1.025 1.050
4 $8,960,400 $1,474,400 $1,536,954 $1,574,000 0.976 1.042
6 $8,960,400 $3,040,000 $3,057,977 $3,267,308 0.936 1.006

11 $8,960,400 $6,156,000 $5,341,641 $6,762,821 0.790 0.868
14 $16,940,400 $9,940,800 $9,301,090 $11,781,242 0.789 0.936
16 $16,940,400 $12,152,400 $12,179,917 $15,127,145 0.805 1.002
19 $17,620,600 $14,067,600 $14,054,635 $17,027,151 0.825 0.999
21 $17,620,600 $15,359,600 $15,356,495 $18,260,312 0.841 1.000
25 $25,068,600 $21,876,600 $21,216,186 $24,860,468 0.853 0.970
28 $25,068,600 $25,068,600 $23,912,876 $28,116,468 0.850 0.954
30 $25,068,600 $25,068,600 $25,068,600 $29,505,468 0.850 1.000

Original Schedule: Start Month 0, End Month 26, BCWS = $23,332,000
Final Schedule: Start month 0, End Month 30, BCWS = $25,068,600
Schedule Extended and BCWS revised due to ECP #1 in month 4 and ECP #2 in month 19.

123

Software EVM Toolkit

Build #1, CSCI B Summary
Project
Month Total BCWS BCWS BCWP ACWP CPI SPI

2 $1,064,000 $425,600 $446,880 $436,000 1.025 1.050
4 $8,960,400 $1,474,400 $1,536,954 $1,574,000 0.976 1.042
6 $8,960,400 $3,040,000 $3,057,977 $3,267,308 0.936 1.006

11 $8,960,400 $6,156,000 $5,341,641 $6,762,821 0.790 0.868
14 $16,940,400 $9,940,800 $9,301,090 $11,781,242 0.789 0.936
16 $16,940,400 $12,152,400 $12,179,917 $15,127,145 0.805 1.002
19 $17,620,600 $14,067,600 $14,054,635 $17,027,151 0.825 0.999
21 $17,620,600 $15,359,600 $15,356,495 $18,260,312 0.841 1.000
25 $25,068,600 $21,876,600 $21,216,186 $24,860,468 0.853 0.970
28 $25,068,600 $25,068,600 $23,912,876 $28,116,468 0.850 0.954
30 $25,068,600 $25,068,600 $25,068,600 $29,505,468 0.850 1.000

Original Schedule: Start Month 0, End Month 26, BCWS = $23,332,000
Final Schedule: Start month 0, End Month 30, BCWS = $25,068,600
Schedule Extended and BCWS revised due to ECP #1 in month 4 and ECP #2 in month 19.

Build #1, Integration Test

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

30 $10,640,000 5 612 51 $4,256,000 $933,976 $1,336,000 0.699 0.219 29 33
33 $10,640,000 5 612 350 $10,640,000 $6,409,639 $7,498,000 0.855 0.602 29 33
36 $10,640,000 8 612 581 $10,640,000 $10,640,000 $12,473,000 0.853 1.000 29 36

Original Schedule: Start Month 27, End Month 31, BCWS = $10,640,000
Final Schedule: Start Month 29, End Month 36, BCWS $10,640,000
Schedule Extended due to ECP #1 in month 4 and ECP #2 in month 19.

124

Software EVM Toolkit

Build #1, Summary
Project
Month Total BCWS BCWS BCWP ACWP CPI SPI

2 $2,128,000 $851,200 $893,760 $872,000 1.025 1.050
4 $17,920,800 $2,948,800 $3,073,908 $3,148,000 0.976 1.042
6 $17,920,800 $6,080,000 $6,115,954 $6,534,616 0.936 1.006

11 $17,920,800 $12,312,000 $10,683,282 $13,525,642 0.790 0.868
14 $33,880,800 $19,881,600 $18,602,179 $23,562,484 0.789 0.936
16 $33,880,800 $24,304,800 $24,359,834 $30,254,290 0.805 1.002
19 $35,241,200 $28,135,200 $28,109,271 $34,054,302 0.825 0.999
21 $35,241,200 $30,719,200 $30,712,991 $36,520,624 0.841 1.000
25 $50,137,200 $43,753,200 $42,432,372 $49,720,936 0.853 0.970
28 $50,137,200 $50,137,200 $47,825,752 $56,232,936 0.850 0.954
30 $60,777,200 $54,393,200 $51,071,176 $60,346,936 0.846 0.939
33 $60,777,200 $60,777,200 $56,546,839 $66,508,936 0.850 0.930
36 $60,777,200 $60,777,200 $60,777,200 $71,483,936 0.850 1.000

Original Schedule: Start Month 0, End Month 31, BCWS = $57,304,000
Final Schedule: Start Month 29, End Month 36, BCWS $60,777,200
Schedule Extended & BCWP revised due to ECP #1 in month 4 and ECP #2 in month 19.

Build #2, CSCI A, SW Requirements Analysis

Project
Month Total BCWS

Schedule length
in months Total requirements

System
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

27 $1,216,000 4 48 33 $912,000 $836,000 $905,000 0.924 0.917 25 28
28 $1,216,000 4 48 45 $1,216,000 $1,140,000 $1,199,000 0.951 0.938 25 28
29 $1,216,000 4 48 48 $1,216,000 $1,216,000 $1,280,000 0.950 1.000 25 28

Original Schedule: Start Month 24, End Month 27, BCWS = $1,033,600
Final Schedule: Start Month 25, End Month 28, BCWS = $1,216,000
Schedule Extended & BCWP revised due to ECP #1 in month 4, ECP #2 in month 19 and ECP #3 in month 25.

Build #2, CSCI A, SW Design

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

27 $7,904,000 10 264 28 $790,400 $838,303 $795,000 1.054 1.061 27 36
28 $7,904,000 10 264 55 $1,580,800 $1,646,667 $1,590,000 1.036 1.042 27 36
29 $7,904,000 10 270 85 $2,371,200 $2,488,296 $2,411,000 1.032 1.049 27 36
33 $7,904,000 10 300 188 $5,532,800 $4,953,173 $5,809,000 0.853 0.895 27 36
37 $7,904,000 10 300 300 $7,904,000 $7,904,000 $9,128,000 0.866 1.000 27 36

Original Schedule: Start Month 26, End Month 34, BCWS = $6,688,000
Final Schedule: Start Month 27, End Month 36, BCWS = $7,904,000
Schedule Extended & BCWP revised due to ECP #1 in month 4, ECP #2 in month 19 and ECP #3 in month 25.

125

Software EVM Toolkit

Build #2, CSCI A, C&UT

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

37 $9,179,711 9 313 111 $4,079,872 $3,255,425 $3,046,950 1.068 0.798 34 42
40 $9,179,711 9 313 203 $7,139,775 $5,953,614 $5,872,918 1.014 0.834 34 42
42 $10,933,591 11 333 263 $9,036,683 $7,713,303 $8,232,158 0.937 0.854 34 44
43 $10,933,591 11 333 297 $9,985,137 $9,751,581 $9,695,000 1.006 0.977 34 44
44 $10,933,591 11 333 331 $10,933,591 $10,867,924 $10,345,079 1.051 0.994 34 44
45 $10,933,591 11 333 333 $10,933,591 $10,933,591 $10,399,980 1.051 1.000 34 44

Original Schedule: Start Month 34, End Month 42, BCWS = $9,179,000
Final Schedule: Start Month 34, End Month 44, BCWS = $10,933,591
Schedule Extended & BCWP revised due to ECP #1 in month 4, ECP #2 in month 19, ECP #3 in month 25 and ECP #4 in month 40.

Build #2, CSCI A, CSCI Integration Test

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

43 $8,937,600 6 333 56 $1,489,600 $1,503,020 $1,500,000 1.002 1.009 43 48
44 $8,937,600 6 333 112 $2,979,200 $3,006,040 $3,010,000 0.999 1.009 43 48
45 $8,937,600 6 333 168 $4,468,800 $4,509,059 $4,500,000 1.002 1.009 43 48
48 $8,937,600 6 333 333 $8,937,600 $8,937,600 $8,937,600 1.000 1.000 43 48

Original Schedule: Start Month 43, End Month 48, BCWS = $8,937,600
Final Schedule: Start Month 43, End Month 48, BCWS = $8,937,6001

Build #2, CSCI A Summary
Project
Month Total BCWS BCWS BCWP ACWP CPI SPI

27 $9,120,000 $1,702,400 $1,674,303 $1,700,000 0.985 0.983
28 $9,120,000 $2,796,800 $2,786,667 $2,789,000 0.999 0.996
29 $9,120,000 $3,587,200 $3,704,296 $3,691,000 1.004 1.033
33 $9,120,000 $6,748,800 $6,169,173 $7,089,000 0.870 0.914
37 $18,299,711 $13,199,872 $12,375,425 $13,454,950 0.920 0.938
40 $18,299,711 $16,259,775 $15,073,614 $16,280,918 0.926 0.927
42 $20,053,591 $18,156,683 $16,833,303 $18,640,158 0.903 0.927
43 $28,991,191 $20,594,737 $20,374,601 $21,603,000 0.943 0.989
44 $28,991,191 $23,032,791 $22,993,963 $23,763,079 0.968 0.998
45 $28,991,191 $24,522,391 $24,562,650 $25,307,980 0.971 1.002
48 $28,991,191 $28,991,191 $28,991,191 $29,745,580 0.975 1.000

Original Schedule: Start Month 24, End Month 48, BCWS = $25,838,200
Final Schedule: Start Month 25, End Month 48, BCWS = $28,991,191
Schedule Extended & BCWP revised due to ECP #1 in month 4, ECP #2 in month 19, ECP #3 in month 25 and ECP #4 in month 40.

126

Software EVM Toolkit

Build #2, CSCI B Summary
Project
Month Total BCWS BCWS BCWP ACWP CPI SPI

27 $9,120,000 $1,702,400 $1,674,303 $1,700,000 0.985 0.983
28 $9,120,000 $2,796,800 $2,786,667 $2,789,000 0.999 0.996
29 $9,120,000 $3,587,200 $3,704,296 $3,691,000 1.004 1.033
33 $9,120,000 $6,748,800 $6,169,173 $7,089,000 0.870 0.914
37 $18,299,711 $13,199,872 $12,375,425 $13,454,950 0.920 0.938
40 $18,299,711 $16,259,775 $15,073,614 $16,280,918 0.926 0.927
42 $20,053,591 $18,156,683 $16,833,303 $18,640,158 0.903 0.927
43 $28,991,191 $20,594,737 $20,374,601 $21,603,000 0.943 0.989
44 $28,991,191 $23,032,791 $22,993,963 $23,763,079 0.968 0.998
45 $28,991,191 $24,522,391 $24,562,650 $25,307,980 0.971 1.002
48 $28,991,191 $28,991,191 $28,991,191 $29,745,580 0.975 1.000

Original Schedule: Start Month 24, End Month 48, BCWS = $25,838,200
Final Schedule: Start Month 25, End Month 48, BCWS = $28,991,191
Schedule Extended & BCWP revised due to ECP #1 in month 4, ECP #2 in month 19, ECP #3 in month 25 and ECP #4 in month 40.

Build #2, Integration Test

Project
Month Total BCWS

Schedule length
in months Total requirements

Software
Requirements
Completed to
date BCWS BCWP ACWP CPI SPI Start Month

End
Month

49 $12,157,765 6 666 74 $2,026,294 $1,350,863 $1,950,000 0.693 0.667 49 54
51 $12,157,765 6 666 222 $6,078,882 $4,052,588 $5,800,000 0.699 0.667 49 54
54 $12,157,765 6 666 444 $12,157,765 $8,105,176 $11,750,000 0.690 0.667 49 54
57 $12,157,765 6 666 666 $12,157,765 $12,157,765 $17,635,000 0.689 1.000 49 54

Original Schedule: Start Month 49, End Month 54, BCWS = $12,157,765
Final Schedule: Start Month 49, End Month 57, BCWS = $12,157,765

127

Software EVM Toolkit

Build #2, Summary
Project
Month Total BCWS BCWS BCWP ACWP CPI SPI

27 $18,240,000 $3,404,800 $3,348,606 $3,400,000 0.985 0.983
28 $18,240,000 $5,593,600 $5,573,333 $5,578,000 0.999 0.996
29 $18,240,000 $7,174,400 $7,408,593 $7,382,000 1.004 1.033
33 $18,240,000 $13,497,600 $12,338,347 $14,178,000 0.870 0.914
37 $36,599,422 $26,399,743 $24,750,849 $26,909,900 0.920 0.938
40 $36,599,422 $32,519,550 $30,147,229 $32,561,836 0.926 0.927
42 $40,107,182 $36,313,366 $33,666,607 $37,280,316 0.903 0.927
43 $57,982,382 $41,189,474 $40,749,202 $43,206,000 0.943 0.989
44 $57,982,382 $46,065,582 $45,987,927 $47,526,158 0.968 0.998
45 $57,982,382 $49,044,782 $49,125,301 $50,615,960 0.971 1.002
48 $57,982,382 $57,982,382 $57,982,382 $59,491,160 0.975 1.000
49 $70,140,147 $60,008,676 $59,333,245 $61,441,160 0.966 0.989
51 $70,140,147 $64,061,264 $62,034,970 $65,291,160 0.950 0.968
54 $70,140,147 $70,140,147 $66,087,558 $71,241,160 0.928 0.942
57 $70,140,147 $70,140,147 $70,140,147 $77,126,160 0.909 1.000

Original Schedule: Start Month 25, End Month 54, BCWS = $63,834165
Final Schedule: Start Month 25, End Month 57, BCWS = $70,140,147
Schedule Extended & BCWP revised due to ECP #1 in month 4, ECP #2 in month 19, ECP #3 in month 25 and ECP #4 in month 40.

128

Software EVM Toolkit

TO COMPLETE PERFORMANCE INDEX (TCPI)

 TCPI WORK REMAINING
COST REMAINING

= BAC – BCWP CUM
EAC – ACWP CUM(EAC)

 =

Defense Systems Management College
Earned Value Management Gold Card

Management Reserve TAB

Cost
Variance

Schedule Variance

BCWP

BCWS

$

EAC

Time
Now

Completion
Date

PMB

• Schedule Variance SV = BCWP – BCWS
• Cost Variance CV = BCWP – ACWP

BCWP BCWS

BCWP ACWP

VARIANCES (Favorable is positive, Unfavorable is negative)

CV % = CV BCWP

SV % = SV BCWS

• Variance at Completion VAC = BAC – EAC

ESTIMATE AT COMPLETION (EAC = ACWP + Estimate for Remaining Work)

EAC CPI = CPI CUM
BAC • EACComposite = ACWP CUM + BAC – BCWP CUM

(CPI CUM) • (SPI CUM)

• Cost Efficiency

• Schedule Efficiency

PERFORMANCE INDICES

=
BAC

BCWP CUM

= ACWP CUM
BAC

OVERALL STATUS

• Percent Complete

• Percent Spent

CPI =

SPI =

 (Favorable is > 1.0, Unfavorable is < 1.0) _

BAC

129

APPENDIX K. EARNED VALUE MANAGEMENT GOLD CARD

ACWP

Software EVM Toolkit

+ OVERRUN

 TERMINOLOGY
NCC – Negotiated Contract Cost Contract price less profit / fee

 AUW – Authorized Unpriced Work Work authorized to start, not yet negotiated
 CBB – Contract Budget Base Sum of NCC and AUW
 OTB – Over Target Baseline Sum of CBB and recognized overrun

TAB – Total Allocated Budget Sum of all contract budgets - NCC,CBB or 0TB (includes MR)
BAC – Budget At Completion Cumulative BCWS - total end point of PMB (excludes MR)
PMB – Performance Measurement Contract time-phased, budgeted work plan (excludes MR)

 Baseline
MR – Management Reserve Contractor PM’s Contingency budget
UB – Undistributed Budget Broadly defined activities not yet distributed to CAs
CA – Control Account Contractor key management control point - CWBS element
WP – Work Package Near-term, detail-planned activities within a CA
PP – Planning Package Far-term CA activities not yet defined into detail Work Packages
BCWS – Budgeted Cost for Work Scheduled Value of work scheduled -- PLAN
BCWP – Budgeted Cost for Work Performed Value of work completed -- EARNED VALUE
ACWP – Actual Cost of Work Performed Cost of work completed -- ACTUAL COSTS INCURRED
EAC – Estimate At Completion Estimate of total contract costs

EVM POLICY (DOD 5000.2-R)
ALTERNATIVE EV MANAGEMENT APPLICATIONS

LEVEL 1. EVMS Industry Standards Management Application
Contractor management system certified as meeting Industry Standards

• Required for non-FFP contract exceeding $73M RDT&E or $315M in procurement (CY00$).
• PM may apply to contracts below-threshold —consider benefits, risk and criticality.
• Contractor must establish, maintain, and use a system that meets the the 32 Industry Standards.
• Cost Performance Report (CPR) delivered as a CDRL item.
 • 5 Formats (WBS, Organization, Baseline, Staffing, and Explanations)

LEVEL 2. C/SSR Management Application
Contractor Management system not certified
 • Required for non-FFP contract exceeding $6.3M (CY00$) and 12 months in length.
 •’Reasonably objective’ EV methods acceptable, traceability at higher level (CA vs WP)

 •The CPR or the Cost/Schedule Status Report (C/SSR) delivered as a CDRL item.

EVM Home Page — http://www.acq.osd.mil/pm/
DSMC EV E-Mail Address — EVM@DSMC.DSM.MIL

DSMC EV Phone No. — (703) 805–2848/2968 (DSN 655)

 PMB Management Reserve

 Control Accounts Undistributed Budget

 Contract Price

Work Packages Planning Packages

 Profit / Fee

= OTB
= CBB

+ AUW

NCC
TAB

June 2000

130

Software EVM Toolkit

131

Intentionally left blank

	Executive Summary
	The Software Project
	Introduction
	Software Project Measurement
	Software Metrics & Measurement References
	Base Measures, Derived Measures and Metrics
	Using Measures As A Basis For An EVMS

	Project Management and Planning Activities
	Peer Reviews
	Integrated Baseline Review (IBR)
	Software Risk Management
	Measurement IPT

	Software Lifecycle Phases
	Requirements Analysis
	System Requirements
	Software Requirements

	Design
	Preliminary Design
	Detailed Design

	Code & Unit Test (C&UT)
	Test
	Computer Software Component (CSC) Integration and Test
	Computer Program (CSCI) Test
	Software and Hardware System Integration & Test

	Software Rework

	Software Development Models
	Spiral Development Lifecycle Model
	Incremental Development Lifecycle Model
	Waterfall Development Lifecycle Model

	The Software Work Breakdown Structure (WBS)
	Software Code Issues
	New Code
	Reuse Code
	Modified Code
	Deleted Code
	Automatically Generated Code
	Converted/Ported Code
	Commercial Off the Shelf (COTS).

	Software Metrics & Measures
	Requirements
	Recommendation
	Overview & Description
	Phases Using Requirements for EVM
	Software Requirements Analysis Phase
	Software Design
	Code & Unit Test (C&UT) Phase
	Test Phases
	Software Rework

	Deferred Functionality or Requirements
	Capacity & Performance Requirements Issues
	Description
	Technical Performance Measurements (TPM)

	General Requirements Issues

	Size
	Source Lines Of Code (SLOC)
	Recommendation
	Overview & Description
	SLOC EVM Issues Summary

	Equivalent SLOC (ESLOC)
	Recommendation
	Overview & Description
	ESLOC EVM Issues Summary

	Function Points (FP)
	Recommendation
	Overview & Description
	Phases Using Function Points for EVM
	Software Requirements Analysis Phase
	Software Design Phase
	Code & Unit Test Phase
	Test Phases
	Rework
	Capacity, Performance and General Requirements Issues

	FP EVM Issues Summary

	Modules
	Recommendation
	Overview & Description
	Modules EVM Issues Summary

	Test Procedures/Cases
	Recommendation
	Overview & Description
	Test Procedures/Cases EVM Issues Summary

	Software Defects
	Recommendation
	Overview & Description
	Software Defects EVM Issues Summary

	Schedule Milestones
	Recommendation
	Overview & Description
	Schedule and Milestone EVM Issues Summary

	Level of Effort (LOE)
	Recommendation
	Overview & Description

