

2016 Annual NRLRC Luncheon Program

February 17, 2016 - Orlando, Florida

<u>Part 2:</u> <u>Technical observations from the field</u>

Presented by

Mark S. Graham

Vice President, Technical Services National Roofing Contractors Association

Wind design for roof assemblies

Specifying a wind warrantee, in itself, is not proper wind design

Proper wind design

- Determine wind loads
 - IBC Ch. 16-Structural Design
 - ASCE 7-10, "Minimum Design Loads for Buildings and Other Structures"
- Design for resistance
 - FM 4474
 - UL 580 or UL 1897

IBC requires (Sec. 1603) design wind loads to be shown in the Contract Documents

FM 1-28 has been updated

www.fmglobaldatasheets.com

- October 2015 update
- Based upon ASCE 7-05 with enhancements
- Reformatted
- Be cautious of FMinsured projects
- See Professional Roofing, March 2016

ASCE 7-16 (public review draft)

- Revised basic wind speed map
- Changes (and new) pressure coefficients
- Revised perimeter and corner zones

Expect higher field, perimeter and corner uplift pressures

GC_p pressure coefficients

 $h \le 60$ ft., gable roofs ≤ 7 degrees

Zone	ASCE 7-10	ASCE 7-16 (draft)
1'		-0.9
1	-1.0	-1.7
2 (perimeter)	-1.8	-2.3
3 (corners)	-2.8	-3.2

Proper wind design is oftentimes avoided... and it's only going to get more complicated