
IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 309 | P a g e

Software Defect Prediction by Convolution Neural Network

using PROMISE Dataset

Megha Saloni1, Sucheta2

Yamuna Group of Institutions Engineering and Technology, Yamuna Nagar, Haryana

Abstract- Machine Learning approaches are helpful & have

well-tried to be helpful in resolution issues & technical

problems that lack data. In most cases, the package domain

issues may be characterized as a method of learning that

depends on the assorted circumstances and changes of the

technical issue being addressed in keeping with the principles

of machine learning, a prophetic model is made by exploitation

machine learning approaches and classified into defective and
non-defective modules. Machine learning techniques facilitate

developers to retrieve helpful data when the classification of

kinds of technical problems being addressed in an exceedingly

specific field. This successively permits them to analyze

knowledge from totally different views, which may be used

because of the formation base of constructive concepts & varied

techniques to handle the technical problems. Machine learning

techniques are well-tried to be helpful within the detection of

package bugs. during this analysis prediction by Convolution

based mostly feature choice and Learning by Random forest. In

the proposed approach, the accuracy and precision always

improve and it also improves class wise
Keywords- software,defect,cnn,optimization

 I. INTRODUCTION

A DEFECT / BUG program is a problem in a software product

that does not satisfy a demand for functionality or end-user

requirements. In other words, a fault is a coding or logic error

which causes a program to defect or generate
wrong/unanticipated outcome.

• A system having a significant number of vulnerabilities is

called unstable.

• Reports that describe program glitches are considered error

reports.

• Bug-finding programs are regarded as error detection devices.

• The method of bug-finding is called debugging.

• The deliberate practice of inserting bugs into a software
system to approximately check coverage by tracking the

identification of those bugs is defined as bugging.

1.3.1 Software Defect Classification

Software Defects/Bugs are generally classified as per [51]:

1. Severity / Impact: Fault SEVERITY or Impact is a software

fault (bug) designation which indicates the degree of negative

effect on software quality.

2. Probability / Visibility: DEFECT PROBABILITY, also

known as Error Visibility or Failure Probability or Failure

Visibility, shows the probability that a recipient may find the

defect/bug.

• High: reached by all or nearly all feature users

• Medium: encountered by around 50 per cent of function users.

• Low: Found by very few application users

Defect Probability can also be denoted in percentage (%).

3. Priority / Urgency: Fault PRIORITY, also recognized as

Error Priority, shows how critical or urgent a fault is to be

repaired. While the Program Tester will originally set

preference, the Project/Product Manager typically finalizes it.

4. Related Dimension of Quality: This involves evaluating the

system's accessibility, flexibility, competition, quality,

functionality, deployment capability, maintenance,
consistency, portability, durability, monitoring, usability as

well as protection of the system.

5. Related Module / Component: Linked
Applications/Devices suggest the program framework or

system in which the fault is found. It offers details regarding

that whether the component/module is unstable or unsafe.

 Module/Component A, B, C

6. Phase Detected: This indicates the phase in the software

development lifecycle where the defect was recognized.

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 310 | P a g e

 Unit, Integration, System, Acceptance Testing

7. Phase Injected: Stage Injected shows the point in which the

error was inserted in the software creation lifecycle. In the

lifecycle of software creation Process, injection is often faster

than the steps Observed. Only after careful root-cause
examination of the problem will the Process Injected be

identified.

 Requirements Development

 High Level Design

 Detailed Design

 Coding

 Build/Deployment

 Phase Detected

 Phase Injected

Detecting defects in a Software Project is necessary for the

successful implementation & working of the software project.
For the reason of project estimation, the below mentioned 4

steps are considered [33]:

• Size estimation of the product development: Lines of Code

(LOC) and Feature Points (FP) are available which aid in this

form of estimation. However, several other approaches are

often used to quantify defects like Use case points (UCP), Story

points etc. In this calculation there are other benefits as well as

demerits.

• Effort Defect in person-month or person-hour words.

• Failure to plan calendar months.

Project expense Dollar fault, or some other local currency.

II. RELATED WORK

Aslı Sar et al. [1] carried out a comprehensive study of CSE
literature. The researchers reported 158 studies and 6 secondary

studies related to them. They further checked 67 primary

studies which carried our standards for quality evaluation. They

identified 10 study questions as well as synthesized various

methods with respect to each topic included in primary studies.

The aim of this analysis is to perform a detailed review of

software engineering (CSE) crowdsourcing regarding business

models, resources, systems, processes for software creation, but

digital economy. Various research teams study crowdsourcing
software for coding as well as reviewing activities.

Crowdsourcing practices a specific methodology that puts

greater focus on project planning, task definition as well as

deployment. There is not adequate literature in CSE on

strategies to study effort assessment and related cost factors.

The nature of the mission as well as its projected length take an

important part in predicting it.

Hyunjoo Kim et al. [2] established a model for calculating

installation costs via the collection of IFC cost details. This

report concentrated on repairing walls of office buildings, and

the costs related with the repair. The suggested solution

described two key benefits. Next, the substitution details used

to equate various situations is immediately retrieved from a
BIM file as well as analyzed using IFC to determine a cost

estimate. Next, the precision is improved by comparing specific

cost-related details, like contractors and suppliers, with the

support of CBR in calculating installation costs.

AssiaNajm et al. [3] elaborate a comprehensive mapping

analysis that categorizes DT articles in line with the following

criteria: work methodology, form of input, tools used in

conjunction with DT approaches in addition to defining the

platforms and patterns for publishing. An automated quest was

carried out on five digital repositories to carry out a

comprehensive mapping of DT studies, primarily devoted to
SDEE conducted in the period 1985-2017. The researchers find

46 studies which are significant. The findings essentially

showed that most of the researchers depend on the form of

contribution to the methodology.

PrzemyslawPospieszny et al. [4] Reduces the difference

between up-to-date study results as well as operational

execution by implementing efficient and realistic machine

learning delivery and management strategies, leveraging

research findings as well as industry’s best practices. This was

done by the implementation of ISBSG dataset, smart data
planning, an average ensemble of three machine learning

algorithms and cross validation. The effort in addition to length

calculation models obtained was intended to get a decision-

making method for companies designing or integrating

information systems.

Ahmed BaniMustafa et al. [5] proposes the design of this

forecast utilizing three machine learning methods applied to

COCOMO NASA pre-processed test data spanning 93 projects:

Naïve Bayes, Logistic Regression and Random Forests. The

developed models were cross-validated using five folds as well

as assessed using Classification Accuracy, Precision, Recall,
and AUC. The effects of the calculation were then contrasted

with that of COCOMO. All the methods used have been

effective in obtaining better performance than the COCOMO

model as opposed to this model. The best efficiency, however,

was obtained using both Naïve Bayes or Random Forests. Due

to the fact that in its ROC curve as well as Recall ranking, Naïve

Bayes outperformed both the other two methods. Random

Forests has a stronger Confusion Index, and scored better in

both Identification Accuracy as well as Precision metrics. The

findings of this research affirm the relevance of data mining in

general, as well as the methodology applied to machine
assessment in specific.

https://www.sciencedirect.com/science/article/pii/S0164121219300779#!
https://ieeexplore.ieee.org/author/37086579743
https://www.sciencedirect.com/science/article/pii/S0164121217302947#!
https://ieeexplore.ieee.org/author/37086481074

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 311 | P a g e

Rekha Tripathi et al. [6] present the comparative analysis

between traditional techniques and Machine Learning (ML)

methods. Findings show that ML approaches have a more

reliable estimate of effort relative to conventional methods of

estimating effort. In this article, the contrasts of various
Machine learning methods are performed to research whether

the ML approach is more effective, and in which scenario.

Ashu Bansal et al. [7] stresses the production of a fuzzy multi-

criteria-based approach to decision-making by combining

Fuzzy Set Theory as well as Weighted Distance Dependent

Approximation. To illustrate the accuracy of the suggested

technique, framework testing is also performed by comparison

with current methodologies. Apart from this, sensitivity review

is also conducted to test the criticality of the criteria collection.

Munialo, et al. [8] exhaustively study current software
commitment calculation approaches by developing calculation

methods tailored to modernise app creation techniques.

Deepika Badampudiet al. [9] Identify considerations that could

affect the decision in the literature to select between specific

component roots and decision-making approaches (for

example, optimization). A systematic review research was

performed on peer-reviewed literature. The study conducted a

minimum of 24 main trials. The sources of the part were

contrasted primarily in-house vs. COTS and COTS vs. OSS.

They established 11 factors which affect or influence the
decision to choose the origin of a variable. When evaluating the

origin of the variable, little information existed about the

relative influence of a variable origin on the element. Models

of optimisation are the methodology most frequently discussed

in the solutions.

Tassio Valeet al. [10] investigate the modern CBSE area by a

thorough analysis of the literature. To this end, 1231 studies

were reviewed that range from 1984 to 2012. Using the

available data, this paper discusses five dimensions of CBSE:

key goals, study subjects, fields of use, strength of analysis as

well as techniques of applied science. The key priorities defined
were to maximize efficiency, to save money or boost quality.

The technology areas that are often discussed are

homogeneously split into commercial-off -the-shelf (COTS),

centralized and embedded systems.

Ye Yang et al. [11] presents a conceptual design with a modern

pedagogical approach utilizing LEGOs for teaching principles

as well as techniques for device calculation as well as

measurement. Two case study sessions test the framework: one

on seasoned part-time business graduates, and one on novice

on-campus graduates. Results from both sessions suggest a
good effect on learning for the students.

Sathya, R. et al. [12] recognizes key factors that in effect

propose approaches to increase the quality and usability of

apps. The paper also illustrates how the different methods of

defect prediction are applied, contributing to a decreased

severity of faults.

Vidisha Agrawal et al. [13] the projected time for the Neuro

fuzzy model generated for three membership functions is

contrasted with current versions of the neural network.

Compared with neural network simulations, the Neuro fuzzy

construct for Gaussian, triangular and trapezoidal membership

function is used. Lopez Martin dataset was used for this

analysis with 41 units. Based on five separate parameters, the

researchers contrasted the three separate membership structure

models to current neural network models. Such models include

Mean Magnitude Relative Error (MMRE), Forecast (Pred), as

well as Root Mean Squared Error (RMSE). Eventually, it is
found from the contrast that the model Neuro Fuzzy uses the

feature of Trapezoidal membership and thus, provides better

outcomes than all other versions.

Federica Sarro et al. [15] introduce a bi-objective

commitment evaluation method incorporating confidence

interval analysis as well as the Mean Absolute Error

assessment. The researchers are assessing the suggested

algorithm on three separate alternate models, reference

comparators as well as existing state-of - the-art initiative

estimators extended to five Pledge registry real-world datasets,
affecting a total of 724 specific software ventures. The findings

show that the suggested method surpasses the standard, modern

as well as all three alternate formulations in all five datasets,

statistically substantially (p <; 0.001) even with broad impact

size (A 12 al 0.9).

MirosławOchodek et al. [16] examine how the calculation

processes of FPA (Function Point Analysis) and SNAP

(Software Non-Functional Evaluation Process) apply to each

other, as well as offer some early insights into the use of SNAP

to calculate the non-functional device scale. The study findings

indicate that SNAP will help to alleviate certain well-known
FPA process deficiencies. We have also found several possible

issues associated with implementing SNAP in a price-per-size-

unit pricing environment, though.

Meenakshi Saroha et al. [17] provide discussion of different

techniques used to estimate effort; however, the primary

emphasis is on the resources as well as mechanisms built to

estimate effort depends on the Use Case Point (UCP) model.

Such tools have additional functions such as including further

aspects that may influence the execution of a project as well as

the potential to provide a better estimation than current ones.

https://www.sciencedirect.com/science/article/pii/S0164121216301212#!
https://www.sciencedirect.com/science/article/pii/S0164121215002095#!
https://ieeexplore.ieee.org/author/37085345002
https://ieeexplore.ieee.org/author/37586957900
https://ieeexplore.ieee.org/author/37085498313

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 312 | P a g e

 III. PROPOSED APPROACH

STEP 1: Select data from the promise dataset and divide it into

features and labels.

STEP 2: Features are convoluted by convolution layers and

mapped by using two activation functions; namely sigmoid and

TANH, because different efficient values come together as a

result.

STEP 3: After activation, function is mapped by max polling,

then merged in matrix A and labelled in Matrix B at last.

STEP 4: Upon labelling, apply sigmoid function which finally

gives us the abstract features.

STEP 5: Features are learned by decision tree and make no

overlapped forest.

STEP 6: Out of the forest, find useful trees using the boosting

approach, then make the final model and analyse the different

parameters.

4.2 Methodology

4.2.1 Convolution with Random forest

STEP 1: In the first step, extract or parse the features of the

promise dataset and concentrated with the feature. Both the
features are provided with the software’s domain-based

information, along with the complexity of the software.

STEP 2: After extraction of the features, the label of aging is

provided but not the aging. So, the proposed approach initially

finds the software module and predicts whether the module is

reused or not. If it is predicted, then it is classified according to

feature aging but not aging.

STEP 3: Extracted features are convoluted and then the

mapping is done by using sigmoid and TANH activation
function. These functions not only map the non-linearity of

features but also map the bigger value to the abstract value.

STEP 4: The proposed approach uses two types of convolution:

local and global-local pooling. This in turn improves the local

optimization of features and the global features improve the

overall efficiency of the features.

STEP 5: After extraction of the features, reusability-based

regression is applied using the following architecture.

STEP 6: After reusability, prediction selects the decision tree

by:

STEP 7: Random forest generates a large number of decision

trees and selects an effective tree out of the bulk number of

decision trees by the following equation:

In the above equation, mapping of trees is done and prediction

is done depending upon convolution aging classification.

STEP 8: Analyze the predicted model by precision, recall, and

accuracy

Convolutional Neural Networks (CNN), were first introduced

by Yann LeCun's in 1998 for Optical Character Recognition

(OCR), where they have shown impressive performance on

character recognition. CNN is not just used for image related
tasks, they are also commonly used for signals and language

recognition, audio spectrograms, video, and volumetric images.

IV RESULTS

4.1 Result Analysis

fig 4.1show the recall and comparison analysis respectively.

But in fig 4.1, the analysis represents recall not always but

shows signs in the proposed approach in case of KC2 dataset.

The average performance of all five datasets recalls improves
effectively in the proposed approach as compared to the

existing approach.

Figure 4.1 Comparative Analysis of different dataset on the

existing and proposed approach

80

85

90

95

100

CM1 JM1 KC1 KC2 PC1

COMPARSION

Accuracy (CNN) Accuracy (Ensemble)

Precision (CNN) Precision (Ensemble)

Recall (CNN) Recall (Ensemble)

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 313 | P a g e

4.2.2 Class wise Analysis

Figure 4.2 Comparative Analysis CM1 dataset on an existing

and proposed approach based on different classes

In figure 4.2, the precision analysis of different PROMISE

datasets is done. The graph shows the precision pattern which

is not the same as in the case of accuracy. In precision cases,

increased precision can be observed in the two datasets i.e.

CM1 in different classes of precision recall and accuracy.

Figure 4.3v Comparative Analysis JM1 dataset on an existing

and proposed approach based on different classes

In figure 4.3, the precision analysis of different PROMISE

datasets is done. The graph shows the precision pattern which
is not the same as in the case of accuracy. In precision cases,

increased precision can be observed in the two datasets i.e. JM1

in different classes of precision recall and accuracy. defective

and not defective

Figure 4.4 Comparative Analysis KC1 dataset on an existing

and proposed approach based on different classes

In figure 4.5, the precision analysis of different PROMISE

datasets is done. The graph shows the precision pattern which

is not the same as in the case of accuracy. In precision cases,

increased precision can be observed in the two datasets i.e.
KC1of different binary classes

Figure 4.5 Comparative Analysis KC2 dataset on an existing

and proposed approach based on different classes

In figure 4.6, the precision analysis of different PROMISE

datasets is done. The graph shows the precision pattern which

is not the same as in the case of accuracy. In precision cases,

increased precision can be observed in the two datasets i.e. KC2

different classes

88

90

92

94

96

Accuracy
(CNN)

Accuracy
(PSO)

Precision
(CNN)

Precision
(PSO)

Recall
(CNN)

Recall
(PSO)

CM1

Defect Not Defect

91

91.5

92

92.5

93

93.5

94

94.5

95

95.5

Accuracy
(CNN)

Accuracy
(PSO)

Precision
(CNN)

Precision
(PSO)

Recall
(CNN)

Recall
(PSO)

JM1

Series1 Series2

90
90.5

91
91.5

92
92.5

93
93.5

94
94.5

KC1

Series1 Series2

92.5

93

93.5

94

94.5

95

95.5

96

96.5

97

Accuracy
(CNN)

Accuracy
(PSO)

Precision
(CNN)

Precision
(PSO)

Recall
(CNN)

Recall
(PSO)

KC2

Defect Not Defect

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 314 | P a g e

Figure 4.6 Comparative Analysis PC1 dataset on an existing

and proposed approach based on different classes

In figure 4.6, the precision analysis of different PROMISE

datasets is done. The graph shows the precision pattern which

is not the same as in the case of accuracy. In precision cases,

increased precision can be observed in the two datasets i.e. PC1
of different binary classes.

 IV CONCLUSION

CNN with Random forest may be a new technique which might

prove appropriate for binary classification tasks, that is said to

and contains components of non-parametric applied statistics,

neural networks and machine learning. Like classical

techniques, PSO conjointly classifies an organization as solvent

or insolvent consistent with its score price, which may be an

operation of selected money ratios. However, this operate is

neither linear nor a constant quantity. The formal basis of PSO

is going to be explained afterwards, in short. In the case of a

linear PSO, wherever the score operates remain direct and a

constant quantity, they can initially be introduced to clarify the
conception of margin maximization in an exceedingly

simplified context. In the graph analysis, the precision pattern

is not the same as in the case of accuracy. In the case of

precision, there is increased precision in two datasets, JM1 and

KC1. However, in the case of KC2, the precision reduces.

V REFERENCES
[1]. Sarı, Aslı, Ayşe Tosun, and GülfemIşıklarAlptekin. "A

systematic literature review on crowdsourcing in software

engineering." Journal of Systems and Software 153 (2019): 200-
219.

[2]. Kim, Hyunjoo, and Jonghyeob Kim. "A Case-Based Reasoning
Model for Retrieving Window Replacement Costs through

Industry Foundation Class." Applied Sciences 9, no. 22 (2019):
4728.

[3]. Najm, Assia, AbdelaliZakrani, and Abdelaziz Marzak. "Decision
Trees Based Software Development Effort Estimation: A
Systematic Mapping Study." In 2019 International Conference of

Computer Science and Renewable Energies (ICCSRE), pp. 1-6.
IEEE, 2019.

[4]. Pospieszny, Przemyslaw, Beata Czarnacka-Chrobot, and Andrzej
Kobylinski. "An effective approach for software project effort
and duration estimation with machine learning
algorithms." Journal of Systems and Software 137 (2018): 184-
196.

[5]. BaniMustafa, Ahmed. "Predicting software effort estimation

using machine learning techniques." In 2018 8th International
Conference on Computer Science and Information Technology
(CSIT), pp. 249-256. IEEE, 2018.

[6]. Tripathi, Rekha, and P. K. Rai. "Machine Learning Methods of
Effort Estimation and It’s Performance Evaluation Criteria."
International Journal of Computer Science and Mobile
Computing 6, no. 1 (2017): 61-67.

[7]. Bansal, A., B. Kumar, and R. Garg. "Multi-criteria decision-

making approach for the selection of software effort estimation
model." Management Science Letters 7, no. 6 (2017): 285-296.

[8]. Munialo, Samson Wanjala, and Geoffrey MuchiriMuketha. "A
review ofagile software effort estimation methods." (2016).

[9]. Badampudi, Deepika, ClaesWohlin, and Kai Petersen. "Software
component decision-making: In-house, OSS, COTS or
outsourcing-A systematic literature review." Journal of Systems
and Software 121 (2016): 105-124.

[10]. Vale, Tassio, Ivica Crnkovic, Eduardo Santana De Almeida,
Paulo Anselmo Da Mota Silveira Neto, YguaratãCerqueira
Cavalcanti, and Silvio Romero de LemosMeira. "Twenty-eight
years of component-based software engineering." Journal of
Systems and Software 111 (2016): 128-148.

[11]. Yang, Ye, and Linda Laird. "Teaching software estimation
through LEGOS." In 2016 IEEE 29th International Conference
on Software Engineering Education and Training (CSEET), pp.
56-65. IEEE, 2016.

[12]. Sathya, R., and P. Sudhakar. "Improve Software Quality using
Defect Prediction Models." International Journal of Engineering
and Management Research (IJEMR) 6, no. 6 (2016): 24-29.

[13]. Agrawal, Vidisha, and Vishal Shrivastava. "Performance
evaluation of software development effort estimation using
neuro-fuzzy model." Int. J. Emerg. Res. Manag. Technol 4
(2015): 193-199.

[14]. Fehlmann, Thomas. "4.4 When to Use COSMIC FFP? When to

Use IFPUG FPA? A Six Sigma View." COSMIC Function
Points: Theory and Advanced Practices (2016): 260.

[15]. Sarro, Federica, Alessio Petrozziello, and Mark Harman. " Multi-
objective software effort estimation." In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pp.
619-630. IEEE, 2016.

[16]. Ochodek, Mirosław, and BatuhanOzgok. "Functional and Non-
functional Size Measurement with IFPUG FPA and SNAP—

Case Study." In Software Engineering in Intelligent Systems, pp.
19-33. Springer, Cham, 2015.

[17]. Saroha, Meenakshi, and Shashank Sahu. "Tools & methods for
software effort estimation using use case points model—A

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

Accuracy
(CNN)

Accuracy
(PSO)

Precision
(CNN)

Precision
(PSO)

Recall
(CNN)

Recall
(PSO)

PC1

Defect Not Defect

IJRECE VOL. 8 ISSUE 3 JULY.-SEPT. 2020 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 315 | P a g e

review." In International Conference on Computing,
Communication & Automation, pp. 874-879. IEEE, 2015.

[18]. Du, Wei Lin, Luiz Fernando Capretz, Ali Bou Nassif, and Danny
Ho. "A hybrid intelligent model for software cost
estimation." arXiv preprint arXiv:1512.00306 (2015).

[19]. Patil, Lalit V., Sagar K. Badjate, and S. D. Joshi. "Develop
Efficient Technique of Cost Estimation Model for Software
Applications." International Journal of Computer
Applications 87, no. 16 (2014).

[20]. Nerkar, L. R., and P. M. Yawalkar. "Software Cost Estimation
using Algorithmic Model and Non-Algorithmic Model a
Review." Int J Comput App 2 (2014): 4-7.

[21]. Yı̇ğı̇t, Ferruh, and ÖmerKaanBaykan. "A new feature selection

method for text categorization based on information gain and
particle swarm optimization." In 2014 IEEE 3rd International
Conference on Cloud Computing and Intelligence Systems, pp.
523-529. IEEE, 2014.

[22]. Madheswaran, M., and D. Sivakumar. "Enhancement of
prediction accuracy in COCOMO model for software project
using neural network." In Fifth International Conference on
Computing, Communications and Networking Technologies

(ICCCNT), pp. 1-5. IEEE, 2014.
[23]. Czibula, Gabriela, Zsuzsanna Marian, and Istvan Gergely

Czibula. "Software defect prediction using relational association
rule mining." Information Sciences 264 (2014): 260-278.

[24]. Prabhakar, Maitreyee Dutta, and Maitreyee Dutta. "Prediction of
software effort using artificial neural network and support vector
machine." International Journal of Advanced Research in
Computer Science and Software Engineering 3, no. 3 (2013).

