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Abstract: Robustness of networked systems against noise corruptidnsttuctural changes in an
underlying network topology is a critical issue for a rel@performance. In this paper, we investigate
this issue of robustness in networked systems both frorotsital and functional viewpoints. Structural
robustness deals with the effect of changes in a graph steudue to link or edge failures, while
functional robustness addresses how well a system behatke presence of noise. We discuss that
both of these aspects are inter-related, and can be medbuwadh a common graph invariant. A graph
process is introduced where edges are added to an existpd gr a step-wise manner to maximize
robustness. Moreover, a relationship between the symneétan underlying network structure and
robustness is also discussed.
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1. INTRODUCTION Klein and Randi¢ (93) introduced the Kirchhoff index of a
graph through the notion of effective graph resistance. An
electrical network can be obtained from a graph by replacing

) . each edge with a unit resistance. The total electricalteesis
Robustness in networked systems can be studied from tWayeen any two nodes in such a network is the effective
different perspectives. Firstly, how well a system behawes (egjstance between the corresponding vertices of a gragh. T
the presence of noise, i.e. robustness against noise didoat  sym of effective resistance between any two vertices is the

robustness, and secondly whatis the effect of change iromktw ijrchhoff index, & 7, or the effective resistance of a graph (see
topology (due to edge or node failures) on the performance gfjens et al. (2011)).

such systems, i.e., structural robustness. Both of thesects ) ) ) )
have been studied in the literature and various indicesbese  In this paper, we further explore this relationship betwstenc-
proposed to measure them. Edge (vertex) connectivity,- a|g'@r_al rqbustness and functional robustness (robustnes_staju
braic connectivity as introduced in Fiedler (1973), betaresss Noise) in multiagent systems. The paper proposes to urefeth
discussed in Freeman (1977), information centrality, megs two notions of robustness through the concept of Kirchhoff i
and other spectral measures (see Wu et al. (2011)) are sofiex of the underlying network topology. We also investighee

of the parameters that have been used to quantify structurgle of various network topologies on the robustness ptypér
robustness in graph structures. Robustness of networkeewhthese systems. In particular, Kirchhoff indices of somecide
agents implement consensus protocols in the presencess ndamilies of graphs are computed, and these calculations are
has been addressed by providing various distributed ahgnsi  used to obtain a greedy algorithm for adding edges in a graph
and schemes to minimize corruption of noise in such systent§. maximize its robustness. Moreover, a relationship betwe
Examples include Xiao et al. (2007), Wang et al. (2009) anﬂ[}e symmetry of a network structure and its robustness & als
Young et al. (2010). Most of the studies on structural robess  discussed.

and robustness against noise seem to be independent of each

other, focusing either one of the aspects. Here, we show that- ROBUSTNESS ISSUES IN NETWORKED SYSTEMS
both of these robustness viewpoints are in fact, relatedith e
other and therefore, can be measured simultaneously bye s

(,@%ents exchange information with each other locally in dis-
parameter.

ributed systems. This exchange of information is possible
through an interconnection network of agents that can be-mod
A network of agents can be modelled by an undirected gragtied by a graph structure. For example, agents agree on-a com
where vertices represent agents and edges are the informatinon value (that may be a sensor measurement) by implement-
exchange links among agents. Recently, Young et al. (201iD)y a linear consensus protocol. In fact, connectivity &f tim-

and Young et al. (2011) has shown that functional robustnedsrlying graph structure is a necessary requirement facdhe

of systems, where agents update their states by a linear caensus protocol to work (see Mesbahi and Egerstedt (2010) as
sensus protocol in the presence of additive white noise, cam example). Moreover, the structure of the underlying netw

be measured by a so callédrchhoff indexof a graph. On affects various properties of a system including convergen
the other hand, Ellens et al. (2011) has shown that the effaettes, connectivity of the network under edge (intercotioec

of edge failures on the overall connectivity of a graph can bemong agents) or vertex (agent) failures. A highly conrecte
guantified by an effective graph resistance, which is edemta network is obviously less affected by an edge or vertexfagu

to the Kirchhoffindex of a graph (as shown in Klein and Randiand is therefore, momebustto these deletions. Thus, the struc-
(93)). Thus, both aspects of robustness can be specified bytare of the interconnection infrastructure plays a key vaben
exactly same graph invariant. understanding the effects of edge or vertex failures.
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Fig. 1. (a) A graph with nine nodes. (b) Each edge is replagalumit resistance and the effective resistance betweamitties]
and2 is calculated. In each of (c), (d) and (e), an edge is losttiagun a loss of path between nodeand2. A corresponding
increase ir; 2 is also shown. Note that a smaller, indicates a more robust connection between the nbdes!2.

Another aspect of robustness comes into play when we alsbal. (2011), the notion oéffective resistancbetween two
consider the agents’ dynamics in such systems. These agemtsles takes into account both of these aspects, i.e., thbarum
compute their states (that may be their positions or anyrothef paths between two nodes and the length of these paths.
measurements) and eventually exchange them with othdtffective resistance between nodes decreases with arasere
through some medium that may be noisy. This noise plays @am the number of paths between nodes. Also, the effective
important role in determining the overall functionality thfe  resistance between nodes is smaller if the length of thespath
system. It has been observed that some network topologiestween them is shorter. This provides a nice way to quantify
are least affected by the incorporation of noise when agerttge structural robustness in networks.
are performing linear consensus, while others are affeitted he effecti . b icesand i i
a larger extent (see Young et al. (2011) for example). Th ee ecpv: rgsstanc_ e;[jween 3nby two v_ert(;ce}.:@ag J '1
network structures minimally affected by noise are obvipus an un-weightec grapG Is denoted by ;. It is etinec as the
morerobust This leads us towards two aspectsafustnessn  STective electrical resistance between the poirdad,; when
multiagent systems where agents run the consensus dynami@‘sres"s.tor pf unit resistance Is place.d a'of‘g every edge_and a
potential difference is applied betweéand; as illustrated in

(a) Structural Robustnesst is the ability of the network to the Fig. 1. Consider a network in the Fig. 1. There are three
maintain its original structure and inter-connection ageer-  unique paths between the nodeand2, namelyz = [1 — 2],
tices in the underlying graph under edge or vertex failures. y=[1 -3 >4 —2jandz2=[1 -3 —>5—>7 > 8 —
9 — 6 — 4 — 2]. Each of these paths adds to the robustness of
caonnection between nodésand2. Since, path is the longest

8, it has a least contribution towards the robustnesgerin
connection between nodésand 2. This is also indicated by
The above mentioned robustness views seem to have a differenly a slight increase in the, » value in Fig. 1(c), where the
focus, where (a) is related purely to a property of the uryilegl  loss of an edgé ~ 7 results in the loss of path betweer
graph structure while (b) deals with the effect of noise oand2. Similarly, when a pathy is lost, r; » is increased to a
measurements and states of the agents. We show here that lgggrater degree aspath has a shorter length thanWhen the
these robustness views are in fact, related to each otheraand shortest (most crucial) path, is lost, the greatest increase in

(b) Funtional Robustnesstt measures how well a system
behaves in the presence of noise that corrupts measurem
or an information exchange among agents.

be measured by the same parameter. 1,2 IS Observed.
) Thus, structural robustness of the overall network hawing
2.1 Structural Robustness vs. Functional Robustness nodes can be measured by the sum of the effective resistances

over all pairs of nodes in the underlying graph, which is the s
There may exist multiple paths between two nodes in a givéilledKirchhoff index K, of the graph.
graph of a network. A large number of unique paths between P N
two nodes implies that these nodes are highly intercondecte £(G) = Z T
with each other. Thus, their connectivity with each othelt wi
not be effected to a large extent by an edge failure, indigati Here,r; ; is an effective resistance between nodasd;.
robust connection between these nodes. The number of uni
paths between any two nodes, therefore, hints upon theigua
tative aspect of structural robustness in a network.

@

1<i<j<n

Smaller value ofi;, indicates that a network is structurally
ore robust. It is also interesting to see that the additibn o
an edge strictly decreases the valuefof in a graph (shown
It is not only the number of unique paths, but also ghelity in Ellens et al. (2011)), thus, increasing robustness. @lsis
of paths that is crucial to the robustness against edgedailu supports our intuition as addition of an edge will alwaysutes
A path of shorter length between two nodes is preferred ovéit an extra path between a pair of nodes.

a longer one as it corresponds to an increased level of cOfgy the case of network robustness against noisy measutemen
nectedness between these nodes due to a lesser delay. Algfunctional robustnessve consider a multiagent system with
shorter length paths between nodes resultin short randdks waagents implementing a linear consensus protocol. Linear co
that are less affected by the node or edge failures as shownsensus dynamics has been extensively studied in the dorhain o
Chandra et al. (1996). network control systems due to its wide variety of appliwasi

) including formation control, distributed control mechsms,
Thus, the structural robustness should incorporate bath tBensor networks and cooperative decision making to name a
quantitative as well as the qualitative effect of edge rea®on few (see Mesbahi and Egerstedt (2010)). Simple consensus
the overall connectivity of the network. As it is shown indéfls  dynamics of such a system can be given as,



&(t) = —La(t) @)
whereL is a laplacian matrix of an underlying graph and a
corresponding state vector of the agents. In steady sgdeta
reach an agreement over a common stgté. But for practical
systems, agents’ states are affected by a noise term. Thus, u v

o(t) = —La(t) +£(¢) ©)
wheref(t) is a zero-mean mutually white stochastic process.

It is known (e.g. see Xiao et al. (2007) and Young et aIFi 2 Fan graphsF; and F». Note thatF, is obtained b
(2010)) that in the presence of this noise term, agentss'stateg connectigngpall tlhe vert?ces of a patr21 graph with tgree

dg no{con\{erge to a cor?m()zréllglue t%ut will rem?m in mothn nodes,Ps, to a common node. F, e F» is obtained by
aboutz(t). In Young et al. (2010), robustness of a system in  jjensitving » andw vertices inF, andF, respectively. A

(3) under noisy consensus dynamics is then defined in terms tal h 4 \ith four 1-petals is al h
of the expected dispersion of the system from consensus. A petal graph(.F1)", with four 1-petals is also shown.

nice result reported there relates this robustness dueisy noProof. There ar€k + 1 vertices in(F;)*. We label its vertices
consensus under the above setting to Kaehhoff indexof as {1,2,.--,2k,a}, where o is the central vertex with a
the undirected graph structure of the underlying network. maximum degree as shown in the Fig. 3. Note thatisf odd,
is shown that a network with a greater Kirchhoff index has @, ;,; = 2/3 andr; ; = 4/3 for everyj > i + 1. For eveni,
greater dispersion from consensus due to noise and istieref », ; = 4/3 for every;j > i. Thus, for a fixed,

less robust. Similarly, a smaller value &f; indicates that

Fi Fa FireFp (F1)*

the expected dispersion of the system in (3) due to noise is 4 ‘ y
not significant, thus, indicating a greater robustness ok 32k —1) vIs even
against noise. Z A S

. . . . i<j -+ -2k—-i-1 . is odd
In the light of the above discussion, it can be stated thahsee ! 3 3( =D '

ingly different notions of structural robustness and fiorcal

robustness are in fact, very inter-related. Both of themededp
on the structure of an underlying network and can be measurb
by a same graph invariant known as the Kirchhoff index. Ky ((F1)*) = Z P + Z .y

Also, for everyi € {1,2,---,2k}, we haver; , = 2/3. Thus,
jjchhoff index of (F1)¥ can be written as,

3. KIRCHHOFF INDEX OF SOME GRAPHS ) ) Lo
After inserting the values and simplification we get,

As already discussed above that Kirchhoff index can measure & 2 8 2 2

both structural and functional robustness in multiagestesys. Ep(F)%) = 32k + [g’f(’f -+ gk} = kUk-1 ()
This provides us a way to develop a systematic scheme for ]
designing optimal network topologies to maximize their ro-

bustness properties. In Section 4, we introduce a graptepsoc 2k 1

where a single edge is added to an existing graph at eacltostep t
minimize the Kirchhoff index. In this section, we presentnso
results that will be used to obtain a greedy algorithm foriagld
edges in a graph to maximize robustness. We find the Kirchhoff 6
index of various graph structures and also present optimal 5

addition of edges for some specific graphs. At first, sometgrap (a) (b)
terminologies are introduced.

2k — 1

_ _ _ Fig. 3. (a) Labelling of 7). (b) ;.o = 2/3.

A Star Graph S,,,, is a tree withm vertices wheren — 1

vertices have a degrdeand they all are connected to a singleA graph structure of the forriF, )" e S, obtained by identi-
central vertex that has a degree— 1. A Fan Graph F,, is fying a petal graphi]—"l)k’ and a star graph,,, is used in the
obtained by connecting all the vertices in a path graph,1,  Section 4 for defining a graph process where edges are added
to a single vertex as shown in the Fig. 2. to maximize robustness. Following lemma computesihdor

Let G, and G, be two graphs. Let: andv be the maximum Such agraph.

degree vertices off; and G, respectively. We use a notationLemma 2.LetG = (F;)"eS,, be a graph witl2k+m vertices.
G: e G to denote a graph obtained by identifyinge G; Then,

with a vertexv € G,. An example is shown in the Fig. 2. Ki(G) = (m—1)%+ gk(5m+4k—6) (6)
Also, (G1)* will be referred to denote a graph obtained from 3

k copies ofG; by identifying their maximum degree vertices, Proof. Kirchhoff index of a giveny can be written as,

3

We also refer taF; as ani-petal, and (Fi)k as apetal graph i€Sm,JE(F1)F
containingk number ofi-petals. An example is illustrated in Let o be the central vertex of give@, (i.e., a is the vertex
the Fig. 2. ; ; 7
) ) L with a degre€k + m). Noting thatr; , = 1, wherei is any
Lemma 1.The Kirchhoffindex ofG = (71)" is of the non-central vertex a$,,. Also, r; . = 2/3, wherej is
Kp((F1)F) = gk(‘”“ 1) @) anyofthe non-central vertex &fF1)*. Thus,r; ; = 5/3, where

i €S, andj € (F;)*. This gives rij = (m—

1 in the sense of minimizing the Kirchhoff indek ;. 1€Sm,j€(F1)k




1) [2(2k)]. Also, we know thatK;(S,,) = (m — 1)? (see Similary using (6) and (8),
Ellens et al. (2011) as an example). Using these resultgalon

1
with (4), we get, Ky(Hz) — Ky(H1) = E(2k+m) >0 (11
From (10) and (11), we have the following order
2 5 Kyp(H1) < K¢(Hz) < Ky(Hs)
K = Zk(4k — —1)2 —1) | =(2k
7(G) = gh(k=1) + (m=1)% + (m = 1) {3(2 )} which proves the desired result. -
=(m-1)2+ gk(5m+4k—6)
- 4. GRAPH PROCESS FOR STEP-WISE OPTIMAL

ADDITION OF EDGES

We have also computed th€, for the following two special

i Addition of an edge in a graph always decreasediijs (as
h struct that will b d later. F fs, B . )
?er%prrez rtl(;CAlgg:S a?\dV\IIEIgefstléz?jet (Z%i;). or proofs, red shown in Ellens et al. (2011)) and hence, increases rolesstne

h ) i But, addition of a certain missing edge may result in a greate
Le/mma3.Lefc G = (F1)" ® Sm. Then the Kirchhoff index of jecrease i ; as compared to another edge. Thus, an analysis
G'=Gefyis regarding an optimal addition of edges to minimize the Kirch
Ki(@)=(m-12+2m -3 2 (5m 4k E) g hoff index is of great significance. As it is discussed in Edle
4 43 4 et al. (2011), the question of determining an optimal edge to
Lemma4.Let G = (F;)* o S,,. Then the Kirchhoff index of add to a graph in order to minimize ifs; is still open. In this
G' =GeFsis section, we provide a systematic way to obtain robust né¢wor
, 130 16 2k 60 topologies by optimally adding edges to existing graphcstru
Kp(G) = (m =1+ Z=m+ - + = (5m +dak+ 7) ) tures. We start with a set of nodes without any edge between
them, and successively add edges (one at at time) to mayimall
Using these results, we can figure out the best way to add @itrease robustness. A notion of Kirchhoff graph process is
edge in a grapt; = (F1)" e S,,, that will be required to introduced to characterize such a scheme.
optimally add edges in a graph in a step-wise manner.
Theorem 5.Letm > 2, andG = (F;)"eS,,. Let H be a graph
obtained fromG by adding a single edge. Among all suéh
(F1)*+! o S,,_» has a minimum value of Kirchhoff index.

Definition (Kirchhoff Graph ProcessA Kirchhoff graph pro-
cess,G, onn vertices is a sequence of graphs, whgrds an
edgeless graph on vertices, andj;;; is obtained by adding
a single edge t@j; such thatG;,; has a minimum value of

Proof. Let H be a graph obtained by adding an edge- v  Kirchhoff index over all possible choices ¢§; + ¢), where
between any two non adjacent verticesGn= (F;)* ¢ S,,. (Gi + e) is a graph obtained by adding a single edgé§to
ThenH is isomorphic to one of the following graphs, )
o1 4.1 Kirchhoff Graph Process frogh to G,,

(1) (]:1) + .kS’m172

(2) Fze((F1) ~ @Sm-1) Note that the number of edges@his i — 1. Since there are

(3) Fze((F1)""" e Sm) nodes, the graph will remain disconnectedtil- 1 step. We
This is true as there are only three ways of adding an edge irkaow that a graph with nodes ane—1 edges with a minimum
givenG. An edge can be added betweeandv in G whereu K is a star graphs, (e.g., see Young et al. (2011)). So, from
andv are of degree 1 as shown in the Fig. 4(b). This results ih= 1 t0i = n, edges will be added so as to gat = S,. Thus,
H = (F1)*1eS,, 5. Whenu has a degree 1 anchas degree Gi=SiUK,_; i€{1,2,---,n} (12)
2 (equivalentlyv has degree 1 andhas a degree 2_) ir_1 an addedwhere,f(n,i is an edgeless graph with— i nodes.
edgeu ~ v, we getl = Fre((F1)*~'eS,,_1). Thisis shown
in the Fig. 4(c). When both the end vertices of an edge added4% Kirchhoff Graph Process fro, 1 to G
G are of degree 2, we géf = F3 e ((F1)¥"2eS,,), shownin
the Fig. 4(d).

n+| 252

Adding an edge to a star grap8,, will always result in a
Fi1eS,_ograph. Thusg,, 1 = F1eS,,_2. The optimal way to

add an edge in subsequent steps is to connect two non adjacent
vertices having a degree 1 as shown in the Fig. 5(b). In fact,
Theorem 5 and Lemma 2 provides an optimal way to add an

edge in(Ff) e S,,,. Using these results, we get instances of the
Kirchhoff graph proces§; fori € {n+1,---,[251]} as,

Gnii = (F1)' @ Suoa TN R L RCE)
Fig. 4. (@)(F1)F o S,p.. Adding_an edge to (a) will result into For a simpler case, let be an odd number. Then, for =
one of the graphs shown in (b), (c) or (d). (251), Goys is a petal graph(F,) "= ¢ Sy = (F1)"7.

Now let H; = (.Fl)k+1 S, o, Hy=Fse ((fl)k_l ° m—l)
andH; = Fz e ((F1)*2eS,,). Each of thesél,, H> andHs
have same number of edges and are obtained by adding asm/%%ing an edge to a petal graph of the fold,)* always

edge |n-G. results in a grapliF;)*=2 e F3. Thus, in a Kirchhoff graph
Now using (6) and (9), we calculaf€;(Hs) — K;(H;) as, process,

4.3 Adding edges to a Petal Graph

4 n—1 —1
K j(Hs) = K7(H1) = 2 (2k +m) > 0 (10) Gi=(F)T P e i=ntio—t1 (49



addition of edges does not necessarily give a globally aptim
L. L L graph, i.e. a graph with a minimud s for a given number of
: — nodes and edges. We can state it as a following Proposition.
Proposition 6. A graph G with £ number of edges, obtained
So through a Kirchhoff graph process by optimally adding a kEing
edge at each step of the process to minimizg, does not

necessarily give a globally optimum graph having a minimum
; % ; z g z /i i K among all graphs with nodes and” edges.
(Fi n=9 n | Ky(Gear graph) | Ky ((.7:1)”771)

)4
(b) 9 34.5 40
11 57.11 63.33
13 85.67 92

15 120.08 136
17 160.31 165.33
—_— — —_—
Gear Graph (F1)! 19 206.32 210
a b
W (a) (b)

© ‘

Fig. 6. (a) A gear graph with nodes and a petal grap-; ).

Fig. 5. A Kirchhoff graph process for = 9 nodes. (b) Comparison of(; of gear graph and? 1)* with same
number of vertices,, and edges.
Also, it can be shown that (see Abbas and Egerstedt (2012)),

if a graph is of the form(F;)* e (F3)¢, then optimal addition
of a single edge minimizing the Kirchhoff index yields a gnap 5. SYMMETRY OF NETWORKS AND ROBUSTNESS

(F1)F=2 e (F3)“+L. This results provides a way of adding edge
to instances of a graph proce§sfor i > n + (Z31). An
example is also shown in the Fig. 5(c). Further analysis isf th

%ymmetric network topologies are more robust and have a
smaller Kirchhoff index (see Ellens et al. (2011) and Wu et

process shows that edges are being added in a specific patt@in (2011) as examples). In fact, for a given number of nodes
From a star graph a, — S,, edges are added to increas nd diameter, a special grap_h known ashque chain(see
the number ofl-petals (i.e..F;) in the intermediate steps of Ellens et al. (2011)), which is a symmetric structure, has a
the Kirchhoff graph process until a petal graph, where evefjinimum value of effective resistance and therefore, maxm
petal is al-petal is obtained. Similarly, from &petal graph at robustness. Similarly for a given number of nodes, a coraplet

G yno1 = (]:1)"7*1, edges are added to increase the number §faph which is also symmetric, has a maximum robustness.
3-petals (i.e.Fs) by connecting twd -petals. This continues till - "élationship between symmetry and robustness can also be
a petal graph, where every petal ig-petal is obtained. In the S€€N N the Kirchhoff graph process discussed in Sectiort 4. A
next steps, edges are addedtpetal graph such that at eacheach step of the process, edges are added so as to preserve the
step two3-petals are combined to givepetal. This continues Symmetry of the overall graph. Thus, symmetry of a graph has
until a wheel graphV,, is obtained at th@n — 1 step of the a far reaching impact on its robustness properties.

Kirchhoff graph process, that is, Here, we show an optimal (in the sense of minimizing £hg
Gan—1 = Wh (15)  way to attach a path graph to an arbitrary graphAgain it'is

It is to be noted here that at each step of the Kirchhoff gragfPServed that symmetry of a graph plays an important role in

: ; o inimizing K ;. Let G be any graph witty number of nodes,
process, an edge is added optimally to maximize robustne% erej >g 1.fA vine graph%/sgob?ainedbfrom a grapty by

property of a graph. An example fer= 9 vertices is shown in  ayaching two separate paths witkandp number of nodes to

the Fig. 5. G through two of its nodes. Let a pa#y be connected t&;
through nodel and a pathP,, through nodej of G. A vine

4.4 Step-wise Optimal Graph vs. Globally Optimal Graph ~ graph, denoted by, ., is shown in the Fig. 7 (a). In a vine
graph, paths of andp nodes may be connected through

Consider a graph with. vertices for some odd integer, the same vertex, as shown in the Fig. 7 (b). In Young et al.

containing(n — 1) + (nT—l) edges, and obtained through a(2011)' it is shown that if7 is atree, T', and pathsP; and P,

Kirchhoff graph process. From, (13), we know that it is a grapmgﬁrel < i < p, are connected t through a common vertex,

of the form (F,)"=". Its Kirchhoff index can be computed Ky (Tapy) < Kf (Tiz1p41y) (16)
using the Lemma 1 for any. A gear grapR with n verices pore e generalize this result and show that (16) holds

n—1

and(F;) "= has the same number of vertices and edges. It is/en if trees are replaced with any graphs. In fact, we pro-
observed that for many different valuesrofa gear graph with vide a necessary and sufficient condition for (G{W}) <

1

n vertices has a smallei s than (]—"1)"%. This implies that K; (G{i—l,p+1}) to be true even when paths witlandp num-

although(fl)% is obtained by optimally adding edges in aber of nodes are connecteddothrough two different vertices,
step-wise manner, still it is not a graph with a minimiim for ~ say1l andj respectively. For a detailed proof of the Theorem 7,
a given number of nodes and edges. A comparisdiiofalues readers are referred to Abbas and Egerstedt (2012).

for a gear graph and a petal graph with the same number Dheorem 7.Let G be a graph withj > 1 nodes. Let a pat®;
nodes and edges is shown in Fig. 6(b). Thus, optimal step-wibe connected td- through a node, say of G. Another path,
‘P be connected t6: through a node, sajyof G, to get a vine
graphGy; 3, where,1 <i < p. Then

2 A gear graph witl2m + 1 vertices is obtained from a wheel grapti,,,
by adding a vertex between each pair of adjacent verticebeonuter cycle of
Wi (see Fig. 6). Kf (Gipy) < Kr (Gricipe1y) 7



if and only if

J J

(PH1=DG—1=r1,)> Y rs— 7oy

s=1 s=1

(18)

Proof. Without loss of generality, let us label the vertices in

Gy @s shown in the Fig. 7. Then, we can write thig of
G{ip) as follows,

Kp(Gipy) = Z Ts,t
1<s<t<(j+i+p)
J J i (Gtitp) (3+i+p) (G+i+p)
= Z ZTs,t + Z Z rs,t+ Z Ts,t
s=1 t>s s=1 t=(5+1) s=(j+1) t>s
A

(19)
Let us compute the second term in (19).
(j+i+p) (j+i+p) (§+i+p)
A= Z rie + Z ot + o Z T4t
t=(j+1) t=(j+1) t=(j+1) 20)

- . J J
i , P )
=5J(1+z) + %(1+p) +p E rs; + 1 E T1s
s=1 1

s=

Now, computing the third term in (195, gives,

B= 2 [i® -1 +p0? -] + Llpriv2ron,l @

Kirchhoff index for G{;_; 41, can also be written in an

exactly similar way as in (19), with the correspondiagand
B’ terms are computed as,

. J

ij

A=2(i-1) + %(p+1)(l’+2)+ P+ res
; s=1 (22)
+ (Z - 1) Zrl,s
s=1
B =1 [i( = 3i +2) + p(p* + 3p + 2)]
6 23)

1
+ 5(z‘—1)(p+1)(:v+z'+2+27~1J)

Inserting (20) and (21) into (19) giveds;(Gy; 1) and in-
serting (22) and (23) giveK (G ;1 +13). Now calculating

K¢ (Giiz1p+1y) — K¢ (Gyipy) gives the following after some

simplifications,

J J
Ky(Gi-1,p+1y) = K5 (Giipy) =er,j —Zm,s (24)
s=1 s=1

+(+1-9G —1-r1,)
The required result directly follows from (24). ™

A special case of the above theorem is whgnand P, are

connected td= through the same vertex, say(as shown in
the Fig. 7(b)). The condition in (18) is then, always sattts

long asl < i < p. Thisis true ad andj in (18) correspond to
J

J
the same vertex here and sp, 71 ,

s=1

Ts,jy andrl,j =0.
1

s=

Also, (j — 1) > 0, as long as~ has at least two nodes. A proof

Theorem 8.Let GG be a graph with at least two nodes. Let two

paths withi andp number of nodes respectively, are connected

to G through the same vertex 6f to getGy; ;3. Then,
Ky(Gipy) < Kp(Grizi,pt1y)

Here,1 <1 <p.

(25)

i P
G
- P S .
G+D G+D G+i+1) (G +i+p)
(a)
G
1
. e Py — - o—o
G+ G+ GHit+1 Gtitn)
—_— N————

i (b) P

Fig. 7. (a) Path®; andP, are connected t&' through nodes
andj of G, respectively. In (b), both patt; andP, are
connected through a same vertgx,

It is to be mentioned here that the symmetry of an underlying
graph also plays an important role in determining some other
properties of networked systems with agents implementing a
linear consensus protocol. One such noticeable propetheis
controllability of such systems under a leader-followetisg,
where external inputs are injected through so called leader
nodes. Structures that are symmetric about a leader eploiit
controllability properties (see Mesbahi and EgerstedtL(3@s

an example). For example, a complete graph (most robust net-
work for a given number of nodes) is least controllable. Thus
we can say that from a network topology perspective, con-
trollability and robustness properties are in conflict wech
other. Improving one by reconfiguring the underlying graph
structure may deteriorate the other one. A precise relstipn
between these two properties in terms of the graph strugture
an interesting research direction.
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