TIMUR

Veterinary Report by Embark

embarkvet.com

Test Date: August 12th, 2022

Customer-supplied information

Owner Name: Amy O'Sullivan Dog Name: Timur Sex: Male (intact) Date of birth: 07/22/20

Breed type: purebred Breed: Labrador Retriever Breed registration: American Kennel Club (AKC) SS20493709 Microchip: N/A

Genetic summary

Genetic breed identification: Labrador Retriever Predicted adult weight: **65 lbs** Calculated from 17 size genes.

Breed mix:

Labrador Retriever: 100.0%

Genetic age: **26 human years** Human equivalent age based on size, date of birth provided, and other factors

Clinical Tools

These clinical genetic tools can inform clinical decisions and diagnoses. These tools do not predict increased risk for disease.

Alanine Aminotransferase Activity (GPT)

🍼 Timur's baseline ALT level is likely to be Normal

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

Health Report

How to interpret Timur's genetic health results:

If Timur inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Timur for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Timur inherited one variant that you should learn more	e about.	
Progressive Retinal Atrophy, prcd		0
Breed-Relevant Genetic Conditions	16 variants not detected	<
Additional Genetic Conditions	205 variants not detected	<

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

O Timur inherited one copy of the variant we tested

What does this result mean?

This result does not impact your dog's health. It could have consequences for siblings or other family members, and you should let them know if you are in contact with them. This result is also important if you decide to breed this dog - to produce the healthiest puppies we recommend genetic testing any potential mates for this condition.

What is Progressive Retinal Atrophy, prcd?

PRA-prcd is a retinal disease that causes progressive, non-painful vision loss. The retina contains cells, called photoreceptors, that collect information about light and send signals to the brain. There are two types of photoreceptors: rods, for night vision and movement, and cones, for day vision and color. This type of PRA leads to early loss of rod cells, leading to night blindness before day blindness.

When signs & symptoms develop in affected dogs

The age affected dogs will first show signs of visual impairment varies by breed. However, most begin showing clinical signs in early adulthood.

How vets diagnose this condition

Veterinarians use a focused light to examine the pupils. In affected dogs, the pupils will appear more dilated and slower to contract. Your vet may also use a lens to visualize the retina at the back of the eye to look for changes in the optic nerve or blood vessels. You may be referred to a veterinary ophthalmologist for a definitive diagnosis.

How this condition is treated

Currently, there is no definitive treatment for PRA. Supplements, including antioxidants, have been proposed for management of the disease, but have not been scientifically proven effective.

Actions to take if your dog is affected

- Careful monitoring by your veterinarian will be required for the rest of your affected dog's life as secondary complications, including cataracts, can develop.
- With blind dogs, keeping furniture in the same location, making sure they are on a leash in unfamiliar territory, and training them to understand verbal commands are some of the ways to help them at home.

Breed-Relevant Conditions Tested

Timur did not have the variants that we tested for, that are relevant to his breed:

- Canine Elliptocytosis (SPTB Exon 30)
- S Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)
- Solden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)
- Series Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)
- 🛇 Achromatopsia (CNGA3 Exon 7, Labrador Retriever Variant)
- 🔇 Macular Corneal Dystrophy, MCD (CHST6)
- 🛇 Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9)
- 🗸 Alexander Disease (GFAP)
- S Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)
- S Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)
- 📀 Centronuclear Myopathy, CNM (PTPLA)
- S Exercise-Induced Collapse, EIC (DNM1)
- Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Retriever Variant)
- 📀 Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)
- 🛇 Hereditary Nasal Parakeratosis, HNPK (SUV39H2)
- 📀 Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)

Timur did not have the variants that we tested for, in the following conditions that the potential effect on dogs with Timur's breed may not yet be known.

- Sensitivity (ABCB1)
- Second P2Y12 Receptor Platelet Disorder (P2Y12)
- Sector IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant)
- 🔮 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)
- Sector VII Deficiency (F7 Exon 5)
- Sector VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant)
- Sector VIII Deficiency, Hemophilia A (F8 Exon 11, German Shepherd Variant 1)
- S Factor VIII Deficiency, Hemophilia A (F8 Exon 1, German Shepherd Variant 2)
- S Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)
- 🔮 Thrombopathia (RASGRP1 Exon 8, Landseer Variant)
- 🔮 Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)
- Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)
- Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)
- Von Willebrand Disease Type I, Type I vWD (VWF)
- Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)
- Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)
- 🛇 Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)
- Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)
- Slanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant)
- 🔮 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)

- 🕑 May-Hegglin Anomaly (MYH9)
- Prekallikrein Deficiency (KLKB1 Exon 8)
- 📀 Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)
- S Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant)
- S Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)
- S Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)
- STrapped Neutrophil Syndrome, TNS (VPS13B)
- 🕑 Ligneous Membranitis, LM (PLG)
- Selection of the second second
- Settimos Methemoglobinemia (CYB5R3)
- Sernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)
- Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)
- Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)
- Congenital Dyshormonogenic Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)
- Complement 3 Deficiency, C3 Deficiency (C3)
- Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)
- Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)
- S X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)
- S X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)
- Sector Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)

- 📀 Progressive Retinal Atrophy, rcd3 (PDE6A)
- 📀 Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)
- 📀 Progressive Retinal Atrophy, PRA1 (CNGB1)
- Progressive Retinal Atrophy (SAG)
- Solden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)
- Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)
- X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)
- S Progressive Retinal Atrophy, PRA3 (FAM161A)
- Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1)
- 🛇 Day Blindness, Cone Degeneration, Achromatopsia (CNGB3 Deletion, Alaskan Malamute Variant)
- Day Blindness, Cone Degeneration, Achromatopsia (CNGB3 Exon 6, German Shorthaired Pointer Variant)
- 🛇 Achromatopsia (CNGA3 Exon 7, German Shepherd Variant)
- S Autosomal Dominant Progressive Retinal Atrophy (RHO)
- Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)
- 🛇 Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)
- Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)
- Serial Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)
- 📀 Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)
- S Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)
- Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant)

- 😴 Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)
- Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9, Australian Shepherd Variant)
- Primary Lens Luxation (ADAMTS17)
- 📀 Congenital Stationary Night Blindness (RPE65, Briard Variant)
- 📀 Congenital Stationary Night Blindness (LRIT3, Beagle Variant)
- 🔇 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT)
- 😴 Cystinuria Type I-A (SLC3A1, Newfoundland Variant)
- 📀 Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)
- 🛇 Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)
- Selver State Content of the second se
- 🕑 Primary Hyperoxaluria (AGXT)
- 📀 Protein Losing Nephropathy, PLN (NPHS1)
- X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)
- Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 30, English Springer Spaniel Variant)
- Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3, Cocker Spaniel Variant)
- 🍼 Fanconi Syndrome (FAN1, Basenji Variant)
- S Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant)
- S Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant)
- Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)
- S X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED (EDA Intron 8)

- 🍼 Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7) Canine Fucosidosis (FUCA1) 😴 Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant) 🗲 Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant) 🗲 Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant) 🗸 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant) 😴 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant) 😴 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant) 🔇 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant) 😴 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant) 😴 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant) 🔇 Lagotto Storage Disease (ATG4D) 🔇 Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1) 🔇 Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) 😴 Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire **Terrier Variant**)
- S Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)
- 🛇 Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)
- 🛇 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)
- 🛇 Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)
- 🔇 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)

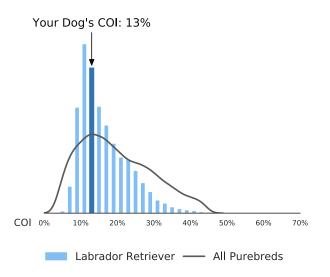
- 🍼 Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)
- S Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)
- S Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)
- 📀 Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)
- 📀 GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)
- 📀 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)
- SM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)
- 🔮 GM2 Gangliosidosis (HEXB, Poodle Variant)
- 📀 GM2 Gangliosidosis (HEXA, Japanese Chin Variant)
- 📀 Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)
- Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)
- Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant)
- 📀 Persistent Mullerian Duct Syndrome, PMDS (AMHR2)
- Solution Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MY07A)
- 📀 Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)
- Seonatal Interstitial Lung Disease (LAMP3)
- Securrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant)
- S Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3)
- Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2, Beagle Variant)
- 📀 Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)

- 📀 Cerebellar Hypoplasia (VLDLR, Eurasier Variant)
- 📀 Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1)
- 📀 Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)
- Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)
- 🛇 Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2)
- 🗸 Degenerative Myelopathy, DM (SOD1A)
- 🍼 Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)
- 🛇 Hypomyelination and Tremors (FNIP2, Weimaraner Variant)
- Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP1, English Springer Spaniel Variant)
- 📀 Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)
- 🛇 Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)
- 📀 L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)
- 🛇 Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- 🔇 Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)
- S Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)
- S Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)
- Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15, Kerry Blue Terrier Variant)
- Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4, Chinese Crested Variant)
- Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV (RAB3GAP1, Rottweiler Variant)
- Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS, Spaniel and Pointer Variant)

- 🔇 Sensory Neuropathy (FAM134B, Border Collie Variant)
- 📀 Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10)
- 🗸 Juvenile Myoclonic Epilepsy (DIRAS1)
- S Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 (GJA9)
- Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10)
- Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2)
- S Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)
- S Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)
- C Long QT Syndrome (KCNQ1)
- Cardiomyopathy and Juvenile Mortality (YARS2)
- S Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)
- S Muscular Dystrophy (DMD, Golden Retriever Variant)
- 🗸 Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)
- Inherited Myopathy of Great Danes (BIN1)
- S Myostatin Deficiency, Bully Whippet Syndrome (MSTN)
- 🛇 Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)
- 🛇 Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)
- 🛇 Nemaline Myopathy (NEB, American Bulldog Variant)
- Inflammatory Myopathy (SLC25A12)
- 🍼 Hypocatalasia, Acatalasemia (CAT)

- S Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)
- 📀 Malignant Hyperthermia (RYR1)
- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)
- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)
- 📀 Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)
- 🔇 Lundehund Syndrome (LEPREL1)
- Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)
- 📀 Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)
- Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)
- S Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)
- Sepisodic Falling Syndrome (BCAN)
- 📀 Paroxysmal Dyskinesia, PxD (PIGN)
- Semyelinating Polyneuropathy (SBF2/MTRM13)
- 🗸 Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant)
- S Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)
- Solution Strephic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)
- 📀 Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)
- 📀 Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)
- 📀 Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)
- 📀 Ichthyosis (SLC27A4, Great Dane Variant)

- 🔇 Ichthyosis (NIPAL4, American Bulldog Variant)
- Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)
- 🛇 Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)
- 🛇 Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)
- S Musladin-Lueke Syndrome, MLS (ADAMTSL2)
- 🛇 Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)
- Sald Thigh Syndrome (IGFBP5)
- 🔇 Lethal Acrodermatitis, LAD (MKLN1)
- 🛇 Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)
- Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)
- S Hereditary Vitamin D-Resistant Rickets (VDR)
- 🛇 Oculoskeletal Dysplasia 2, Dwarfism-Retinal Dysplasia 2, drd2, OSD2 (COL9A2, Samoyed Variant)
- 🛇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2, Beagle Variant)
- 🛇 Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1, Dachshund Variant)
- Solution Contemporation (Collection of the second s
- Steochondrodysplasia, Skeletal Dwarfism (SLC13A1, Poodle Variant)
- Craniomandibular Osteopathy, CMO (SLC37A2)
- Saine Syndrome, Canine Dental Hypomineralization Syndrome (FAM20C)
- Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD (FGF4 retrogene -CFA12)
- 😴 Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)


- Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant)
- Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)
- S Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)
- Spinocerebellar Ataxia (SCN8A, Alpine Dachsbracke Variant)
- Searly Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)

Coefficient of Inbreeding (COI)

Genetic Result: 13%

Our genetic COI measures the proportion of your dog's genome (her genes) where the genes on the mother's side are identical by descent to those on the father's side. The higher your dog's coefficient of inbreeding (the percentage), the more inbred your dog is.

Your Dog's COI

This graph represents where your dog's inbreeding levels fall on a scale compared to both dogs with a similar breed makeup to her (the blue bars) and all purebred dogs (the grey line).

More on the Science

Embark scientists, along with our research partners at Cornell University, have shown the impact of inbreeding on longevity and fertility and developed a state-of-the-art, peer-reviewed method for accurately measuring COI and predicting average COI in litters.

Citations

Sams & Boyko 2019 "Fine-Scale Resolution of Runs of Homozygosity Reveal Patterns of Inbreeding and Substantial Overlap with Recessive Disease Genotypes in Domestic Dogs" (https://www.ncbi.nlm.nih.gov/pubmed/30429214)

Chu et al 2019 "Inbreeding depression causes reduced fecundity in Golden Retrievers" (https://link.springer.com/article/10.1007/s00335-019-09805-4)

Yordy et al 2019 "Body size, inbreeding, and lifespan in domestic dogs" (https://www.semanticscholar.org/paper/Body-size%2C-inbreeding%2C-and-lifespan-in-domestic-Yordy-Kraus/61d0fa7a71afb26f547f0fb7ff71e23a14d19d2c)

About Embark

Embark Veterinary is a canine genetics company offering research-grade genetic tests to pet owners and breeders. Every Embark test examines over 200,000 genetic markers, and provides results for over 220 genetic health conditions, breed identification, clinical tools, and more.

Embark is a research partner of the Cornell University College of Veterinary Medicine and collaborates with scientists and registries to accelerate genetic research in canine health. We make it easy for customers and vets to understand, share and make use of their dog's unique genetic profile to improve canine health and happiness.

Learn more at embarkvet.com

Veterinarians and hospitals can send inquiries to veterinarians@embarkvet.com.