Math 2471-Sample Test 1

1. Find the unit tangent and unit normal vector for the following vector functions

(i)
$$\vec{r}(t) = \langle 2t, t^2 \rangle$$

(ii)
$$\vec{r}(t) = \langle e^t \cos t, e^t \sin t \rangle$$

2. Prove the limits either exist or do not exist. In the former case use the squeeze theorem.

(i)
$$\lim_{(x,y)->(0,0)} \frac{x^2 + xy + y^2}{x^2 + y^2}$$
 (ii) $\lim_{(x,y)->(0,0)} \frac{y - x^3}{y + x^3}$ (iii) $\lim_{(x,y)->(0,0)} \frac{x^3 + y^3}{x^2 + y^2}$ (iv) $\lim_{(x,y)->(0,0)} \frac{x^4 + 2y^4}{x^2 + y^2}$

(ii)
$$\lim_{(x,y)\to(0,0)} \frac{y-x^3}{y+x^3}$$

(iii)
$$\lim_{(x,y) \to (0,0)} \frac{x^3 + y^3}{x^2 + y^2}$$

(iv)
$$\lim_{(x,y)\to>(0,0)} \frac{x^4+2y^4}{x^2+y^2}$$

3. Find the equation of the tangent plane to the given surface at the specified point

$$x^2y + xz + yz^2 = 3$$
, $P(1, 2, -1)$

4. If $z = x^2 - y^2$, calculate the following chain rules:

(i)
$$\frac{dz}{dt}$$
 if $x = \cos t$, and $y = \sin t$

(ii)
$$\frac{\partial z}{\partial r}$$
 and $\frac{\partial z}{\partial s}$ if $x = \frac{\cos s}{r}$ and $y = \frac{\sin s}{r}$

- 5. Find the directional derivative of $z = x^2 + 3xy + y^2$ at (1,1) in the direction of < -3.4 >. In what direction should you move for maximum increase?
- 6. Sketch and name the following surfaces

(i)
$$-x^2 + y^2 + z^2 = 1$$
 (ii) $-x^2 + y^2 - z^2 = 1$

(iii)
$$x^2 + y^2 - z = 0$$
 (iv) $-y^2 + z = 0$