
QUALITY
 Software and Testing

 What is Quali

We often talk about "Q
very seldom define it.
have to be in place for
software/application so
could be considered to
Software"?

 Defined by
 James Bach
 Cem Kaner
 Jerry Wienberg Mike Pregmon Rex Black
 Magdy Hanna
 Joe Larizza
 Michael Bolton
 Richard Bornet

ty Software?

uality Software" but
What characteristics
 a piece of
 that the application
 be "Quality

VOLUME 4, ISSUE 1
April 2006

QUALITY Software and Testing

F E A T U R E S

Quality Software and Testing 2

4 What is Quality Software?
 by James Bach
Cem Kaner
Jerry Wienberg
Mike Pregmon
Rex Black
Magdy Hanna
Joe Larizza
Michael Bolton
Richard Bornet

13 Writing Testable and Code-able Requirements
by Murat Guvenc

How to Submit Articles to Quality Software and

Testing

Quality Software and Testing provides a platform for
members and non-members to share thoughts and ideas
with each other.

For more information on how to submit articles, please visit
http://www.tassq.org/quarterly.

DEPARTMENTS

Editorial Page 3

Humour: Cartoon Page 12

LITruisms Page
12, 17

Events, Conferences,
Education and Services

Page 18

TASSQ

Toronto Association of Systems and Software
Quality

An organization of professionals dedicated to
promoting Quality Assurance in Information
Technology.

Phone: (416) 444-4168
Fax: (416) 444-1274

Email: tassquarterly@tassq.org

Web Site : www.tassq.org

http://www.tassq.org/quarterly

 QUALITY Software and Testing

Editorial

PUBLISHER
Joe Larizza

EDITOR-IN-CHIEF
Richard Bornet

ASK TASSQ EDITOR
Fiona Charles

BOOK REVIEW EDITOR
Michael Bolton

ART DIRECTOR
Nuree Hwang

PRODUCTION
Jeanette Mount

Copyright © 2006
Toronto Association of
Systems & Software
Quality. All rights reserved.

Q

Welcome to our new magazine.

For some years now, the Toronto Association of Systems and Software Quality (TASSQ)
has had a great little magazine that brought its members the latest hot news and ideas in
Software Quality. We’ve had terrific response from our readers, and for that we thank you.
The one down side, if there has been one, has been the small size of our circulation – it has
been for members only.

Well, it’s time to grow up, to reach out, to embrace the world. With great articles from top
names in the field, we have something to say and we want everyone to hear it. As of this
issue, we are dramatically increasing our distribution. We’re also changing the name of the
magazine from TASSQuarterly to something that better communicates what we do: Quality
Software and Testing.

Some of you have been reading this magazine for some years. With a greater readership, we
can bring in works from prominent professionals in the field. This means more significant
articles. We hope you like it.

Many of you will be reading this magazine for the first time. We welcome you! We hope
that you will find the articles stimulating, thought-provoking and useful. We also want to
hear from you, the potential authors. We know you’re out there, and you have ideas that
you want heard. Well, with our new distribution, you can be.

So what is this magazine all about? First of all, we want to stimulate debate in our field.
There’s nothing like a lively interchange of ideas and practices to improve how we do our
work. QA can be dry stuff; a little controversy wouldn’t hurt. Secondly, we want to focus
on the practical side of QA. We want to provide people with solutions that they can use in
their jobs. Thirdly, and closest to my heart, we want to talk about the future. We want to
look at the direction our profession is taking, and present to you innovations which may
enhance and reshape how we do our work. Above all, we want this magazine to be
interesting and a must-read for people in our profession and in the wider IT community.
Our featured article is a look at “Quality Software.” We asked several prominent members of the QA and Testing community to
reflect on how quality software looks and feels. We got some interesting responses and we present them in the article “What is
Quality Software?”

In addition Murat Guvenc writes about “Writing Testable and Code-able Requirements”.

Our regular features include our humour section with our regular cartoon. This month we are adding a new section, based on the
thousands of office walls and bulletin boards out there that are littered with cartoons and wise humorous statements. We thought
we would add some insightful thoughts for you to paste on your office wall. We call these Life and IT Truisms or LITruisms for
short. They are sprinkeled around the magazine. If you have any to share with us please send them along.

We hope you enjoy the magazine. Please feel free to drop us a line, we would love to hear from you. And if you have an article
where you share your ideas, send it in.

Richard Bornet
Editor-in-Chief
uality Software and Testing 3

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 4

What is QUALITY Software?

We often talk about what is "Quality Software" but very
seldom define it. What characteristics have to be in place
for a piece of software, so that application could be
considered to be "Quality Software"?

We all talk about quality. We have Testing Departments to
ensure software quality. We have Quality Assurance
Departments to ensure product quality.

But what is a quality product? How does it look and feel?
We do all this work, what should we end up with?

I have been amazed at how little discussion there is about
this topic in IT departments. I have actually said to a tester
about a piece of software she was testing, “This is one awful
piece of software.” She replied, “I know, but it works as
required.”

So much time and effort, and too often, what we get is
mediocrity. So in this issue we thought we would look at
what people think quality software really is. We asked
various notable people in our profession and received
various responses. We thank James Bach, Jerry Wienberg,
Mike Pregmon, Cem Kaner, Rex Black and Magdy Hanna
for their contributions.

We then supplemented their thoughts with our own. Joe
Larizza, Michael Bolton and myself entered into the debate
by adding their thoughts. I added my thoughts in an article
called “Magical Software”.

The question we sent out to everyone was fairly vague. We
did this on purpose so as not to direct anyone in a particular
direction, but to get people talking about the topic.

Here is the text that we sent out:

This month we thought we would pose an interesting
question and obtain the thoughts of people of distinction in
our community.

The question we want to pose is:

We often talk about what "Quality Software" but very
seldom define it. What characteristics have to be in place

for a piece of software/application so that the application
could be considered to be "Quality Software"?

This is a fairly open ended question, but we did this on
purpose. Whenever we have asked the question it has
generated much debate and thought. We hope that the
magazine will also engender much thought and debate when
people read yours and other's responses.

We are not trying to define software quality, but are trying
to collect ideas about it, and we believe that yours would be
valuable.

Below are the responses we got. Again, we are very
grateful to the people who took the time and effort to write
to us.

Richard Bornet

From James Bach

James Bach (http://www.satisfice.com) is a pioneer in
the discipline of exploratory software testing and a
founding member of the Context-Driven School of
Testing. He is the author (with Kaner and Pettichord)
of “Lessons Learned in Software Testing: A Context-
Driven Approach”. Starting as a programmer in 1983,
James turned to testing in 1987 at Apple Computer,
going on to work at several market-driven software
companies and testing companies that follow the
Silicon Valley tradition of high innovation and agility.
James founded Satisfice, Inc. in 1999, a tester training
and consulting company based in Front Royal,
Virginia.

Oh, this is an easy one: The characteristics that must be in
place are the characteristics that the person or persons who
matter have decided must be in place. In other words, there
are no universal characteristics that comprise quality.

In fact, there can be no universal characteristics, because to
do that is to run afoul of the naturalistic fallacy-- we cannot
derive an "ought" from an "is" or say that any "is" must be
an "ought".

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 5

Quality is not a substance, it is a relationship: quality is
value to some person. This is Jerry Weinberg's famous
analysis, and from this principle follows this advice: the first
thing to do when analyzing quality is to decide whose
opinions matter.

What people value may change over time, and that changes
the quality of the products they use. It doesn't merely
change their perception of quality, mind you, it changes
quality itself (because quality is a relationship).

Furthermore, even if what I value doesn't change, the
manifestation of it might, because the product itself is a set
of relations. So a high quality product might become a low
quality product not because it changed within itself, but
because the world around it changed in some way that
"broke" the product for me.

From Magdy Hanna

Magdy Hanna is a recognized educator, speaker and
consultant in several related areas of software
engineering. Dr. Hanna brings over twenty years of
experience with building and maintaining software
systems. Dr. Hanna is the Conference Chair for the
International Conference on Practical Software Quality
Techniques . As a consultant, he helped many
organizations define and improve their software
processes using disciplined software engineering
approaches. As an associate professor at the University
of St. Thomas, he teaches graduate courses on several
software engineering topics with emphasis on practical
software quality techniques. His distinguished seminars
on various topics have been highly rated by software
professionals. He developed new approaches and
methods in software development including the
Software Quality Engineering Methodology
(SQEngineer), the Unified Data Model (UDM), and the
Data-Driven Object Model (DOM). Dr. Hanna holds a
Ph.D. and a Masters degree in Computer and
Information Sciences form the University of Minnesota.

“Quality Software”

Position 1:
Quality software means different things to different people
and that is no surprise. After all, quality in general is a very
subjective thing.

I always find it interesting in my classes to tell students
what I call the story of “My Wife and the Ground Beef.” It is
a real story that probably happens with every one of us
every day when we try to deliver the best quality to our
customers. Here’s what happened:

My wife asked me to stop by the grocery store and pick up a
package of ground beef on my way home from teaching one
of my classes on quality management. This is a class where
I spend a significant amount of time speaking to students
about listening to the voice of the customer when deciding
on what quality characteristics our software must exhibit.

Well, scanning through the different labels on packages in
the meat bin, I found my self naturally, as a high quality
seeker, moving toward the leanest grade of ground beef
until I finally spotted a label that read “Less than 9 % fat.” I
was excited that I would be bringing home something that
my wife would like, what a great thing! Being hungry as
well as eager to make my wife happy, I rushed to get back
home to deliver my highest quality product to my customer.

Imagine my surprise when I found my wife disappointed in
my choice of beef. She did not care at all for what I thought
was the highest quality package of ground beef. Did she
want more fat in the meat? Guess what? Yes, she did. If I
had not known what a great cook my wife is, if I had not
enjoyed her cooking for 25 years, I would have doubted her
taste.

I decided to be a good provider and listen to my customer
one more time. So, I asked, what is wrong? Why don’t you
like my ground beef? This is the leanest ground beef you
can get. She answered in a firm tone that really indicated
that she really knew what she wanted,,“I do not want the
leanest ground beef.” You can only imagine the look of
frustration that appeared on my face. This was like my
customer is telling me I do not care for the good quality you
are giving me. Not knowing much about cooking, I decided
to ask, why? The explanation from my wife came as a
strong indication that I did not really practice what I
preached to my students just about an hour before.

My customer is now telling me her requirements for the first
time. Knowing exactly what she wanted, my wife said I am
making a dish that takes 45 minutes to cook in the oven and
if the meat does not have enough fat it gets too dry.

Where is the problem? Do you think my wife should have
told me how lean she wanted the meat to be? Was I
supposed to ask her how much fat she wanted in the meat?
The point here is that we as software professionals very
often think we know what high quality software is, so we
just go ahead and deliver software that meets our own
definition of quality. This incident with my wife caused me
to believe that like beauty, quality is in the eye of the
beholder.

So, where does this leave us? It leaves us with the
responsibility of exploring with our customers what they

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 6

really mean by quality. This means that we have to define
quality as our customer really sees it. If the customer says
he wants the system to be easy to use, then we need to
understand what ease of use really means to our customer.
We would create a list of characteristics that our customer
would be looking for in the product that make the product
easy to use. The same applies to all other quality
requirements such as reliability, security, interoperability,
survivability, configurability, safety, etc. In my classes, I
provide my students with 16 types of quality requirements
and ask them to take the time to develop a list of
characteristics that characterize each one of those quality
requirements.

Position 2: This is the one that most likely will create
some controversy.
Whenever I ask the question “what does quality software
really mean?” to software professionals in any of my
seminars, the most common answers that almost every one
agrees upon are quality software is software that meets
requirements, does what it is supposed to do, or meets the
business needs. Phil Crosby also defined quality as
conformance to requirement. In my opinion, that view of
quality is flawed for at least two reasons. The first reason is
that we all know that requirements are never complete,
precise, or detailed enough. It has been my experience that
customers do not know what they want until they don’t get
it. In addition, requirement documents mostly address
functionality of the software; things we expect the system to
do and things we expect the system NOT to do.
Requirement documents rarely address quality requirements
such as security, reliability, performance, survivability,
interoperability, etc. So, what are requirements conforming
to?

The second reason became obvious to me when I repeatedly
asked test and quality professionals in my seminars about
what they do to assure the quality of the application. Again,
the most common answer I get is we make sure all
requirements have been tested or covered. In my opinion,
focusing on requirement-based testing to assure the quality
of the application is a losing battle. Test professionals often
do not believe this. Requirement-based testing might be
sufficient only of you can guarantee that the requirement
document contains every thing that is in the code. This
means that every function supported by the code can be
traced back to the requirement document. We all know that
this is not possible. There is always a gap between what has
been stated in the requirement document and what
developers have put in the code. You may wonder why.
The reason is that the development team always starts with
somewhat high level, vague, incomplete and most often,
ambiguous requirements. One of two scenarios often
happens depending on what type of developer’s personality
we have. Good developers will investigate further, ask

questions and try to obtain more details and resolve
ambiguities. Other developers will make their own
interpretation of requirements and fill in missing details
based on their own experience and opinion. In both cases,
the result is the same: the design and the code will have
many different things that were not reflected in the
requirement document. Even when projects utilize good
requirement change control practices, these things always
escape the process, simply because no one perceives them
as changes to the requirements, only clarifications. As a
result, when we use code coverage tools to determine how
effective our requirement-based testing is, we always get an
unpleasant surprise. My own experience suggests that
requirement-based testing barely covers 50% of what is in
the code. Now, the definition of what quality software is
really comes down to how much of the code have we tested?
How big is the gap between the code and the requirements?
How much collaboration was there between the test team
and the development team? How aware are testers with
every aspect of the code? And finally, how much testing
have developers done based on their code? Remember,
every path in the code that has not been tested presents
potential unpredictability in the behavior of the system and
potentially undesirable behavior. It all makes sense to use
code coverage, as opposed to requirement coverage, as a
measure of quality, because when the release goes out, what
gets installed and executed is code, not the requirement
document. What a new challenge for software test
professionals.

From Cem Kaner

Cem Kaner, J.D., Ph.D., is Professor of Software
Engineering at the Florida Institute of Technology. His
primary test-related interests are in developing curricular
materials for software testing, integrating good software
testing practices with agile development, and forming a
professional society for software testing. Before joining
Florida Tech, Dr. Kaner worked in Silicon Valley for 17
years, doing and managing programming, user interface
design, testing, and user documentation. He is the senior
author of Lessons Learned In Software Testing with James
Bach and Bret Pettichord, Testing Computer Software, 2nd
Edition with Jack Falk and Hung Quoc Nguyen, and “Bad
Software: What To Do When Software Fails” with David
Pels.

Dr. Kaner is also an attorney whose practice is focused on
the law of software quality. Dr. Kaner holds a B.A. in Arts
& Sciences (Math, Philosophy), a Ph.D. in Experimental
Psychology (Human Perception & Performance:
Psychophysics), and a J.D. (law degree).

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 7

Visit Dr. Kaner’s web sites: www.kaner.com and
www.badsoftware.com.

I like Jerry Weinberg's definition of quality, "Quality is
value to some person." This emphasizes the subjective
nature of quality--it's different for different people--and the
practical implication of quality--software that is better (for
you) has more value (to you).

Years ago, I worked at Electronic Arts, making software for
the Amiga. I've frequently heard expected time to failure on
the early versions of the Amigo OS estimated at 12 minutes.
EA had a bunch of techniques for working around the
weaknesses in the Amiga operating system--despite those,
we estimated a mean time between operating-system-caused
failures at 4 hours. Most classical descriptions of quality
would include high reliability as a fundamental
characteristic. But despite the unreliability of the Amiga OS,
the platform developed a large and loyal market. It provided
other values, such as unparalleled (in its time) multimedia
support, that these individuals found more valuable.

Let me distinguish "value" (quality) from "conformance to
written requirements." When they exist at all, the piece(s) of
paper that we label "requirements" map to what were some
of the actual needs and preferences of some of the
stakeholders associated with the product at some time in the
past. Conforming to these may or may not provide much
value to any particular person at any particular time.

So, what are the characteristics of "quality software?" We
might create a list of characteristics to consider on a
product-by-product basis, but not an absolute list of quality
characteristics. The world just isn't that simple and we do
ourselves and our profession(s) a disservice when we
pretend that it is.

From Mike Pregman

Dr. Mike Pregmon is the Executive Vice President of
the Quality Assurance Institute.
www.qaiworldwide.org. He is also an IT quality
industry contributor for the television program World
Business Review hosted by General Alexander Haig on
CNBC, Bravo and Asia television.
www.worldbusinessreview.com.

This is a very interesting question because “quality”
software may have a different connotation depending on
where or by whom in the development lifecycle quality is
being assessed. However, the most important and overriding
issue tends to be software “use” satisfaction. Specifically,
did the software perform in the manner expected?

Research conducted at the Quality Assurance Institute
reflects that the top three software quality issues from a
user’s standpoint are:
1) Reliability – Is the software performing correctly from

an operational standpoint when needed?
2) Response to Problems – Is the provider of the software

quickly responding and willing to assist in rectifying
any issues encountered by the user?

3) Ease of Use – This is the lack of customer difficulty in
learning and using the system or application or is often
described as “user friendliness.”

Ironically, these three issues have continued to surface as
the top concerns repeatedly over the years in studies in
customer satisfaction of delivered software.

These three challenges indeed are measurable from both a
producer’s as well as a user’s standpoint. Further, item #2,
which should be the easiest of these to satisfy by providers,
is often the most concerning for users. When producers
satisfy this issue, a huge step in customer satisfaction is
realized.

Nevertheless, if the software gets high marks with these
three challenges, chances are it will be considered
“QUALITY” software in the marketplace.

From Jerry Weinberg

Jerry Weinberg for more than 45 years has worked on
transforming software organizations, particularly
emphasizing the interaction of technical and human
issues. After spending between 1956 and 1969 as
software developer, researcher, teacher, and designer
of software curricula at IBM, he and his anthropologist
wife, Dani Weinberg (see her bio for more about Dani),
formed the consulting firm of Weinberg & Weinberg to
help software engineering organizations manage the
change process in a more fully human way.
www.geraldmweinberg.com/index.html

I'll stick with the definition I gave in my Software Quality
Management Series: "Quality is value to some person or
persons."

What's the fuss? This definition is pragmatic and has held
up well for 50 years. Why change? Or do you still think
quality is some objective measurement, something in the
software rather than in its relationship to people who use it,
pay for it, or are victimized by it?

http://www.kaner.com/
http://www.badsoftware.com/
http://www.qaiworldwide.org/
http://www.worldbusinessreview.com/

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 8

From Rex Black

Rex Black is the President of RBCS
(www.rexblackconsulting.com), a leader in the area of
testing and quality assurance. RBCS has over a
hundred clients in about twenty countries around the
world, offering them services like training, assessment,
consulting, staff augmentation, insourcing, off-site and
off-shore outsourcing, test automation, and quality
assurance. Rex’s best-seller, Managing the Testing
Process, has reached over 22,000 readers on six
continents (but the penguins in Antarctica won’t buy it).

I suspect that, in the near future, many types of software will
become commoditized, just as many types of computer
hardware have. The open-source phenomenon is leading the
way, with Linux and Apache ascendant on the Internet.
Regardless of the motives of the partisans of open-source
software, the motives of the important business users of
these open-source applications are clear: They want cheap
software with the same quality levels as the commercial
alternatives.

Basic economics tells us, for commodities, prices and profit
margins are low, features are standardized, and quality is an
absolute must for participation in the market. Failure to
deliver consistent quality damages a business’ ability to
compete in a commoditized market. To deliver quality
software, we need to start with a working definition of what
quality software is.

Among other services, my consulting company offers
training courses for software and systems professionals.
Most of those courses focus on testing. We have taught
thousands of attendees in dozens of countries around the
world. Towards the beginning of these courses, we often
ask people, “For the systems you build, what comes to mind
when you think about the word, ‘quality’?”

We usually separate the responses into two main groups:
outcomes and characteristics. By outcomes, I mean what
would the result be, after the software was delivered. By
characteristics, I mean what would be true about the
software that was delivered. Let’s look at each group.
In the outcomes group, responses boil down to one of two
definitions:

• The software conforms to its specification.
• The software fits its various uses and purposes.

The first definition closely follows Phil Crosby’s definition
of quality, while the second closely follows J.M. Juran’s
definition.1

1 For their actual definitions, see Crosby’s book, Quality
is Free, and Juran’s book, Planning for Quality.

The second definition is my favorite. Fully articulated, it
means the software has those attributes, characteristics, and
behaviors that satisfy the customers, users, and other
stakeholders, and has few if any of those attributes,
characteristics, and behaviors that dissatisfy them.

The first definition sounds good initially, but turns out to be
a will-o’-the-wisp when applied to software. According to
Capers Jones’ studies, almost half of all defects are
introduced during requirements and design specification.
Testing the quality of software against the specification only
is like measuring with a flawed yardstick. 2

However, how do we measure against the “fit for use and
purpose” definition, either? This is where the
“characteristics” part of the discussion comes in.

Depending on the software or system in question, some
course attendees list characteristics like reliability and
performance. Some list usability and scalability. Some list
data integrity. Interestingly, many fail to mention
functionality; i.e., the ability to fulfill correctly the
stakeholders’ business needs for the software. When we
mention that to attendees, the response is usually a type of
“no duh!” reaction. It seems some people think that some
quality characteristics—and, of course, the need to test
them—are simply obvious.

Unfortunately, what’s obvious to some people is not
obvious to all, and what perhaps should be obvious to
project participants is sometimes forgotten entirely. So,
determining which quality characteristics are important, and
how important they are relative to each other, is crucial to
the proper focus of the testing effort. When my associates

Interestingly, it is typical for only one or two course
attendees to be familiar with either Juran or Crosby, and
very few have read either book, which seems to make
Crosby and Juran the Andy Warhol and Lou Reed of
software quality.
2 Maybe you are thinking, “You are missing Gerald
Weinberg’s definition, ‘value to some person.’” It’s
missing for two reasons, the first being almost no one ever
mentions it. The second reason is that we don’t mention it
in our courses, either, because it’s flawed. Weinberg is
correct to include the “some person” aspect of the
definition, because that emphasizes the need for users,
customers, and other stakeholders to make the final
determination of quality. However, people value a number
of product characteristics, such as those related to feature,
price, and schedule, that are not quality characteristics.
Weinberg’s definition therefore mixes up considerations
that should be kept separate to encourage clear thinking
about project trade-offs.

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 9

and I manage testing projects, we typical do risk-based
testing. In my approach to risk-based testing, we start by
analyzing, for each possible quality characteristic, the
various risks to the quality of the system. For each of these
quality risks, we then determine what the level of risk is.
This allows us to focus our test effort, and prioritize our
tests, based on the risk posed to the system.3

Of course, determining which quality characteristics are
important, and how important they are, is not only crucial to
testing, but also to the rest of the project team. Quality
cannot be tested into software at the end of the project.
Simply grinding out as many bugs as possible, in addition to
being inefficient, will not result in software that yields the
delightful quality that we experience with the most well-
designed products that we use.

So, where can you find a generic list of quality
characteristics? Some companies use the ISO 9126
standard. This standard specifies six main quality
characteristics—functionality, reliability, usability,
efficiency, maintainability, and portability—and, for each
characteristic, two or more subcharacteristics. For example,
response time (performance) and resource usage are both
subcharacteristics of efficiency.

I have found that a generic checklist of about two-dozen
quality risk areas has worked well, too. I use this list to
structure my conversations with project stakeholders about
quality, particularly during quality risk analysis. What
could go wrong in each quality risk area? How likely is that
particular quality risk? How much trouble would it cause?
Whether you use my checklist or the ISO 9126 standard,
either will provide a framework for understanding system
quality and how to test it.4

This brings us to my final point. In about one presentation
out of ten, someone will respond to the question about
quality in a totally different way, giving a response that I
would classify in a knowledge group. By knowledge, I
mean how would you know whether the software had
quality. A typical response in this group might be,
“Software that was thoroughly tested in a way that covered

3 You can read more about risk-based testing in my
books, Managing the Testing Process, 2e, Critical Testing
Processes, and the forthcoming Foundations of Software
Testing: ISTQB Foundation Certification (working title).
You can also read the articles “Investing in Testing: The
Risks to System Quality” and “Quality Risk Analysis”
posted at our Web site, www.rexblackconsulting.com.
4 You can find this list of risk areas, Generic Quality
Risks List, on the Library page of our Web site,
www.rexblackconsulting.com, and in my book, Managing
the Testing Process, 2e.

all important quality risks, with few if any blocked tests,
critical failures, or high-priority bugs at the conclusion of
testing.” These attendees understand that, while testing
cannot change the quality of software, testing can offer the
organization the opportunity to correct quality problems,
and can build confidence where the system is observed to
work properly. As a test professional who believes that
testing plays an essential role in delivering quality products,
I find this to be not only a good response, but a
professionally gratifying one, too.

From Michael Bolton

Michael Bolton provides worldwide training and
consulting in James Bach's Rapid Software Testing. He
writes about testing and software quality in Better
Software Magazine as a regular columnist, has been an
invited participant at the Workshop on Teaching
Software Testing in 2003, 2005, and 2006, and was a
member of the first Exploratory Testing Research
Summit in 2006. He is Program Chair for the Toronto
Association of System and Software Quality, and an
active member of Gerald M. Weinberg's SHAPE
Forum. Michael can be reached at
mb@developsense.com, or through his Web site,
http://www.developsense.com

I'm honoured to have been asked for my definition of
quality. Like many of us in the Context-Driven School, I
use Jerry Weinberg's definition of quality, "quality is value
to some person". Since I expect my colleagues to provide
the same definition, how can I provide something
distinctive? Maybe I can tell you about what I've learned
about the definition.

One of them is that, on most projects, there are lots of "some
persons". Their values and their standards all matter to
some degree. When I teach Rapid Software Testing, I
encourage testers to think of as many different user roles as
they can-and we don't stop until we get to 30. I do better
testing when I recognize that there are plenty of people in
the project community, and that their values may differ.

I've also learned that, as a tester, whatever I might think
about the product, ultimately the product doesn't have to
satisfy me. My job is to provide information to the project's
sponsors so that they can make informed decisions about the
product. I have opinions about quality, but I'm not the
product manager. This helps me to focus my work. When I
see a bug that I think is really important, and management
doesn't agree, I need to make sure that I've communicated
the significance of the bug absolutely as well as I can. That
often involves thinking about the larger system in which our

http://www.developsense.com/
http://www.rexblackconsulting.com/

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 10

product operates, and thinking about the diversity of the
people that use our software or are affected by it.

Jerry's definition also encourages me to be reasonable.
Once I've advocated for a bug fix on behalf of someone in
the project community, I need to take a step back and realize
that management may have other important priorities.
Shipping the product, rather than fixing every last bug, is
often a rational and pragmatic decision. That's because to
project management-and to customers, for that matter-a
good product now may be more immediately useful or
valuable than a perfect product six months from now.

It's a privilege to be paid to learn how people and systems
work.

From Joe Larizza

Joe Larizza) is a SR Quality Manager, for The RBC
Dexia Investor Services. He is a President of the
Toronto Association of Systems and Software Quality
and is an Advisor for the Quality Assurance Institute.
He is a Certified System Quality Analyst and holds a
Bachelor of Arts Degree in Economics.
He can be reached at Joe.larizza@sympatico.ca

I define quality software as its ability to meet the end users’
requirements. The characteristics of quality software are
“due” to requirements having the following attributes:
dependable, usable and expandable.

Dependable software provides constant results accurately
and meets the individuals’ time expectations. Also, future
change can be added to the software without lowering the
effectiveness of its purpose.

Usability can be best described as software that is intuitive,
understandable and where knowledge transfer takes place.
Quality software does not require an individual to read
manuals. Instead, day-to-day experiences and expectations
are reflected in the design of the software.

Expandable can be seen as software that has the ability to
change with time. Over any period, our expectations and
requirements for the software will change. Therefore,
quality software has the ability to change over time. During
the designing stage, individuals must consider the dynamics
of change and build software where modifications or
enhancements can be added without jeopardizing the
software quality.

There are many factors that prevent quality software from
being produced, with financial restrictions often being
paramount. However, regardless of whether a Chevy or

Rolls Royce is required to get you from point A to B,
quality attributes result from the understanding of the
market place requirements.

From Richard Bornet – ‘Magical Software’

Richard Bornet has been in the software business for
over 20 years. The last ten he has spent running various
testing departments and creating innovative
approaches to improve testing. He specializes in test
automation and is the inventor of Scenario Tester and
co-inventor of Ambiguity Checker software. He can be
reached at rbornet@eol.ca. or by phone at 416-986-
7175

I have been asked to say a few words about quality
software. When does software make the grade so it can
really be called “Quality”?

Most people I have asked this question of basically state that
quality is in the eye of the beholder, that it is a subjective
opinion. To that I say, “No way!”

Knowing quality when we see it does not seem to be a
problem when we refer to something other than software,
cars for instance. Most people can tell you what a “quality”
car is. My five year old knows this. Every time we drive in
from the highway, we pass a Lamborghini dealership and he
looks out the window and says, “Wow”. For all he knows,
that car could drive like a Trabant, and could break down by
the end of the block. But he looks at the car and he knows
there is something special about it. Interestingly, my other
kids and I all have the same reaction.

We also know that for $200,000, the car is not only going to
make it to the end of the block, but should easily make it
around the block pretty darned fast. So my five year old
recognizes quality.

I have a friend who owns a BMW with a number that starts
with something greater than 3. Every time he talks about
his car, his eyes shine. He goes on and on and on about how
amazing it is to drive that car. “Wow, what a car to drive” is
not something we hear often when we refer to a Trabant
unless we are being sarcastic. I think my friend would say
that he bought a “quality” car, and so would the rest of us.

With cars, it is not so difficult to come up with some criteria
for “quality”. Here is a brief list.
1. It works and breaks down infrequently.
2. The experience of driving is wonderful.
3. It has beautiful styling.
4. It has many gadgets that you want and are easily able to

use.

mailto:rbornet@eol.ca

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 11

5. It does what you want it to do.
(This could differentiate between types of cars: sports
car, van, truck etc., depending on what your need is)

We could apply the same list to software.

1. It works and breaks down infrequently.
2. The experience of using the software is wonderful.
3. It has beautiful styling.
4. It has many features that you want and are easily

able to use.
5. It does what you want it to do in a way that you

want to do it.
So if it is not too hard to define “quality” when it comes to
cars, why is it that when it comes to software, we have
conniptions?

I believe we should go one higher and ask ourselves, what
makes software extraordinary, or even magical? One of the
greatest compliments I ever received in my life was to have
a piece of software I had designed called “magical”. So I
have thought about this issue for quite some time.

So what is software that is of such high quality that it takes
on a “magical” feel?

Let us use the same definitions we used for the car:

1. It must work and not break down.
There is nothing more annoying than a car that breaks down
frequently. If the window does not open, or the light burns
out, or the car overheats, it’s not a quality car. The same
goes for software. If it keeps crashing, or the menus do not
work, or you get wrong error messages popping up where
they do not belong, it is not a quality piece of software. But
just because it works is not enough to give the software a
“magical” quality.

2. The experience of driving is wonderful.
We all take test drives in cars to experience the feeling of
driving. I remember I took one car for a spin on a highway,
and before I knew it, I was significantly speeding, but I had
no awareness that I was doing it. The car ran so smoothly
that it just accelerated without giving any sensation that I
was cranking it up. People who speak about “wonderful”
cars often talk about being “at one with the car”. The car
becomes a superior extension of themselves. Have you ever
heard anyone saying that about software? Software is
supposed to be the great empowerer, but how often is it
designed to be that?

The question could be, how fast can I get done what I need
to do? And how natural is it for me to do this? You can
develop software which feels like an extension of a person.
People can become “at one with the software” but no one
ever talks about this, or designs software to feel like a

natural part of a person. If you can pull off this oneness,
you do get the “wow” feeling.

3. It has beautiful styling.
I have a new version of Outlook. What is noticeable is that
the designers added some styling to the display. Now it tells
me “Date: Today” and “Date: Yesterday” using some pretty
but conservative colours. This may not sound like much,
but Microsoft did make some effort to change the display to
make it easier to read and look more appealing. And it does
look very nice. But honestly, how many pieces of software
can you say that about?

4. Extra gadgets
Most “quality” cars have loads of extra features: seats which
warm up, seat position memory, TV, GPS, being able to
change the radio station right on your steering wheel, and
my personal favourite - being able to monitor how far the
car is behind you when you reverse park. Features that we
now take for granted like cruise control, variable windshield
wiper speeds and air conditioning were once upon a time
luxury items.

The same with software. You can build features into
software which make the experience of using the software
much more efficient and pleasant. We are not talking about
short-cut keys but real short-cuts. Wizards which feel
natural, or software which truly adapts to how you work and
makes the work easier.

5. It does what you want it to do in a way that you

want to do it.
All the above can be true, but if it is not solving your real
problem and making you more efficient, wiser, more
knowledgeable, a better salesman, accountant or whatever
you are doing, then what good is it? On the other hand, if it
does make you a lot better at what you are doing, then that
is where you begin to get that “wow” feeling. You think,
“This is an extraordinary and wonderful piece of software.”

In all my years as a designer and tester, I have never heard
even one person in the corporate world besides myself
talking this way. I am sure that game creators talk like this
every day. I am sure they say things like, “We are going to
knock the socks off people” or, “People will be transcended
when they play this game.”

But when we talk about more mundane applications like
large database management systems, the topic does not even
come up. Don’t we want our corporate users to have their
socks knocked off by how much more efficient they are, or
by how much better they are at what they do?

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 12

I guess not. That is why we shoot so low. We often don’t
even reach the level of quality as defined above, let alone
magic.

So how do we achieve magical software? This is the subject
of another article. For now, suffice to say that to get there,
we have to know what would qualify as magical for the
particular piece of software we are developing. Would it be
being able to do one's job 10 times faster? Cut training by
95%? Being able to perform tasks that before one could
only dream about?

Whatever the dream, if we don't even discuss it, then it
cannot be achieved.

Next Issue – Call for Articles

The main topic of the next magazine will be based on
words from James Bach who constantly
reminds us that testers have to think and be clever. So
we would be interested from anyone who has come up
or heard of a bright solution to a testing or QA, or even
IT problem. We will include these in an article which
we want to call “Clever Practical Solutions to
Software Testing and Quality Problems.”

The emphasis here is on inventive, bright and
practical.

LITruism

Creating quality software can be a costly and lengthy activity. Creating mediocre software will take much
longer and cost much more.

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Softwar

Writing Testable and Code-able Requirements
Murat Guvenc

This article discusses the principles and practices for
writing requirements specifications in a deterministic and
explicit manner so that the requirements document is
testable and is designed to eliminate costs in constructing
correct solutions in a Requirements Based Testing
environment.

Abstract
Initiating testing process earlier in the software development
lifecycle is critical in the success of implementing high
quality software systems in today’s fast-paced, distributed
development environment. This effort is doable only when
the requirements are written to a level of enough detail that
a sufficient set of test cases can be generated to validate the
system’s functionality. Requirements must be correct and
should define the scope of the project precisely if the rest of
the development effort is to succeed.

This paper discusses the principles and practices for writing
requirements specifications in a deterministic and explicit
manner so that the requirements document is testable and is
designed to eliminate costly overheads in constructing
correct solutions and introduces the concept of a
Requirements-Based Testing approach.

The intended audiences for this document are project
managers, business analysts, systems analysts, quality
managers and leads, developers and anyone else involved in
requirements development and management.

Introduction
Software testing is known to be expensive and time-
consuming task. The reality is, most of the time and effort is
spent in fixing the defects, rather than testing the system’s
functionality. As accepted by the majority of the
practitioners, the cost of fixing a software error is lowest in
the requirements phase. As the project moves into
subsequent phases of software development, the cost of
fixing an error rises dramatically, since there are more
deliverables affected by the correction of each error, such as
a design document or source code. The earlier an error is
detected, the less damage it can do to the system, because
there are very few deliverables to correct.

The principal cause for the time and expense is that software
requirements are rarely written with testing in mind. This
has two consequences. The first is that specifications which
are not suitable for testing are also not suitable for software
development. If the specifications don't allow you to
identify unambiguous tests, then they don't allow you to
build unambiguously correct solutions. The second is that
testers must perform lengthy and difficult analysis of the
specifications before they can start writing meaningful tests.

Requirements are the foundation upon which the entire
system is built. To validate the requirements, test plans are
written that contain multiple test cases; each test case is
based on one system state and verifies some functionality

Figure 1 – Distribution of Software Defects
e and Testing 13

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 14

that are based on a related set of requirements. Requirement
verification and validation is needed to assure that the
functionality representing the requirements has indeed been
delivered.

Writing Testable and Code-able Requirements
However, time and limited budget are always constraints
upon writing and running test cases. That is why getting the
requirements right, complete and concise early is important
and will provide the testing group a clear idea with which to
validate the system.

The most important factor in producing high quality systems
is the quality of the requirements. Requirements must be
written in a deterministic fashion to improve the quality of
development and testing. The development of good
requirements is essential because everyone on the project
team works from the same set of requirements that describe
what the system is expected to do. If requirements are not
properly defined, the project has no foundation.

Benefits of having a good set of requirements that are
written in a deterministic level of detail are, you can;

• fully document requirements so that you are able to

determine exactly what the outputs will be
• resolve ambiguities, conflicts and other possible errors

so that you are sure you are meeting the right
requirements

• design and build test cases to validate the requirements

On the contrary, if the requirements are not written at a
deterministic level of detail, you cannot;

• design tests until the design specification is complete

and/or source code is implemented
• validate that the right system is being built and all the

expectations are met
• manage change control on the development and release

of software

Yet there are some projects that have only high-level
requirements in place or none at all. The purpose is to
deliver some executable components as early as possible to
realize the need due to concerns like time-to-market, limited
resources and/or knowledgebase. The success of the project
is pretty much defined at the construction stage. Those are
the projects that have not been considered to be
reused/shared, often explore new technologies, require
relatively a small size of team, have relatively short
development cycle and require less communication and
collaboration effort. For those types of projects writing
testable requirements approach is not applicable.

Figure 1 illustrates the distribution of defects in projects.
Over half of all project defects can be traced to the
requirements process, as shown below.

The root cause of 56% of all of the software bugs identified
in projects is a result of errors introduced in the
requirements phase. Of the bugs rooted in requirements,
roughly half of them are due to poorly written, ambiguous,
unclear and incorrect requirements. The remaining half of
these bugs are due to requirements that were completely
omitted.

Characteristic of a Testable Requirement
Requirements should be written in a testable and
deterministic manner. Deterministic means that for a given
starting condition and a set of inputs, the user can determine
exactly what the expected outcomes will be. Testable means
that each statement in the requirements can then be used to
prove or disprove whether the behavior of the software is
correct.

Testable requirements are essential for the testing process,
not only because test engineers must predict the expected
outcome of their tests, but also the tester must verify the
results of each test. These activities cannot be done with
pre-specified test requirements. It must be measurable and
observable. Measurable means that the test engineers can
qualitatively or quantitatively verify the test results against
the test requirement's expected result.

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 15

Here is the list of main characteristics of a testable
requirement as described by Richard Bender who brought

over thirty-five years of experience in software with a
primary focus on quality assurance and testing.;

• deterministic
• unambiguous
• correct
• complete
• consistent
• explicit
• traceable

Unfortunately, in the real world many software
requirements specification documents are written only after
the software has been constructed. Test case results vary
depending on the exposure and experience of each tester.
Test coverage varies from application to application
depending on the tester, and there is no way of determining
test coverage at this time. The requirements documents are
released, and then changes to the requirements are
communicated via email, but the original requirements are
not updated to reflect the email. There is risk of promoting
untested code into production without providing full test

coverage from a functional perspective. Code coverage
analyzers are not used to monitor actual code coverage

Figure 2

when tests are run, so there is no way to determine actual
code coverage of the test case design effort at this time.

Requirements Based Testing
Requirements-based testing is the process of designing and
building test cases based on the requirements of the
application. Requirements-Based Testing (RBT) improves
functional test coverage and reduces the risk of untested
code being promoted to production. In the RBT first task is
to ensure that the specifications are correct, complete, and
logically consistent. Once the specifications have been
clarified, the second challenge is in defining a necessary and
sufficient set of tests that are needed to verify that the design
and code fully meet the specifications. RBT contains two
components;

• Ambiguity Review that is used to identify all potential

ambiguities in requirements
• Cause-Effect-Graphing for deriving minimum number

of test cases that covers 100% of the application
functionality

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 16

Ambiguity Review is a technique to eliminate potential
ambiguities in requirements, thus avoiding defects from the

application at the earliest phase of the software development
lifecycle. After the ambiguities are identified, it is the
responsibility of the requirements author to correct the
ambiguities, and then have the domain experts review the
requirements for content. Ambiguity Review improves the
quality of requirements so that the domain experts have a
better quality document to work from, and help them make
whatever changes are needed to the requirements content, so
that requirements are not missed.

Cause-Effect Graphing is the process of transforming
specifications into a graphic representation. This graphic
representation depicts the functional relationships and
conditions present in the requirements. The Cause-Effect
Graphing technique uses a mathematically rigorous
algorithm to determine the necessary and sufficient set of
test cases for covering 100% of the functionality defined in
the requirements. The tester no longer tries to manually
determine the right set of test cases.

The list of the activities from requirement gathering to test
automation is detailed below;
• Gather all requirements in a requirements management

tool
• Write requirements in a correct deterministic manner
• Perform ambiguity review

• Create requirements model using cause-effect graphing
technique

Figure 3

• Generate test cases for functional testing to provide
100% test coverage

• Integrate application code
• Generate test scripts
• Run test

In the scenario described above, CaliberRM is used to
collect the requirements and store them in centralized
repository, so that requirements can easily be traced from
inception through deployment. Managing requirements at
uniquely identifiable object allows requirements to be
viewed, sorted, and reused on an individual basis, having
their own level of security, change history and their own
verification and validation criteria. See Figure 3.

CaliberRM provides a utility called “glossary” to perform
ambiguity reviews, in which ambiguous terms, phrases,
acronyms can be stored and run against project to eliminate
potential ambiguities in requirements.

Bender-RBT is a requirements-based, functional test case
design system that drives clarification of application
requirements and designs the minimum number of test cases
for maximum functional coverage. Bender-RBT uses the
requirements as a basis to design test cases needed for full
functional coverage. Using cause-effect graphing in Bender-

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 17

RBT, the project team can transform requirements
specifications created in CaliberRM into requirements
model and discover the functional relationships and
conditions present in the requirements. Test cases are
generated from the cause-effect graph. See Figure 4.

The next step is creating test scripts. This can be a very
involved, time consuming and resource heavy task. It is
possible though, as the designers of Scenario Tester have
shown, to automate the generation of the automated test
scripts directly from Bender-RBT output files.

This automation should involve:

• Environment Setup
• Import Test Cases (from Bender-RBT in this scenario)
• Generate Test Data
• Integrate Application Code
• Generate Test Scripts (Completely automated)
• Run Test (Completely automated)

Automation allows projects to move from requirements to
actually executing the tests quickly and with a manageable
complement of resources.

References
1. Chaos Chronicles, Standish Group International
2. James Martin, Information Manifesto
3. Barry W. Boehm, Software Engineering Economics
4. Dean Leffingwell, Don Widrig, Edward Yourdon,

Managing Software Requirements
5. Karl E. Wiegers, Software Requirements
6. Richard Bornet, Enterprise Software Testing Systems
7. Richard Bender, Bender RBT Inc.
8. Gary Mogyorodi, Requirements-Based Testing -

Ambiguity Reviews, The Journal of Software Testing
Professionals

BBiioo::
Murat Guvenc has over ten years of professional experience
in developing and implementing software systems. His
experience ranges from designing business and object
models to process improvements. For the past five years he
has contributed within many organizations to facilitate
process initiatives and best practices. He authored and
delivered seminars on several topics and participated in
conferences, symposiums and user groups meetings to
discuss new technologies, industry guidelines and tools
automation.

LITruism

We trained hard, but it seemed that every time we
were beginning to form up into teams, we would be
reorganized. I was to learn later in life that we tend
to meet any new situation by reorganizing; and a
wonderful method it can be for creating the illusion
of progress while producing confusion,
inefficiency and demoralization.

Petronius Arbiter (210 B.C.)

LITruism

I sometimes wonder if the manufactures of
foolproof items keep a fool or two on their payroll
to test things.

Alan Cohen

http://www.bitspi.com/company/rbtambiguityrevs.html
http://www.bitspi.com/company/rbtambiguityrevs.html

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 18

Events, Conferences, Education and Services

TASSQ Presents

Rex Black

Five Trends Affecting Testing
May 30th, 2006

Location: TBD

Five strong winds of change are blowing in the software and systems engineering world. As winds affect a sailboat, these winds
of change will affect testing as a field, and testers as a community. Your career as a tester is at stake, and both risks and
opportunities abound. In this talk, Rex Black will speak about these five trends and how they affect testing. He will offer
cautions about the risks and identify the potential opportunities you face as a tester. For each trend, he will provide references to
books and other resources you can use to prepare yourself to sail the ship of your testing career to the destination you desire:
professional success.

Rex Black (http://www.rexblackconsulting.com) is the President of RBCS, a leader in the area of testing and quality assurance.
RBCS has over a hundred clients in about twenty countries around the world, offering services like training, assessment,
consulting, staff augmentation, insourcing, off-site and off-shore outsourcing, test automation, and quality assurance. Rex’s best-
seller, Managing the Testing Process, has reached over 22,000 readers on six continents (but the penguins in Antarctica won’t
buy it).

http://www.rexblackconsulting.com/

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 19

A Workshop with Rex Black

ISTQB Software Testing Certification
Advanced Functional Testing
Toronto, ON May 31 – June 2

 This is a course for senior test engineers and test leads who want to learn powerful techniques for testing system functionality.
It is especially for people who have achieved ISTQB Foundation certification and want to take the next step to ISTQB Advanced.
Through a combination of lecture, discussion, annd hands-on exercises with a realistic example project, you’ll learn:

• Advanced Functional Testing

• Requirement-based Tests

• Syntax Tests

• Random Tests

• Bug Attacks

• Selecting Techniques

• IEEE Testing Standards

• Test Assessment

• Review Techniques

• IEEE Standard for Software Reviews

At the end of the last day, you can take the ISTQB Advanced Functional Tester exam (pre-qualification required).

Fees and the Bring-a-Buddy discount for TASSQ Members

Advanced Functional Testing FEE US$ 2,000

Fees include tuition, course materials, certificate of completion and US$ 250 ISTQB exam fee.

Also included are breakfast, lunch and afternoon snack on each day of the course. TASSQ members are eligible for a 10%
discount on the course tuition.

If you bring a friend, your friend will also receive a 10% discount.

Location
The course will be held at the Courtyard Marriott at 475 Yonge Street.

Dates Time
May 31 – June 2, 2006. 9 AM to 5 PM

Easy Registration at:

 www.rexblackconsulting.com
Phone 1 (830) 438-4830

http://www.rexblackconsulting.com/

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

Quality Software and Testing 20

Conference Watch

Here are some up-coming conferences:

QAI's 26th Annual Software Quality Assurance Conference
"Use It or Lose It...Exercising Your Quality Muscle"

April 24-28, 2006, Orlando, FL

http://www.qaiworldwide.org/conferences/apr_2006/index.html

Project World Conference
Business Analyst World

May 8-12, 2006, Toronto Conference

http://www.projectworldcanada.com/

Contact info@projectworldcanada.com
or 905-948-0470 ext 228
or 888-443-6786 ext 228.

Software Testing Analysis and Review (STAR East)
May 15-19, Orlando, FL

http://www.sqe.com/stareast/

XP Day Montreal
June 3, Montreal, PQ

Information soon at http://www.diasparsoftware.com

Conference of the Association for Software Testing
June 5-7, Indianapolis, IN

http://www.associationforsoftwaretesting.org/conference/

http://www.qaiworldwide.org/conferences/apr_2006/index.html
http://www.projectworldcanada.com/
mailto:info@projectworldcanada.com
http://www.sqe.com/stareast/
http://www.diasparsoftware.com/
http://www.associationforsoftwaretesting.org/conference/

 Toronto Association of Systems & Software Quality

 QUALITY SOFTWARE AND TESTING

QAI Canada is now the exclusive Canadian representative of the Quality Assurance Institute (QAI)

offering software testing courses that help prepare TASSQ members for certification as either a Certified Software
Tester or Certified Software Quality Analyst.

For Toronto Association of System and Software Quality Members only

Save 10% off regular fees

2006 Public Education Schedule Q1/Q2

Date Toronto Courses
April 3 – 5 Defining & Validating User Requirements - $1,695
April 6 – 7 Essentials of Leadership in Testing - $1,195
April 10 - 12 Essentials of Software Testing - $1,695
June 5 – 6 Essentials of User Acceptance Testing - $1,195
June 7 – 9 Boot Camp for Project Managers - $1,695
July 24-25 Essentials of Testing Web Applications - $1,195
July 26-28 Boot Camp for Business Analysts - $1,695
August 15 -18 Effective Methods of Software Testing - $2,195

For customized on site training: If your Test Team (6 or more) would like any of the above
listed courses delivered at your facility, please contact aphomin@qaicanada.org

For more details and online registration: http://www.qaicanada.org/ Call Al Phomin: 1-866-899-1724 or
email us.

Quality Software and Testing 21

mailto:aphomin@qaicanada.org
http://www.qaicanada.org/

	Prevention
	Appraisal
	Internal Failure
	External Failure
	A Workshop with Rex Black
	ISTQB Software Testing Certification
	For Toronto Association of System and Software Quality Membe
	Save 10% off regular fees
	2006 Public Education Schedule Q1/Q2

