To avoid the costly CCS^1 , our dual gasification (of coal-lignite/NG) approach (see <u>https://www.setvision.org/sg_petrochems.html</u>) will be particularly useful in expanding a nation's decarbonized base-load power generation on the CCR^2 platform. Extraction of H₂ from coal-lignite reserves and available NG supply, which is then fired in IGCC gigawatt power generation units will allow *continued use* of abundant carbonaceous fuels while producing decarbonized power.

Based on the UN table on fossil fuel properties (below), on average, lignite gasification directly yields 5 percent of lignite weight as hydrogen gas. As indicated in the EmeraldCarbon[®] Carbon Capture & Recycle flowchart (see <u>https://www.setvision.org/many-ec-recycled-products.html</u>), this small amount is indirectly augmented by a far greater quantity of hydrogen (H₂^{DWC}) derived from the action of our proprietary Dissociation Water Carbon (DWC) Process on carbon monoxide (CO) gasifier output that is 92 percent of lignite feed (by weight). Consequently, it's felt our coal-lignite gasification plus DWC (GDWC) method yields significant enough blue³ hydrogen output to justify the proposed inclusion of an intermediate lignite gasification step rather than the traditional direct lignite firing in power generation. Thus the GDWC treatment of the nation's abundant lignite reserves together with natural gas reforming may provide substantial blue hydrogen contribution to a nation's developing decarbonization program.

Also, within the framework of CCR, preparation of H₂/CO feed for the traditional Fischer-Tropsch (FT) reforming process, in the required proportions, is <u>subtractive</u> of carbon monoxide rather than additive of hydrogen; consequently, our method obviates the need for Water Gas Shift (WGS) in FT reforming of hydrocarbons, thereby reducing the cost of the procedure. Under CCR, the surplus CO is simply recycled along with CO₂ to value-added carbon products such as carbon fiber

(see <u>https://www.setvision.org/ec_carbon-fiber.html</u>).

		Coal	Lignite	Peat	Wood
Chemical composition					
Carbon (C)	weight %	76-87	65-75	50-60	48-55
Hydrogen (H)	weight %	3.5-5.0	4.5-5.5	5-7	6-7
Oxygen (O)	weight %	3-11	20-30	30-40	38-43
Nitrogen (N)	weight %	0.8-1.2	1-2	0.5-2.5	<0.6
Sulphur (S)	weight %	1-3	1-3	0.1-0.4	0.02-0.06
Fuel properties					
Volatile matter	weight %	10-50	50-60	60-70	75-85
Ash	weight %	4-10	6-10	2-15	0.1-2.0
Melting point of ash	°C	1100-1300	1100-1300	1100-1300	1350-1450
Bulk density	kg/m ³	728-880	650-780	300-400	320-420
Effective calorific value of dry substance	MJ/kg ¹	28-33	20-24	20-23	17-20

GENERAL CHEMICAL AND FUEL PROPERTIES OF A RANGE OF FOSSIL FUELS UNITED NATIONS (source Lindström 1980)

 1 1 MJ/kg = 239 Kcal/kg

1 MJ/kg = 430 Btu/lb

¹ CCS: Carbon Capture Sequester CO₂

² CCR: Carbon Capture Recycle CO/CO₂

 $^{^{3}}$ Blue hydrogen: H₂ produced by reforming methane into H₂ and CO₂, as distinct from green H₂ derived from electrolysis of water.