MATHMATICS

Sequences and Series
A. Write the first five terms of each of the sequences whose nth terms are:

1. $a_{n}=n(n+2)$

Ans:

On substituting $n=1,2,3,4$, and 5 , we get the first five terms
$a_{1}=1(1+2)=3$
$\mathrm{a}_{2}=2(2+2)=8$
$a_{3}=3(3+2)=15$
$a_{4}=4(4+2)=24$
$a_{5}=5(5+2)=35$
Hence, the required terms are $3,8,15,24$, and 35 .
2. $a_{n}=n / n+1$

Ans:
On substituting $n=1,2,3,4,5$, we get
$a_{1}=\frac{1}{1+1}=\frac{1}{2}, a_{2}=\frac{2}{2+1}=\frac{2}{3}, a_{3}=\frac{3}{3+1}=\frac{3}{4}, a_{4}=\frac{4}{4+1}=\frac{4}{5}, a_{5}=\frac{5}{5+1}=\frac{5}{6}$
Hence, the required terms are $1 / 2,2 / 3,3 / 4,4 / 5$ and $5 / 6$.
3. $a_{n}=2^{n}$

Ans:

On substituting $n=1,2,3,4,5$, we get
$a_{1}=2^{1}=2$
$a_{2}=2^{2}=4$
$a_{3}=2^{3}=8$
$a_{4}=2^{4}=16$
$a_{5}=2^{5}=32$
Hence, the required terms are $2,4,8,16$, and 32.
4. $a_{n}=(2 n-3) / 6$

Ans:

On substituting $n=1,2,3,4,5$, we get
$\mathrm{a}_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6}$
$\mathrm{a}_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6}$
$\mathrm{a}_{3}=\frac{2 \times 3-3}{6}=\frac{3}{6}=\frac{1}{2}$
$\mathrm{a}_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6}$
$\mathrm{a}_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6}$
Hence, the required terms are $-1 / 6,1 / 6,1 / 2,5 / 6$ and $7 / 6$..
5. $a_{n}=(-1)^{n-1} 5^{n+1}$

Ans:

On substituting $n=1,2,3,4,5$, we get
$\mathrm{a}_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$
$\mathrm{a}_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125$
$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$
$a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125$
$a^{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$
Hence, the required terms are $25,-125,625,-3125$, and 15625.
6.
$\mathrm{a}_{\mathrm{n}}=\mathrm{n} \frac{\mathrm{n}^{2}+5}{4}$

Solution:

On substituting $n=1,2,3,4,5$, we get first 5 terms
$a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2}$
$a_{2}=2 \cdot \frac{2^{2}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2}$
$a_{3}=3 \cdot \frac{3^{2}+5}{4}=3 \cdot \frac{14}{4}=\frac{21}{2}$
$a_{4}=4 \cdot \frac{4^{2}+5}{4}=21$
$a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}$
Hence, the required terms are $3 / 2,9 / 2,21 / 2,21$ and $75 / 2$.
B. Find the indicated terms in each of the sequences whose $\mathrm{n}^{\text {th }}$ terms are:

1. $a_{n}=4 n-3 ; a_{17}, a_{24}$

Ans:
On substituting $n=17$, we get
$\mathrm{a}_{17}=4(17)-3=68-3=65$
Next, on substituting $n=24$, we get
$\mathrm{a}_{24}=4(24)-3=96-3=93$
2. $a_{n}=n^{2} / 2^{n} ; a^{7}$

Ans:
Now, on substituting $n=7$, we get
$a_{7}=7^{2} / 2^{7}=49 / 128$
3. $a_{n}=(-1)^{n-1} n^{3} ; a_{9}$

Ans:
On substituting $n=9$, we get
$\mathrm{a}_{9}=(-1)^{9-1}(9)^{3}=1 \times 729=729$
C. Write the first five terms of each of the sequences in Exercises 1 to 3 and obtain the corresponding series:

1. $a_{1}=3, a_{n}=3 a_{n-1}+2$ for all $n>1$

Solution:

Given, $a_{n}=3 a_{n-1}+2$ and $a_{1}=3$
Then,
$\mathrm{a}_{2}=3 \mathrm{a}_{1}+2=3(3)+2=11$
$\mathrm{a}_{3}=3 \mathrm{a}_{2}+2=3(11)+2=35$
$\mathrm{a}_{4}=3 \mathrm{a}_{3}+2=3(35)+2=107$
$a_{5}=3 a_{4}+2=3(107)+2=323$
Thus, the first 5 terms of the sequence are $3,11,35,107$ and 323.
Hence, the corresponding series is
$3+11+35+107+323 \ldots \ldots$.
2. $a_{1}=-1, a_{n}=a_{n-1} / n, n \geq 2$

Solution:

Given,
$a_{n}=a_{n-1} / n$ and $a_{1}=-1$
Then,
$a_{2}=a_{1} / 2=-1 / 2$
$a_{3}=a_{2} / 3=-1 / 6$
$a_{4}=a_{3} / 4=-1 / 24$
$a_{5}=a_{4} / 5=-1 / 120$
Thus, the first 5 terms of the sequence are $-1,-1 / 2,-1 / 6,-1 / 24$ and $-1 / 120$.
Hence, the corresponding series is
$-1+(-1 / 2)+(-1 / 6)+(-1 / 24)+(-1 / 120)+$ \qquad
3. $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$

Solution:

Given,
$a_{1}=a_{2}, a_{n}=a_{n-1}-1$
Then,
$a_{3}=a_{2}-1=2-1=1$
$a_{4}=a_{3}-1=1-1=0$
$a_{5}=a_{4}-1=0-1=-1$
Thus, the first 5 terms of the sequence are 2, 2, 1, 0 and -1 .
The corresponding series is
$2+2+1+0+(-1)+\ldots .$.
D.

1. Find the sum of odd integers from 1 to 2001.

Solution:
The odd integers from 1 to 2001 are 1, 3, 5, . . . 1999, 2001.
It clearly forms a sequence in A.P.
Where, the first term, $a=1$
Common difference, $d=2$
Now,
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=2001$
$1+(n-1)(2)=2001$
$2 n-2=2000$
$2 \mathrm{n}=2000+2=2002$
$\mathrm{n}=1001$
We know,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+1000 \times 2]$
$=\frac{1001}{2} \times 2002$
$=1001 \times 1001$
$=1002001$
Therefore, the sum of odd numbers from 1 to 2001 is 1002001.
2. Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5 .

Solution:

The natural numbers lying between 100 and 1000, which are multiples of 5, are 105, 110, .. 995.
It clearly forms a sequence in A.P.
Where, the first term, $a=105$

Common difference, $d=5$
Now,
$a+(n-1) d=995$
$105+(n-1)(5)=995$
$105+5 n-5=995$
$5 n=995-105+5=895$
$\mathrm{n}=895 / 5$
n = 179
We know,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$S_{n}=\frac{179}{2}[2(105)+(179-1)(5)]$
$=\frac{179}{2}[2(105)+(178)(5)]$
$=179[105+(89) 5]$
$=(179)(105+445)$
$=(179)(550)$
$=98450$
Therefore, the sum of all natural numbers lying between 100 and 1000, which are multiples of 5 , is 98450 .
3. In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that $\mathbf{2 0}^{\text {th }}$ term is $\mathbf{- 1 1 2}$.

Solution:

Given,
The first term (a) of an A.P = 2
Let's assume d be the common difference of the A.P.
So, the A.P. will be $2,2+d, 2+2 d, 2+3 d, \ldots$
Then,
Sum of first five terms $=10+10 d$
Sum of next five terms $=10+35 d$
From the question, we have
$10+10 d=1 / 4(10+35 d)$
$40+40 d=10+35 d$
$30=-5 d$
$\mathrm{d}=-6$
$\mathrm{a}_{20}=\mathrm{a}+(20-1) \mathrm{d}=2+(19)(-6)=2-114=-112$
Therefore, the $20^{\text {th }}$ term of the A.P. is -112 .
4. How many terms of the A.P. $-6,-11 / 2,-5, \ldots$. are needed to give the sum $\mathbf{- 2 5}$?

Solution:
Let's consider the sum of n terms of the given A.P. as -25 .
We known that,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
where $n=$ number of terms, $a=$ first term, and $d=$ common difference
So here, $a=-6$
$d=-11 / 2+6=(-11+12) / 2=1 / 2$
Thus, we have

$$
\begin{aligned}
& -25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right] \\
& -50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right] \\
& -50=n\left[-\frac{25}{2}+\frac{n}{2}\right] \\
& -100=n(-25+n) \\
& n^{2}-25 n+100=0 \\
& n^{2}-5 n-20 n+100=0 \\
& n(n-5)-20(n-5)=0 \\
& n=20 \text { or } 5
\end{aligned}
$$

5. In an A.P., if $p^{\text {th }}$ term is $1 / q$ and $q^{\text {th }}$ term is $1 / p$, prove that the sum of first $p q$ terms is $1 / 2(p q+1)$ where $p \neq q$.

Solution:

We know that the general term of an A.P is given by: $a_{n}=a+(n-1) d$
From the question. we have

$$
\begin{align*}
& p^{\text {th }} \text { term }=a_{p}=a+(p-1) d=\frac{1}{q} \tag{1}\\
& q^{\text {th }} \text { term }=a_{q}=a+(q-1) d=\frac{1}{p} \tag{2}
\end{align*}
$$

Subtracting (2) from (1), we have

$$
\begin{aligned}
& (p-1) d-(q-1) d=\frac{1}{q}-\frac{1}{p} \\
& (p-1-q+1) d=\frac{p-q}{p q} \\
& (p-q) d=\frac{p-q}{p q} \\
& d=\frac{1}{p q}
\end{aligned}
$$

Using the value of d in (1), we get

$$
\begin{aligned}
a+ & (p-1) \frac{1}{p q}=\frac{1}{q} \\
\Rightarrow & a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q} \\
S_{p q} & =\frac{p q}{2}[2 a+(p q-1) d] \\
& =\frac{p q}{2}\left[\frac{2}{p q}+(p q-1) \frac{1}{p q}\right] \\
& =1+\frac{1}{2}(p q-1) \\
& =\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2} \\
& =\frac{1}{2}(p q+1)
\end{aligned}
$$

Therefore, the sum of first pq terms of the A.P is $\frac{1}{2}(p q+1)$
6. Find the sum to \boldsymbol{n} terms of the A.P., whose $\boldsymbol{k}^{\text {th }}$ term is $5 \boldsymbol{k}+1$.

Solution:

Given, the $k^{\text {th }}$ term of the A.P. is $5 k+1$.
$k^{\text {th }}$ term $=a_{k}=a+(k-1) d$
And,
$a+(k-1) d=5 k+1$
$a+k d-d=5 k+1$
On comparing the coefficient of k, we get $d=5$
$a-d=1$
$a-5=1$
$\Rightarrow a=6$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2(6)+(n-1)(5)]$
$=\frac{n}{2}[12+5 n-5]$
$=\frac{n}{2}(5 n+7)$
7. The ratio of the sums of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of $m^{\text {th }}$ and $n^{\text {th }}$ term is $(2 m-1)$: $(2 n-1)$.

Solution:

Let's consider that a and b to be the first term and the common difference of the A.P. respectively.
Then from the question, we have
$\frac{\text { Sum of } m \text { terms }}{\text { Sum of } n \text { terms }}=\frac{\mathrm{m}^{2}}{\mathrm{n}^{2}}$
$\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
$\frac{2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}}{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}}=\frac{\mathrm{m}}{\mathrm{n}}$
Putting $m=2 m-1$ and $n=2 n-1$ in (1), we get
$\frac{2 \mathrm{a}+(2 \mathrm{~m}-2) \mathrm{d}}{2 \mathrm{a}+(2 \mathrm{n}-2) \mathrm{d}}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{a}+(\mathrm{m}-1) \mathrm{d}}{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
Now,
$\frac{\mathrm{m}^{\text {th }} \text { term of A.P. }}{\mathrm{n}^{\text {th }} \text { term of A.P. }}=\frac{a+(m-1) \mathrm{d}}{a+(n-1) \mathrm{d}}$
From (2) and (3), we have
$\frac{\mathrm{m}^{\text {th }}}{\mathrm{n}^{\text {th }} \text { term of A.P }}$ of A.P $=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
Hence, the given result is proved.

8. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is 164 , find the value of m.

Solution:

Let's consider a and b to be the first term and the common difference of the A.P. respectively.
$a_{m}=a+(m-1) d=164$
We the sum of the terms is given by,

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
& \frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n \\
& n a+\frac{d}{2} n^{2}-\frac{d}{2} n=3 n^{2}+5 n \\
& \frac{d}{2} n^{2}+\left(a-\frac{d}{2}\right) n=3 n^{2}+5 n
\end{aligned}
$$

On comparing the coefficient of n^{2} on both sides, we get

$$
\frac{d}{2}=3
$$

$\Rightarrow d=6$
On comparing the coefficient of n on both sides, we get
$a-\frac{d}{2}=5$
$a-3=5$
$a=8$
Hence, from (1), we get
$8+(m-1) 6=164$
$(m-1) 6=164-8=156$
$m-1=26$
$m=27$
Therefore, the value of m is 27 .
9. Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

Solution:

Let's assume $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} to be five numbers between 8 and 26 such that $8, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, 26$ are in an A.P.
Here we have,
$a=8, b=26, n=7$
So,
$26=8+(7-1) d$
$6 d=26-8=18$
$d=3$
Now,
$\mathrm{A}_{1}=a+d=8+3=11$
$\mathrm{A}_{2}=a+2 d=8+2 \times 3=8+6=14$
$A_{3}=a+3 d=8+3 \times 3=8+9=17$
$\mathrm{A}_{4}=a+4 d=8+4 \times 3=8+12=20$
$A_{5}=a+5 d=8+5 \times 3=8+15=23$
Therefore, the required five numbers between 8 and 26 are 11, 14, 17, 20, and 23.
10. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between \boldsymbol{a} and \boldsymbol{b}, then find the value of \boldsymbol{n}. Solution:
The A.M between a and b is given by, $(a+b) / 2$
Then according to the question,

$$
\begin{aligned}
& \frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}} \\
& (a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right) \\
& a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n} \\
& a b^{n-1}+a^{n-1} b=a^{n}+b^{n} \\
& a b^{n-1}-b^{n}=a^{n}-a^{n-1} b \\
& b^{n-1}(a-b)=a^{n-1}(a-b) \\
& b^{n-1}=a^{n-1} \\
& \left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0} \\
& n-1=0 \\
& n=1
\end{aligned}
$$

Thus, the value of n is 1 .
E.

1. Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the G.P. $5 / 2,5 / 4,5 / 8$,

Solution:

Given G.P. is $5 / 2,5 / 4,5 / 8$,
Here, $a=$ First term $=5 / 2$
$r=$ Common ratio $=(5 / 4) /(5 / 2)=1 / 2$
Thus, the $20^{\text {th }}$ term and $\mathrm{n}^{\text {th }}$ term

$$
\begin{aligned}
& a_{20}=a r^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{(2)(2)^{19}}=\frac{5}{(2)^{20}} \\
& a_{n}=a r^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{5}{(2)(2)^{n-1}}=\frac{5}{(2)^{n}}
\end{aligned}
$$

2. Find the $12^{\text {th }}$ term of a G.P. whose $8^{\text {th }}$ term is 192 and the common ratio is 2.

Solution:

Given,
The common ratio of the G.P., $r=2$
And, let a be the first term of the G.P.
Now,

$$
\begin{aligned}
& a_{8}=a r^{8-1}=a r^{7} \\
& a r^{7}=192 \\
& a(2)^{7}=192 \\
& a(2)^{7}=(2)^{6}(3)
\end{aligned}
$$

So,

$$
\begin{aligned}
& a=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2} \\
& \text { Hence }
\end{aligned}
$$

Hence,

$$
a_{12}=a r^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072
$$

3. The $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a G.P. are p, q and s, respectively. Show that $q^{2}=p s$.
Solution:
Let's take a to be the first term and r to be the common ratio of the G.P.
Then according to the question, we have
$a_{5}=a r^{5-1}=a r^{4}=p \ldots$ (i)
$a_{8}=a r^{8-1}=a r^{7}=q \ldots$ (ii)
$a_{11}=a r^{11-1}=a r^{10}=s$

Dividing equation (ii) by (i), we get

$$
\begin{align*}
& \frac{a r^{7}}{a r^{4}}=\frac{q}{p} \\
& r^{3}=\frac{q}{p} \tag{iv}
\end{align*}
$$

On dividing equation (iii) by (ii), we get

$$
\begin{align*}
\frac{a r^{10}}{a r^{7}} & =\frac{s}{q} \\
r^{3} & =\frac{s}{q} \tag{v}
\end{align*}
$$

Equating the values of r^{3} obtained in (iv) and (v), we get

$$
\begin{aligned}
& \frac{q}{p}=\frac{s}{q} \\
& \quad q^{2}=p s
\end{aligned}
$$

Hence proved.
4. The $4^{\text {th }}$ term of a G.P. is square of its second term, and the first term is $\mathbf{- 3}$.

Determine its $7^{\text {th }}$ term.

Solution:

Let's consider a to be the first term and r to be the common ratio of the G.P.
Given, $a=-3$
And we know that,
$a_{n}=a r^{n-1}$
So, $a_{4}=a r^{3}=(-3) r^{3}$
$a_{2}=a r^{1}=(-3) r$
Then from the question, we have
$(-3) r^{3}=[(-3) r]^{2}$
$\Rightarrow-3 r^{3}=9 r^{2}$
$\Rightarrow r=-3$
$a_{7}=a r^{7-1}=a r^{6}=(-3)(-3)^{6}=-(3)^{7}=-2187$
Therefore, the seventh term of the G.P. is -2187 .
5. Which term of the following sequences:
(a) $2,2 \sqrt{ } 2,4, \ldots$ is 128 ? (b) $\sqrt{ } 3,3,3 \sqrt{ } 3, \ldots$ is 729 ?
(c) $1 / 3,1 / 9,1 / 27, \ldots$ is $1 / 19683$?

Solution:
(a) The given sequence, $2,2 \sqrt{ } 2,4, \ldots$

We have,
$a=2$ and $r=2 \sqrt{ } 2 / 2=\sqrt{ } 2$
Taking the $\mathrm{n}^{\text {th }}$ term of this sequence as 128 , we have

$$
a_{n}=a r^{n-1}
$$

(2) $(\sqrt{2})^{n-1}=128$
(2) $(2)^{\frac{n-1}{2}}=(2)^{7}$
(2) ${ }^{\frac{n-1}{2}+1}=(2)^{7}$

$$
\begin{aligned}
& \frac{n-1}{2}+1=7 \\
& \frac{n-1}{2}=6 \\
& n-1=12 \\
& n=13
\end{aligned}
$$

Therefore, the $13^{\text {th }}$ term of the given sequence is 128 .
(ii) Given sequence, $\sqrt{ } 3,3,3 \sqrt{ } 3, \ldots$

We have,
$a=\sqrt{ } 3$ and $r=3 / \sqrt{ } 3=\sqrt{ } 3$
Taking the $\mathrm{n}^{\text {th }}$ term of this sequence to be 729 , we have
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=729$
$(\sqrt{3})(\sqrt{3})^{n-1}=729$
$(3)^{\frac{1}{2}}(3)^{\frac{n-1}{2}}=(3)^{6}$
(3) $\frac{\frac{1}{2}+\frac{n-1}{2}}{}=(3)^{6}$

Equating the exponents, we have

$$
\begin{aligned}
& \frac{1}{2}+\frac{n-1}{2}=6 \\
& \frac{1+n-1}{2}=6
\end{aligned}
$$

$\therefore n=12$
Therefore, the $12^{\text {th }}$ term of the given sequence is 729 .
(iii) Given sequence, $1 / 3,1 / 9,1 / 27, \ldots$
$a=1 / 3$ and $r=(1 / 9) /(1 / 3)=1 / 3$
Taking the $\mathrm{n}^{\text {th }}$ term of this sequence to be $1 / 19683$, we have

$$
\begin{aligned}
& a_{n}=a r^{n-1} \\
& \therefore a r^{n-1}=\frac{1}{19683}
\end{aligned}
$$

$$
\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}
$$

$$
\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}
$$

$$
n=9
$$

Therefore, the $9^{\text {th }}$ term of the given sequence is $1 / 19683$.
6. For what values of x, the numbers $-2 / 7, x,-7 / 2$ are in G.P?

Solution:

The given numbers are $-2 / 7, x,-7 / 2$.
Common ratio $=x /(-2 / 7)=-7 x / 2$
Also, common ratio $=(-7 / 2) / x=-7 / 2 x$
$\therefore \frac{-7 \mathrm{x}}{2}=\frac{-7}{2 \mathrm{x}}$
$\mathrm{x}^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$\mathrm{x}=\sqrt{1}$
$\mathrm{x}= \pm 1$
Therefore, for $x= \pm 1$, the given numbers will be in G.P.
7. Find the sum to 20 terms in the geometric progression $0.15,0.015,0.0015 \ldots$

Solution:
Given G.P., $0.15,0.015,0.00015, \ldots$
Here, $a=0.15$ and $r=0.015 / 0.15=0.1$

We know that, $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
\therefore \mathrm{S}_{20} & =\frac{0.15\left[1-(0.1)^{20}\right]}{1-0.1} \\
& =\frac{0.15}{0.9}\left[1-(0.1)^{20}\right] \\
& =\frac{15}{90}\left[1-(0.1)^{20}\right] \\
& =\frac{1}{6}\left[1-(0.1)^{20}\right]
\end{aligned}
$$

8. Find the sum to n terms in the geometric progression $\sqrt{ } 7, \sqrt{ } 21,3 \sqrt{ } 7, \ldots$

Solution:

The given G.P is $\sqrt{ } 7, \sqrt{ } 21,3 \sqrt{ } 7, \ldots$
Here,

$$
\begin{aligned}
& a=\sqrt{ } 7 \text { and } \\
& \mathrm{r}=\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{3} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \therefore S_{n}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{\mathrm{n}}\right]}{1-\sqrt{3}} \\
& =\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}} \\
& =\frac{\sqrt{7}(1+\sqrt{3})\left[1-(\sqrt{3})^{n}\right]}{1-3} \\
& =\frac{-\sqrt{7}(1+\sqrt{3})}{2}\left[1-(3)^{\frac{n}{2}}\right] \\
& =\frac{\sqrt{7}(1+\sqrt{3})}{2}\left[(3)^{\frac{n}{2}}-1\right]
\end{aligned}
$$

9. If the $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of a G.P. are a, b and c, respectively. Prove that $\mathrm{a}^{\mathrm{q}-}$ ${ }^{r} b^{r-p} c^{p-q}=1$

Solution:

Let's take A to be the first term and R to be the common ratio of the G.P.
Then according to the question, we have
$A R^{p-1}=a$
$A R^{q-1}=b$
$A R^{r-1}=c$
Then,
$a^{q-r} b^{r-p} c^{p-q}$
$=A^{q-r} \times R^{(p-1)(q-r)} \times \mathrm{A}^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$
$=A q^{-r+r-p+p-q} \times R^{(p r-p r-q+r)+(r q-r+p-p q)+(p r-p-q r+q)}$
$=A^{0} \times R^{0}$
$=1$
Hence proved.
10. If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+$ cd) ${ }^{2}$.

Solution:

Given, a, b, c, d are in G.P.
So, we have
$b c=a d \ldots$ (1)
$b^{2}=a c \ldots(2)$
$c^{2}=b d \ldots(3)$
Taking the R.H.S. we have
R.H.S.
$=(a b+b c+c d)^{2}$
$=(a b+a d+c d)^{2}$ [Using (1)]
$=[a b+d(a+c)]^{2}$
$=a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2}$
$=a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right)$
$=a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2}$ [Using (1) and (2)]
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}$
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} b^{2}+c^{2} \times c^{2}+c^{2} d^{2}$
[Using (2) and (3) and rearranging terms]
$=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)$
$=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)$
$=$ L.H.S.
Thus, L.H.S. $=$ R.H.S.
Therefore,
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$
11. Insert two numbers between 3 and 81 so that the resulting sequence is G.P.

Solution:

Let's assume G_{1} and G_{2} to be two numbers between 3 and 81 such that the series $3, G_{1}, G_{2}, 81$ forms a G.P.
And let a be the first term and r be the common ratio of the G.P.
Now, we have the $1^{\text {st }}$ term as 3 and the $4^{\text {th }}$ term as 81 .
$81=(3)(r)^{3}$
$r^{3}=27$
$\therefore r=3$ (Taking real roots only)
For $r=3$,
$G_{1}=a r=(3)(3)=9$
$G_{2}=a r^{2}=(3)(3)^{2}=27$
Therefore, the two numbers which can be inserted between 3 and 81 so that the resulting sequence becomes a G.P are 9 and 27 .

