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ABSTRACT: A mixed algorithm is discussed for reducing the complexity of large scale dynamical systems with parameter 
uncertainty. The reduced  model denominator is computed via Mihailov criterion and numerator via application of SRAM. The 
numerator coefficients are obtained using a simple formula by matching ‘t’ initial time moments and ‘m’ markov parameters 
which avoids formation of routh tables. The reduced model obtained by this method preserves and approximates the characteristic 
properties of original system such as stability, time domain and frequency domain performance indices at most. The 
computational simplicity and accurate approximation of original system by proposed method is discussed by considering one 
example from literature, and the results are compared with the other existing techniques in literature. 
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I. INTRODUCTION  

The Differential equations governing most of the practical systems are of complex and very high order, the analysis and 
controller design for such systems is very tedious. Computing reduced model is essential which leads to an active research area 
order reduction. The reduced model obtained will retain some dominant characteristics of the original system by reducing 
computational efforts, memory requirements, and design process. Methods for model reduction of continuous time and discrete 
time systems available in literature are [1-8], based on aggregation[4], balanced truncation, moment matching, least squares[6], 
Pade approximation[2], continued fraction expansion[1], Routh approximation[5], stability equation  and many others.  

In general, majority of industrial control processes, flight vehicle systems, robots, flexible manipulator systems, electric 
motors, cold rolling mills etc are modeled in continuous time and/or discrete time with uncertain parameters[ 9], The uncertainties 
in these subsystems arise from un modeled dynamics, parameters variation, sensor noises, actuator constraints, etc. Generally , 
these uncertainty considerations do not follow any known probability distribution patterns and mostly evaluated in terms of 
amplitude or frequency limits. This leads to another area of research termed as continuous-time parametric interval system models 
[10], with constant coefficients, but unknown within a limited range. 

Existing methods in literature for model reduction of such systems - Routh-Pade approximation (Bandyopadhyay et al,1994), 
which is extension of (Shamash, 1975) has the limitation of not attaining stable reduced model and is highlighted in the work of 
Hwang and Yang (1999).  γ−δ approximation (Bandyopadhyay, et al, 1997), generates stable reduced model but increases 
computational efforts. Routh approximants (Sastry et al, 2000) proposed an algorithm for deriving the denominator and numerator 
coefficients by computing only γ parameters.  Dolgin and Zeheb(2003) found that the technique proposed by Bandyopadhyay et. 
al., (1994,1997) may produce unstable interval model even though the high-order interval system is stable. Yang (2005), further, 
showed that the method proposed by Dolgin and Zeheb (2003) may also result unstable interval model of stable high-order 
interval system.  

In this paper, an algorithm is proposed for order reduction of continuous interval system which is inspired by (BAI-WU 
WAN,1981),(Sastry et al, 2000), and extension of (Sastry et al, 2010). The reduced model numerator computed by matching 
initial ‘t’ time moments and ‘m’ markov parameters of original system(avoids formation of routh table) and Denominator 
computed via Mihailov criterion. The proposed technique ensures the stability of reduced order models and provides better 
approximation of higher order discrete-time systems. The paper is arranged as follows: Section 2 covers the problem description 
and basic interval arithmetic whereas section 3 proposed algorithm discussed. Numerical example, results are discussed in section 
4 and conclusions are included in section 5.  

 

2. PROBLEM STATEMENT - INTERVAL SYSTEMS 

Let us consider a general high order single input single output interval system of nth order is defined as         
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A. INTERVAL ARITHMETIC E. Hansen [10] and E. Hansen et al [11] 

Let [c , d] and [e , f] be two intervals then 

Addition: [c, d] + [e, f] = [c + e, d + f]   ..(3) 

Subtraction: [c, d] - [e, f] = [c - f, d - e]             .. (4) 

Multiplication: [c , d]  [e , f] = [Min(ce ,cf, de, df) , Max (ce , cf ,de , df)]         ……..(5) 

Division: ]
1

,
1

][,[
],[

],[

ef
dc

fe

dc
     ………. (6) 

B. KHARITONOV’S THEOREM: Kharitonov [12] and R. Barmish [13] 
     It is used to determine the stability of a dynamic system when the physical parameters of the system are not known 

precisely i.e coefficients of the system are only known to be within specified ranges. Let a family of real interval polynomials  
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

jx represents lower bound and 


jx represents upper 

bound of the coefficients system parameters respectively. 

An interval system is stable (i.e if all members of the family are stable) if the following four Kharitonov’s polynomials  
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3. PROPOSED METHOD 

Determination of denominator polynomial of kth order reduced model 

Substituting js  in )(sD and separating it into real and imaginary parts 

n
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Where ɷ is angular frequency, in rad/sec and 
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Similarly substitute js   in )(sDk and separating it into real and imaginary parts 
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NUMERATOR COEFFICIENTS USING SRAM 

After obtaining the reduced denominator Dk(s), the numerator of the biased model, which will retain the first‘t’ time moments 
and ‘m’ markov parameters is found as follows: 
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4. NUMERUCAL EXAMPLE:  Consider the 3rd order system transfer function given by B. Bandyopadhyay [1997] ,   
Dolgin et al [2003], G.V.K. Sastry et al [2000], V. Krishnamurthy et al [1978], Prasad et al [2003]
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Substitute js  in the denominator 
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substituting these values and replacing sj  the reduced denominator is obtained as 
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The second order reduced model numerator using SRAM which retaining ‘t’ time moments and  

]9406.16,16705.14[]16,15[*
]5.21,5.20[

]7052.21,3061.20[
],[ 11  TT  

]5876.19,5282.16[]5.18,5.17[*
]5.21,5.20[

]7052.21,3061.20[
],[ 22  TT  

Numerator by matching two time moments is 
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The proposed reduced model is 
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Reduced order transfer function by Sastry et al[2000] is 
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Reduced order transfer function by D Kranthi et al[2013] 
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Reduced order transfer function by A. Jaiswal et al[2014] 
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Figure 1 Comparison of Step responses lower Bound 

Fig. 2 Comparison of frequency responses of lower Bound 
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Figure 3 Comparison of Step responses of upper bound 

Fig. 4 Comparison of frequency responses of Upper Bound 
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INTEGRAL SQUARE ERROR 

The integral square error is determined between transient part of step responses of original and reduced 

systems. 



0

2)]()([ dttytyISE r  where y(t) is the step response of original system, yr(t) step response of reduced system. It 

can be observed that ISE with proposed technique is small compared to other methods 

 

 5. CONCLUSIONS: 

An algorithm was discussed for modeling of linear dynamic systems with parameter uncertainties. The micro models obtained 

by proposed method will guarantee the stability and approximate performance characteristics of original systems at most. The 

denominator is obtained by using Mihailov criterion and numerator is obtained using SRAM by matching first‘t’ time moments. 

The proposed method is simple mathematically; computer oriented and requires less number of computations. A numerical 

example is discussed, and the results are compared with other existing methods in literature proposed recently. The comparison of 

step and frequency shows that, the reduced models obtained by proposed algorithm will better approximate and retain the 

important characteristic feature of original system compared to other existing methods. 

Reduction 

 method  

Lower 

 Bound 

(lb) 

Upper 

 Bound 

(ub) 

Rise Time 

(sec) 

Peak time 

(sec) 

Settling 

 Time(sec) 

Peak over  

Shoot(%) 

lb ub lb ub lb ub lb ub 

Original -- --- 1.15 1.05 3.23 2.9 1.86 1.68 0.413 0.146 

Proposed  0.0085 0.0098 1.07 1.08 2.53 2.5 4.49 4.45 6.88 6.45 

Sastry et al[2000] 0.2256 0.0095 0.847 1.09 2 2.78 4.1 1.64 9.91 1.49 

Kranthi Kumar 

 et al[2013] 

0.0125 0.0082 2.41 0.618 --- 1.7 3.96 4.42 ---- 13.4 

Kranthi Kumar 

 et al[2011] 

0.0124 0.0169 0.364 0.303 1.38 1.36 4.93 4.99 53.5 67.9 

A Jaiswal et al 

[2014] 

0.0095 0.0107 1.9 0.28 -- 0.763 3.44 2.86 -- 9.08 

Table .1 COMPARISION OF ISE and TIME DOMAIN SPECIFICATIONS 
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