
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2544 | P a g e

Novel Approach of Assembly Line Balancing by Hybrid

Swarm Intelligence Approach
Mohit Kalia1, Sourabh Dewedi 2,Varun Sharma3

1,2,3 Mechanical Engineering

Indus International University, Una, Himachal, India.

Abstract - Assembly optimisation activities occur across

development and production stages of manufacturing goods.

Assembly Sequence Planning (ASP) and Assembly Line

Balancing (ALB) problems are among the assembly

optimisation. Both of these activities are classified as NP-
hard. Several soft computing approaches using different

techniques have been developed to solve ASP and ALB.

Although these approaches do not guarantee the optimum

solution, they have been successfully applied in many ASP

and ALB optimisation works. This paper reported the

survey on research in ASP and ALB that use soft computing

approaches for the past 10 years. To be more specific, only

Simple Assembly Line Balancing Problem (SALBP) is

considered for ALB. The survey shows that three soft

computing algorithms that frequently used to solve ASP and

ALB are Genetic Algorithm, Ant Colony Optimisation and

Particle Swarm Optimisation. Meanwhile, the research in
ASP and ALB is also progressing to the next level by

integration of assembly optimisation activities across

product development stages. improve the productivity of the

line and increases the quality of the product. To find an

optimal solution for Robotic Assembly Line Balancing

(rALB) problem we will have to assign robots to stations in

a balanced manner to perform activities. The main objective

of this work is to minimize the cycle time and maximize the

production rate of the line. A particle swarm optimization

method is proposed to find optimum solution for the rALB

problem. Results obtained using the PSO are further
improved by using a local exchange procedure. Performance

of the proposed method is tested on benchmark rALB

problems. The results of PSO are found to be better than the

methods reported in the literature and it produce consistent

results.

Keywords - Line balancing, Assembly Line Balancing,

Tasks and Precedence, Earth Mover’s Distance

I. INTRODUCTION

The concept of Assembly Line Balancing Line balancing

is about arranging a production line so that there is an even
flow of production from one work station to the next. Line

balancing also a successful tool to reduce bottleneck by

balancing the task time of each work station so that there is

no delays and nobody is overburden with their task [1] [2].

An assembly line is a manufacturing process in which

parts are added to a product in a sequential manner using

optimally planned logistics to create a finished product in

the fastest possible way. It is a flow-oriented production

system where the productive units performing the

operations, referred to as stations, are aligned in a serial

manner. Assembly Line Balancing, or simply Line

Balancing (LB), is the problem of assigning operations to

workstations along an assembly line, in such a way that the
assignment be optimal in some sense [3] [4]. Furthermore,

an assembly line can also be defined as a system which is

formed by arranging workstations along a line. At these

workstations, work pieces can be transferred by using

labor force as well as equipment, and tasks are assembled

taking into consideration precedence constraints and cycle

time. The decision problem of optimally balancing the

assembly work among the workstations is pointed out by

M.Baskak (2008) as the assembly line balancing problem

[4]. The objectives of balancing and optimization of

assembly lines is twofold, either cost minimization or

profit maximization [11]. The various characteristics for
purpose of balancing and optimization are as follows:

 Number and variety of product.

 Line control

 Variability of task times

 Line layout

 Parallelization of assembly work

 Equipment and processing alternatives

 Assignment restrictions

 Worker productivity

A. Terms and Concepts - Assembly lines are an integral
part of any manufacturing process to complete a product.

These lines are fundamentally flow lines in which the

work moves from one station to another with addition of

material at each station. Under ideal conditions, the

elemental time at each station has to be same. This

statement is quiet contrary in the real world situation since,

most of assembly lines are manually operated giving rise

to different timings at each station as per the capacity of

the man allocated to the station [6].

i). Assembly: As described by (Scholl), is a

manufacturing process that develops a work-in-progress
workpiece into finished product by sequential attachment

of parts. Parts are the atomic physical inputs to the

assembly process, each of which is typically standardized

and interchangeable with other parts of the same type [8].

A subassembly is a collection of parts that are attached to

one another, prior to fastening to the workpiece.

ii). Tasks and Precedence: The work performed during

assembly is portioned into the smallest possible indivisible

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2545 | P a g e

operations, or tasks, each of which requires an associated

task time to complete. The sequence in which tasks are

performed may be constrained such that some tasks must

be done before another task begins, due to the physical

architecture of the workpiece, safety reasons, or other

causes. Precedence relationships between two individual
tasks are used to codify these constraints, with the task that

must come first labelled the predecessor and the later task

called the successor. The set of all binary precedence

relationships between task pairs may be represented as a

precedence graph, by first drawing each task as a node and

then drawing directed arcs pointing away from each

predecessor task towards its successor. An example

precedence graph is shown in Figure 1. The precedence

graph must be a cyclic, as no task may be considered a

predecessor to itself. It is not required for all nodes in the

graph to communicate, as disconnected subgraphs indicate

that the corresponding tasks are precedence independent
from one another. Nor it is required to draw indirect

precedence relationships on the graph. For example, in

Figure 1, task 2 is a predecessor to task 7, but this

relationship is implicit by considering the predecessor

relationships of task 4.

Figure 1: Precedence Graph [3]

Alternatively, precedence relationships may be collected in

the form of a precedence matrix. Each task may be

arbitrarily assigned an indexing number, 1 to n, where n is

the total number of tasks. The rows of the n-x-n matrix
index to predecessor tasks and successors are indexed to

columns, allowing one matrix element for each possible

precedence relationship. The matrix is constructed by

placing a 1 in each matrix element for which a precedence

relationship exists, and a 0 if not. An example of a

precedence matrix is shown in Figure 2, containing the

same precedence information as in Figure 1.

Figure 2: Precedence Matrix [3]

Note that there are many indirect precedence relationships

that are not tracked in the above example precedence

graph and precedence matrix. Instead only immediate

precedence relationships are shown, i.e. the minimal set of

arcs necessary to constrain the acyclic graph. For example,

task 1 is a predecessor for tasks 3, 6, 8, and 9, but only the

relationship to task 3 is immediate. All indirect precedence

relationships may be derived from the set of direct

precedence relations, if desired.
iii). Assembly Lines, Stations, and Workers: An

assembly line is a type of assembly process, in which a

conveyor or similar material handling equipment moves

evenly spaced workpieces from the beginning of the

assembly process to the end. The conveyance path is

segmented according to this spacing into a series of

consecutive stations, such that there is one workpiece in

each station [5]. Each station is given a subset of tasks to

complete, and the requisite parts, tooling, and other needs

in order to complete those tasks, in addition to a worker to

provide necessary manpower. Fixed pace assembly lines

convey workpieces at a steady rate from one station to the
next, resulting in a constant cycle time for each station to

complete work on the current workpiece before the

conveyor moves it to the next station.

Figure 3: An example of an assembly line [3]

An example of an assembly line is shown in Figure 3. In

this pictogram, each block represents a part. At each

station a worker picks the parts, optionally sub-assembles

some of them, and fastens them into the workpiece upon

the conveyor [3] [7]. Assembly lines were originally

constructed for mass production of standardized assembly

products, to increase average worker productivity and

overall throughput by leveraging labour specialization

along the line (Dar-El and Shtub). Modern assembly lines
designed for make-to-order and mass customization

production permit fast and flexible responses to customer

demand, but are associated with significant5automation

and facility capital costs. Successful assembly line

planning is critical to engineering a cost-effective

production process.

B. The Assembly Line Balancing Problem - The

assembly line balancing problem (ALB) is a production

planning problem concerned with allocating tasks to the

stations on the assembly line, first proposed [13] and

formulated as a mathematical programming problem in
1955 by (Salveson). A solution to the ALB is a set of

decisions that determine which tasks are assigned to each

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2546 | P a g e

station. (Scholl) provides a thorough modern review of

assembly lines and the ALB.

C. Need of using ALB - In real world, assembly line

balancing relate to finite set of work elements, and each

element having relationship of processing time and
precedence. Line balancing is an attempt to equal amount

work to each work station to achieve the desired efficiency

by concentrating the factors like minimizing work stations,

minimizing work load variations and cycle time

minimization. Therefore, assembly line balancing attracted

the attention of researchers who tried to support practical

configuration planning by suited optimization models. In

spite of the great amount of extensions of basic assembly

line balancing there remains a gap between requirements

of real configuration problems and the status of research

[14]. Assembly line balancing in automobile industry is of

big interest because of complex nature of problem,
deviating situation including objectives. The multi model

assembly line (MALB) has many variants for purpose of

consideration. Also, the manual assemble line lead to

either blocking or starvations because of non uniforms

cycle time at each station. In this case study, the problem

of reconfiguration is not redesigning the line which may

include retention of the workers, sweeping changes in

layout design or reallocating space for storage. By

reconfiguration over here, it is assumed that line efficiency

is to be enhanced either by reducing the no of stations or

by regrouping the cycle times which will maximize the
utilization and reduce blocking-starvation problem as far

as possible.

D. Generalizations of ALB - For any valid ALB

solution, the following minimal set of constraints must be

satisfied:

1. All tasks must be assigned to some station, such that the

workpiece is finished upon exiting the final station.

2. All precedence relationships must be satisfied.

Classically this constraint is enforced by ensuring that no

task is assigned to an earlier station than one of its

predecessor tasks.
3. The sum of task times at each station cannot exceed the

cycle time.

Using the terminology of (Baybars, A Survey of Exact

Algorithms for the Simple Assembly Line Balancing

Problem) survey, Salveson’s initial formulation is known

as the Simple Assembly Line Balancing Problem (sALB),

as it features a number of simplifying assumptions [12]

[13]:

 Mass-production of one homogenous product.

 All tasks are processed in a predetermined mode (no

processing alternatives exist).

 Paced line with a fixed common cycle time according

to a desired output quantity.

 The line is considered to be serial with no feeder lines

or parallel elements.

 The processing sequence of tasks is subject to

precedence restrictions.

 Deterministic (and integral) task times.

 No assignment restrictions of tasks besides precedence

constraints.

 A task cannot be split among two or more stations.

 All stations are equally equipped with respect to

machines and workers.

Many industrial environments do not conform to these

assumptions, motivating a vast body of research

addressing specific manufacturing conditions that require

relaxation of one or more assumptions. Though extensive

research has been--and continues to be--published relating

to ALB, the field is marked by increasingly divergent

extensions to the core problem. Some authors have sought

to nest ALB within a larger framework of engineering

decision problems such as facility design, equipment
selection, production scheduling, and logistics. Others

have developed focused ALB techniques that conform to

specific characteristics of real-world ALB problems.

Taken together, these generalizations cover a very wide,

but sparse domain, as there are a huge number

of16problem characteristic combinations possible, and

relatively few problem extension approaches amenable to

simultaneous application.

i). Single-Model: In early times assembly lines were used

in high level production of a single product. But now the

products will attract customers without any difference and

allows the profitable utilization of Assembly Lines. An
advanced technology of production which enables the

automated setup of operations and it is negotiated time and

money [5] [10]. Once the product is assembled in the same

line and it won’t variant the setup or significant setup and

it’s time that is used, this assembly system is called as

Single Model Line.

ii). Mixed-Model: In this model the setup time between

the models would be decreased sufficiently and enough to

be ignored. So this internal mixed model determines the

assembled on the same line. And the type of assembly line

in which workers work in different models of a product in
the same assembly line is called Mixed Assembly Line.

Figure 4: Assembly lines for single and multiple products

iii). Multi-Model: In this model the uniformity of the

assembled products and the production system is not that

much sufficient to accept the enabling of the product and

the production levels [7]. To reduce the time and money

this assembly is arranged in batches, and this allows the

short term lot-sizing issues which made in groups of the

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2547 | P a g e

models to batches and the result will be on the assembly

levels.

 Figure 5: Investigated kinds of ALB

E. Generalized Assembly Line Balancing Problems

(GALBP) - In generalized assembly line balancing

problems one or more assumptions of the simple case are

relaxed (Bay bars, 1986; Scholl and Becker, 2006).Some

common GALBP are:

i). U-Shaped Assembly Line Balancing Problem

(UALBP): This is U-shaped lines. This configuration is

considered to be more flexible. It allows more possibilities

on how to assign tasks to workstations. The reason for this

is that tasks can be assigned when either its predecessors

have already been assigned, whereas with serial lines a task

can be assigned only when its predecessors have been

assigned. Its variants are: UALBP-1, UALBP-2 and

UALBP-E respectively.

ii). Mixed-model Assembly Line Balancing Problem

(MALBP): Karabati and Sayin (2003), Ponnambalam et al.

(2003), Spina et al. (2003), Bukchin and Rabinowitch
(2006) have addressed MALBP in their works [7] [14] .

Different models of the same product are inter-mixed. On

the same line these products are to be assembled. So, the

sequence of different models has to be determined.MALPB-

1, MALBP-2 and MALBP-E are the different type’s present

here.

iii). Robotic Assembly Line Balancing Problem

(RALBP): Robotic line is considered here. Problem

considers the assignment of set of tasks and the set of robots

to workstations (Rubinovitz and Bukchin, 1993).

iv). Multi-objective Assembly Line Balancing Problem
(MOALBP): Several optimization objectives are

considered simultaneously. Agpak and Gokcen (2005) deal

with a problem that seeks to minimize both the number of

workstations and the total assembling cost or the amount of

resources. Most GALBP are of multi-objective nature.

II. RELATED WORK

Jordi Pereira, et.al [1] studied an assembly line balancing

problem with uncertainty on the task times. In order to

deal with the uncertainty, a robust formulation to handle

changes in the operation times is put forward. In order to

solve the problem, several lower bounds, dominance rules
and an enumeration procedure are proposed. These

methods are tested in a computational experiment using

different instances derived from the literature and then

compared to similar previous approaches. A. Dolgui, et.al

[2] explained the problems, approaches and analytical

models on assembly line balancing that deal explicitly

with cost and profit oriented objectives are analysed. This

survey paper serves to identify and work on open problems
that have wide practical applications. The conclusions

derived might give insights in developing decision support

systems (DSS) in planning profitable or cost efficient

assembly lines. Naveen Kumar, et.al [3] presented the

reviews of different works in the area of assembly line

balancing and tries to find out latest developments and

trends available in industries in order to minimize the total

equipment cost and number of workstations. M. Baskak

[4] explained two heuristic assembly line balancing

techniques known as the “Ranked Positional Weight

Technique”, developed by Helgeson and Birnie, and the

“Probabilistic Line Balancing Technique”, developed by
El-Sayed and Boucher, were applied to solve the problem

of multi-model assembly line balancing in a clothing

company for two models. Information about definitions

and solution methods related to assembly line balancing

problems was given. The aim of this article was the

comparison of the efficiencies of two different procedures

applied for the first time to solve line balancing in a

clothing company. By using both methods, different

restrictions are taken into consideration and two different

line balancing results are reached. The balancing results

are compared with each other. K. Rengarajan, et.al [5]
dealt with mixed-model assembly line balancing for n

models, and uses a classical genetic algorithm approach to

minimize the number of workstations. We also

incorporated a hybrid genetic algorithm approach that used

the solution from the modified ranked positional method

for the initial solution to reduce the search space within the

global space, thereby reducing search time. Several

examples illustrate the approach. The software used for

programming is C++ language. S.D Lapierre, et.al [6]

presented a case study where a practical balancing

problem for an assembly line of appliances with two sides

and two different heights was solved with an enhanced
priority-based heuristic. The researchers have shown how

to adapt such heuristic to account for the practical aspects

of industrial applications. The experts have also shown

good use of logic and randomness in the algorithm is the

key to allow the heuristic to find good solutions. In order

to speed up its implementation and to facilitate software

maintenance, we have implemented the heuristic on

MsAccess97. Selcuk Karabat, et.al [7] considered the

assembly line balancing problem in a mixed-model line

which is operated under a cyclic sequencing approach. The

experts specifically studied the problem in an assembly
line environment with synchronous transfer of parts

between the stations. The researchers formulated the

assembly line balancing problem with the objective of

minimizing total cycle time by incorporating the cyclic

sequencing information. The study has shown that the

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2548 | P a g e

solution of a mathematical model that combines multiple

models into a single one by adding up operation times

constitutes a lower bound for this formulation. As an

approximate solution to the original problem, the

researchers also proposed an alternative formulation that

suggests to minimize the maximum sub cycle time. A
simple heuristic approach for this alternative problem was

also developed. C. Becker, et.al [8] proposed that the

Assembly Line Balancing Problem consist the finding of a

feasible line balance, i.e., an assignment of each task to a

station such that the precedence constraints and further

restrictions are fulfilled. A usual surrogate objective

consists in maximizing the line utilization which is

measured by the line efficiency as the productive fraction

of the line’s total operating time and directly depends on

the cycle time c and the number of stations. The survey

reveals that assembly line balancing research which

traditionally was focused upon simple problems (SALBP)
has recently evolved towards

formulating and solving generalized problems (GALBP)

with different additional characteristics such as cost

functions, equipment selection, paralleling, U-shaped line

layout and mixed-model production. T.O, Lee, et.al [9]

considered two-sided (left- and right-side) assembly lines

that were often used in assembling large-sized products,

such as trucks and buses. A large number of exact

algorithms and heuristics have been proposed to balance

one-sided assembly lines. However, little attention has

been paid to balancing the two-sided lines. An efficient
assignment procedure was developed for two-sided

assembly line balancing problems. A special emphasis is

placed on maximizing work relatedness and maximizing

work slackness, which were of practical significance

especially in two-sided lines. The experts first investigated

the characteristics of two-sided lines and define new

measures for the balancing. Then, a group assignment

procedure, which assigns a group of tasks at a time rather

than a unit task, is designed. Experiments are carried out to

demonstrate the performance of the proposed method. The

results show that our procedure is promising in the

solution quality. B. J., Carnahan, et.al [10] presented a
study that involved three line balancing heuristics that

incorporate physical demand criteria to solve the problem

of finding assembly line balances that consider both the

time and physical demands of the assembly tasks: a

ranking heuristic, a combinatorial genetic algorithm, and a

problem space genetic algorithm. Each heuristic was tested

using 100 assembly line balancing problems. Incorporating

physical demands using these algorithms does impact the

assembly line configuration. Results indicated that the

problem space genetic algorithm was the most adept at

finding line balances that minimized cycle time and
physical workload placed upon participants. Benefits of

using this approach in manufacturing environments are

discussed. A, Pozzetti, et.al [11] analysed some typical

problems of manual, mixed-model assembly lines. In

particular, it presents new balancing and production

sequencing methodologies which pursue the following

common goals: (1) minimizing the rate of incomplete jobs

(in paced lines and in moving lines) or the probability of

blocking/starvation events; (2) reducing WIP. The

balancing methodology also aims at minimizing the

number of stations on the line; the sequencing technique
also provides a uniform parts usage, which is a typical goal

in just in time production systems. I, Baybars [12]

discussed the development of the simple assembly line

balancing

problem (SALBP); modifications and generalizations over

time; present alternate 0-1 programming formulations and

a general integer programming formulation of the

problem; discuss other well-known problems related to

SALBP; describe and comment on a number of exact ((i.e.

optimum-seeking) methods; and present a summary of the

reported experiences. All models discussed here

are deterministic (i.e., all input parameters are assumed to
be known with certainty) and all the algorithms discussed

are exact. The problem is termed “simple” in the sense that

no “mixed-models,” “subassembly lines,” “zoning

restrictions,” etc. are considered. M.E Salveson [13]

presented the application of fuzzy logic in balancing a

single model tricycle assembly line. MATLAB simulation

software was used in the analysis of the primary and

secondary data obtained from the assembly line under

study. Results obtained from the study show that the

efficiency of the line increased from 88.1% to 92.4%. The

total idle time was also reduced by 56.5%. This indicates
an improvement in the efficiency of the line, reduction of

bottleneck, and even distribution of tasks along the line for

the company under study.

III. THE PROPOSED METHOD

A. Proposed Methodology - In proposed work Genetic

Algorithm (G.A) and Particle Swarm Optimization

algorithm is used for the better optimization results. Genetic

algorithm is a meta-heuristic algorithm which is based on

the gene and their operation. In the genetic algorithm all the

process is based on the selection, cross-over and mutation

operation for the optimal results. The optimization is based
on the fitness value of the genes. This algorithm supports

the local optimization process which is not enough to get the

effective results. To overcome this issue the hybrid

approach is proposed in the present work. The Particle

swarm Optimization algorithm is a meta-heuristic algorithm

which is based on the behavior of swarms. This algorithm is

used to solve the complex problem to get the optimal

results. PSO supports the Global optimization feature and

gives the solution of the problem which is globally best. In

the present work, PSO and G.A work parallel for better and

optimal solution because both have different feature of
optimization. In the below given section we explain the

Genetic Algorithm (G.A) and Particle Swarm optimization

(PSO) with algorithm and their flow chart. The flow chart of

explains the step by step working and algorithm represents

the technical implementation of the algorithms.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2549 | P a g e

Step 1: Initialize the Load/Power.

Step 2: Initialize the generator Load_ Power.

Step 3: Allocate the generators and calculate the cost.

Step 4: Apply the PSO for optimization.

Step 5: If output of PSO is optimized then check the

convergence otherwise Genetic algorithm starts it working
with the following steps.

(a) Initialize the chromosomes.

(b) Cross over between chromosomes.

(c) Apply Roulette Selection.

(d) Check Optimization. If optimize then go to

convergence Check otherwise loop is running until

Objective form is not obtained.

Step 6: Check the convergence. If converge then check the

cost features otherwise again initialize the particles and

Repeat the step 5.

Step 7: If cost is less than ∆ C then stop.

B. Proposed methodology: Flowchart - This section

involves the proposed methodology using Genetic algorithm

and Particle Swarm Optimization.

Flow chart 1

Figure 6: Flow chart of genetic algorithm

Flow chart 2

 Figure 7: Flow Chart of PSO

Flowchart 3

 Figure 8: Flow Chart of PSO_GA

C. Proposed Algorithm -

i). Genetic algorithms: Genetic algorithm is a meta-

heuristic algorithm which is used to solve the optimization

problems in computing and artificial intelligence. It

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2550 | P a g e

provides the optimized solution by using the concept of

selection and evolution. Genetic algorithms are able to solve

the complex problems and provide reasonable solution on

them. This algorithm is differing from the existing

algorithms due to following reasons:-

 Genetic algorithm generates a population of point where
as classical algorithm generates only single point in each

iteration.

 Deterministic computation is used to select the next

point in classical algorithms but genetic algorithm used

random number generator to select the next population.

Genetic Algorithm works in the five stages that are

following.

1. Initial Population: It is a set of individuals which is

basically solutions of the given problem and called as

population.

2. Fitness Function: In this phase fitness of each
chromosome or solution is evaluated in the population set.

3. Selection: Two parent chromosomes are selected in this

phase on the basis of their fitness.

4. Crossover: In this phase new population is created by

this process called children. If this process is not occurred

then offspring’s are copy of parents.

5. Mutation: In this phase the mutation probability mutate

new offspring at each position of chromosome.

Genetic Algorithm

Step 1: Population← initialize Population

Step 2: Evaluate the population.

Step 3: 𝑆𝐵𝑒𝑠𝑡← get best solution from population.

Step 4: while (! Stop condition())
 Parents ← select parents(Population,

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒)

 Child← ∅

 For(𝑃𝑎𝑟𝑒𝑛𝑡1𝑃𝑎𝑟𝑒𝑛𝑡𝑠2 ∈ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠)

 𝐶ℎ𝑖𝑙𝑑1𝐶ℎ𝑖𝑙𝑑2 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃𝑎𝑟𝑒𝑛𝑡1𝑃𝑎𝑟𝑒𝑛𝑡𝑠2 ∈
𝑃𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟)

 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝐶ℎ𝑖𝑙𝑑1, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛)

 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝐶ℎ𝑖𝑙𝑑2, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛)

 End

 Evaluate the Population of Children

 𝑆𝐵𝑒𝑠𝑡 ← 𝑔𝑒𝑡 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)

 Population ←
𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑓𝑖𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)𝑤𝑖𝑡ℎ 𝑛𝑒𝑤

 End

 Return (𝑆𝐵𝑒𝑠𝑡)

ii). Particle Swarm Optimization: Optimizing the particle

swarm may seem complicated, but it's really a very simple

algorithm. On a number of iterations, a group of variables

has its adjusted values closer to the member whose value is

closest to the target at a given time. Imagine a flock of birds

circling an area where they can smell a hidden food source.

Whoever is closest to the food pips the loudest and the other

birds sway in his direction. If one of the other birds gets

closer to the target than the first one, he chirps harder and

the others turn to him. This tightening pattern continues

until one of the birds arrives on the food. It's a simple

algorithm that is easy to implement.

The algorithm keeps track of three global variables:

1. Target value or condition

2. Best Global Value (gBest) indicating which particle

data is currently closest to the target
3. Stop value indicating when the algorithm should stop if

the target is not found

Each particle is composed of:

1. Data representing a possible solution

2. A velocity value indicating how much data can be

changed

3. A better personal value (pBest) indicating the closest

the particle's data has ever reached the target

PSO

Step 1: In PSO model for each particle i in S do

Step 2: for each dimension d in D do

Step 3: //initialize each particle’s position and velocity

Step 4: xi,d =𝑹𝒏𝒅(𝒙𝒎𝒂𝒙, 𝒙min)

Step 5: 𝒗𝒊,𝒅=𝑹𝒏𝒅(−𝒗𝒎𝒂𝒙 /3, 𝒗𝒎𝒂𝒙/3)

Step 6: end for

Step 7: //initialize particle’s best position and velocity

 𝒗𝒊(k+1) =𝒗𝒊(k) +𝜸𝟏𝒊(𝒑𝒊 −𝒙𝒊(k)) + 𝜸𝟐𝒊(G-𝒙𝒊(k))

 New velocity

 𝒙𝒊(k+1) =𝒙 𝒊 (k) +𝒗𝒊 (k+1)

 Where

 i- particle index

 k- discrete time index

 vi –velocity of ith particle

 xi – position of ith particle

 pi- best position found by ith particle(personal best)

 G- best position found by swarm (global best, best of

personal bests)

 G (1,2)i- random number on the interval[0,1]applied to the

ith particle

Step 8: 𝒑𝒃𝒊=𝒙𝒊

Step 9: // update global best position

Step10: if 𝒇(𝒑𝒃𝒊) < 𝒇(𝒈𝒃)

Step 11: 𝒈𝒃 = 𝒑𝒃𝒊
Step12: end if

Step13: end for

PSO_G.A

Step 1: Initialize the load/ power.

Step 2: Allocate the generators.

Step 3: Calculate the Initialize cost.

Step 4: In PSO model for each particle i in S do

Step 5: for each dimension d in D do

Step 6: //initialize each particle’s position and velocity

Step 7: xi,d =𝑹𝒏𝒅(𝒙𝒎𝒂𝒙, 𝒙min)

Step 8: 𝒗𝒊,𝒅=𝑹𝒏𝒅(−𝒗𝒎𝒂𝒙 /3, 𝒗𝒎𝒂𝒙/3)

Step 9: end for

Step 10: //initialize particle’s best position and velocity

 𝒗𝒊(k+1) =𝒗𝒊(k) +𝜸𝟏𝒊(𝒑𝒊 −𝒙𝒊(k)) + 𝜸𝟐𝒊(G-𝒙𝒊(k))

 New velocity

 𝒙𝒊(k+1) =𝒙 𝒊 (k) +𝒗𝒊 (k+1)

 Where

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2551 | P a g e

 i- particle index

 k- discrete time index

 vi –velocity of ith particle

 xi – position of ith particle

 pi- best position found by ith particle(personal best)

 G- best position found by swarm (global best, best of

personal bests)
 G (1,2)i- random number on the interval[0,1]applied to the

ith particle

Step 11: 𝒑𝒃𝒊=𝒙𝒊

Step 12: // update global best position

Step 13: if 𝒇(𝒑𝒃𝒊) < 𝒇(𝒈𝒃)

Step 14: 𝒈𝒃 = 𝒑𝒃𝒊

Step 15: if the output is optimize then check the converge

otherwise follow Genetic algorithm for optimize

results.
Step 16: Population← initialize Population

Step 17: Evaluate the population.

Step 18: 𝑆𝐵𝑒𝑠𝑡← get best solution from population.

Step 20: while (! Stop condition())

 Parents ← select parents(Population,

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒)

 Child← ∅

 For(𝑃𝑎𝑟𝑒𝑛𝑡1𝑃𝑎𝑟𝑒𝑛𝑡𝑠2 ∈ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠)

 𝐶ℎ𝑖𝑙𝑑1𝐶ℎ𝑖𝑙𝑑2 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃𝑎𝑟𝑒𝑛𝑡1𝑃𝑎𝑟𝑒𝑛𝑡𝑠2 ∈
𝑃𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟)

 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝐶ℎ𝑖𝑙𝑑1, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛)

 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝐶ℎ𝑖𝑙𝑑2, 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛)

 End

 Evaluate the Population of Children

 𝑆𝐵𝑒𝑠𝑡 ← 𝑔𝑒𝑡 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)

 Population ←
𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑙𝑒𝑎𝑠𝑡 𝑓𝑖𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)𝑤𝑖𝑡ℎ 𝑛𝑒𝑤

 End

 Return (𝑆𝐵𝑒𝑠𝑡)

Step 21: Check the convergence. If results are converged

then optimize features are the output.

Step 22: Check the cost and stop.

IV. RESULT ANALYSIS

A. Comparative Results - In the section proposed result

and comparison with different algorithm result is presented.

This result is calculated on the heat generators and power
generators on Genetic Algorithm, PSO, and Genetic with

PSO.

Table.1 Overhead comparison values

Approaches
Overhead(100

iteration)

Overhead(200

iteration)

Overhead(500

iteration)

Genetic

Algorithm
14.758 331.56 0.0321

PSO 125.48 69.0432 0.205

Genetic-

PSO
0.0169 778.27 0.0253

Figure 9: Overhead on different algorithms

Figure 9 depicts the heat generator values on the different

algorithm approaches. The x-axis represents the algorithms

and y-axis represents the values of the Overhead. The

Genetic with PSO gives the effective heat generator values.

Table .2 Cost comparison values

Figure 10: Power Generators on different algorithm

Figure 10 depicts the power generator values on the
different algorithm approaches. The x-axis represents the

algorithms and y-axis represents the values of the cost. The

Genetic with PSO gives the effective power generator

values. It shows the comparison of the heat and power

generators on the different algorithms. Here x-axis shows

the values and y-axis shows the cost in different number of

days

Table 5.2 Results on different parameters.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2552 | P a g e

Figure 11: order placed on Different Algorithms

Figure 11 depicts the cost of heat in the different algorithms.

In this graph x-axis represents the algorithmic approach and

y-axis shows the value of order placed.

Figure 12: Cost on different algorithms

In figure 12, x-axis shows the approach used in the work

and their comparison and y-axis represents the cost of the

algorithms.

Figure 13: Total overhead on different algorithms.

Figure 13 represents the total cost of the algorithms which is

represented by genetic algorithm, PSO and Genetic with

PSO. The proposed hybrid approach Genetic with PSO

represents the reduction in cost.

Figure 14: Cost Comparison on different algorithms

In figure 14, it depict the values of three algorithms that are

Particle Swarm Optimization, G.A and Genetic Algorithm

with Particle swarm optimization. The Blue bar represents

the cost of Genetic algorithm, Red bar represents the

Particle Swarm Optimization (PSO) and Green represents

the proposed approach Genetic with PSO. The graph clearly

describe the total cost is maximum on Genetic Algorithm
and minimum on Genetic with PSO it is due to parallel

working of both algorithm.

V. CONCLUSION

In this study, we dealt with the stochastic assembly line

balancing problem for both the straight line and U-line

configurations. Since the problem is known to be NP-hard,

there are many heuristic methods developed for the

assembly line balancing problem. This research proposed

one such heuristic method for the stochastic assembly line

balancing, with the objective of minimizing a line

operating cost that consisted of both labor cost and task
incompletion cost. We developed a hybrid optimization

using genetic and particle swarm optimization based

method for the cost oriented assembly line balancing

problem. The idea, key to the core of this research is the

concept of reduce cost and overhead but increase

productivity. This idea removed the need for rule of thumb

methods for closing a station by bringing a rationale behind

this decision. The methodology for evaluating the expected

cost of generated designs is taken from Kottas and Lau

(1976). This procedure is exact and works by generating

and enumerating all possible incompletion tuples. The
solution methodology developed is tested on several

problems of varying in size from 11 to 70 tasks. The test

problems selected for use in this research are well known

and well-studied problems. The solution found by the

proposed method is compared to that of Kottas and Lau's

(1981) algorithm. For the straight line balancing problem,

the results obtained from experimentation on these

problems reveals that the proposed heuristic. There are

lines of research arising from this work which should be

pursued: Firstly, probe the three algorithms chosen (Boctor,

0 200 400 600 800 1000

Genetic Algorithm

PSO

Genetic with PSO

Number of order placed

0 500 1000 1500 2000

Genetic Algorithm

PSO

Genetic with PSO

Total cost(Rs)

0 200 400 600 800 1000 1200

Genetic Algorithm

PSO

Genetic with PSO

overhead

0 500 1000 1500 2000

Genetic Algorithm

PSO

Genetic with PSO

comparsion on different parameters

Total cost(Rs) overhead Number of order placed

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 2553 | P a g e

Helgeson & Birnie and Bedworth & Bailey) in more

examples with the aim to find out which is the best

algorithm for that kind of problems. Finally, probe the new

method with the post processor in bigger datasets to see if

the new method performs well in real examples, and

compare the results with the optimal ones.

VI. REFERENCES
[1]. Pereira, J., & Álvarez-Miranda, E. (2018). An exact

approach for the robust assembly line balancing

problem. Omega, 78, 85-98.
[2]. Hazır, Ö, Delorme, X., & Dolgui, A. (2014). A survey on

cost and profit oriented assembly line balancing. IFAC
Proceedings Volumes, 47(3), 6159-6167.

[3]. Kumar, N., & Mahto, D. (2013). Assembly line balancing: a
review of developments and trends in approach to industrial
application. Global Journal of Research in Engineering,
13(2), 2249-4596.

[4]. Baskak, M. (2008). Assembly Line Balancing in a Clothing
Company. FIBRES & TEXTILES in Eastern Europe, 16(1),
66.

[5]. Haq, A. N., Rengarajan, K., & Jayaprakash, J. (2006). A
hybrid genetic algorithm approach to mixed-model
assembly line balancing. The International Journal of
Advanced Manufacturing Technology, 28(3-4), 337-341.

[6]. Lapierre, S. D., & Ruiz, A. B. (2004). Balancing assembly
lines: an industrial case study. Journal of the Operational

Research Society, 55(6), 589-597.
[7]. Karabatı, S., & Sayın, S. (2003). Assembly line balancing in

a mixed-model sequencing environment with synchronous
transfers. European Journal of Operational
Research, 149(2), 417-429.

[8]. Becker, C. and Scholl, A. (2003). “A survey on problems
and methods in generalized assembly line balancing”,
European Journal of Operational Research ISSN: 1611-

1311.
[9]. Lee, T. O., Kim, Y., & Kim, Y. K. (2001). Two-sided

assembly line balancing to maximize work relatedness and
slackness. Computers & Industrial Engineering, 40(3), 273-
292.

[10]. Carnahan, B. J., Norman, B. A., & Redfern, M. S. (2001).
Incorporating physical demand criteria into assembly line
balancing. IIE Transactions, 33(10), 875-887.

[11]. Merengo, C., Nava, F., & Pozzetti, A. (1999). Balancing
and sequencing manual mixed-model assembly
lines. International Journal of Production Research, 37(12),
2835-2860.

[12]. Baybars, I. (1986). A survey of exact algorithms for the
simple assembly line balancing problem. Management
science, 32(8), 909-932.

[13]. Salveson, M. E. (1955). The assembly line balancing

problem. The Journal of Industrial Engineering, 18-25.
[14]. Assembly Systems and Line Balancing. Available at:
http://www.me.nchu.edu.tw/lab/CIM/www/courses/Flexible%20
Manufacturing%20Systems/Microsoft%20Word%20%20Chapter
8FbASSEMBLY%20SYSTEMS%20AND%20LINE%20BALA
NCING.pdf assessed on 02/04/2019 at 6.00 PM.

http://www.me.nchu.edu.tw/lab/CIM/www/courses/Flexible%20Manufacturing%20Systems/Microsoft%20Word%20%20Chapter8FbASSEMBLY%20SYSTEMS%20AND%20LINE%20BALANCING.pdf
http://www.me.nchu.edu.tw/lab/CIM/www/courses/Flexible%20Manufacturing%20Systems/Microsoft%20Word%20%20Chapter8FbASSEMBLY%20SYSTEMS%20AND%20LINE%20BALANCING.pdf
http://www.me.nchu.edu.tw/lab/CIM/www/courses/Flexible%20Manufacturing%20Systems/Microsoft%20Word%20%20Chapter8FbASSEMBLY%20SYSTEMS%20AND%20LINE%20BALANCING.pdf
http://www.me.nchu.edu.tw/lab/CIM/www/courses/Flexible%20Manufacturing%20Systems/Microsoft%20Word%20%20Chapter8FbASSEMBLY%20SYSTEMS%20AND%20LINE%20BALANCING.pdf

