

Research Article

Certain Aspects of Normal Classes of Hilbert Space Operators

N. B. Okelo*

School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya.

*Corresponding author's e-mail: <u>bnyaare@yahoo.com</u>

Abstract

Let *T* be a Quasi - * - class *A* normal operator on a complex Hilbert space *H*. In this paper, we prove that if *E* is the Riesz idempotent for a non-zero isolated point λ of the spectrum of $T \in B(H)$ of Quasi - * - class *A* normal operator, then *E* is self-adjoint and $EH = \ker(T - \lambda) = \ker(T - \lambda)^*$. We will also prove a necessary and sufficient condition for $T \otimes S$ to be quasi - * - class *A* normal where *T* and *S* are both non-zero operators.

Keywords: Paranormal operators; Weyl's theorem; * - class *A* normal operators; Quasi - * - class *A* normal operators.

Introduction

Studies on Hilbert space operators has been carried out over a period of time by several authors [1]. Let B(H) denote the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space H. For a positive operators A and B, we write A > B if A - B > 0. If A and B are invertible [2] and positive operators, it is well known that A > B implies that $\log A > \log B$ [3]. However from [4], $\log A > \log B$ does not necessarily imply A > B. A result due to [5] states that for invertible positive operators A and B, $\log A > \log B$ if and only if $A^r > (A^{r^2})$ $B^r A^{r^2}$)^{1/2} for all r > 0 [6]. For an operator *T*, let U|T| denote the polar decomposition of T, where U is a partially isometric operator, |T| is a positive square root of T^*T and ker (T) = ker $(U) = \ker (|T|)$, where $\ker(T)$ denotes the kernel of operator T [7]. An operator T ϵ B(H) is positive, T > 0, if (Tx, x) > 0, for all $x \in H$ and posinormal if there exists a positive λ such that $TT^* = T^*\lambda T$. Here λ is called interrupter of T [8]. In other words, an operator T is called posinormal if TT^* < $c^{2}T^{*}T$, where T^{*} is the adjoint of T and c > 0[9]. An operator T is said to be herminormal if T is hyponormal and T^*T commutes with TT^* . An operator T is said to be p posinormal if $(TT^*)p < c^2(T^*T)p$ for some $c > c^2(T^*T)p$ 0 [10]. It is clear that p - posinormal is

posinormal. An operator *T* is said to be *p* hyponormal, for $p \in (0, 1)$, if $(T^*T)p > (TT^*)p$. In [11], they have characterized class *A* operator as follows. An operator *T* belongs to class *A* if and only if $(T^*/T/T)^{1/2} \ge T^*T$. An operator *T* is said to be paranormal if $//T^2x|| \ge$ $//Tx//^2$ and *** - paranormal if $//T^2x|| \ge ||T^*x|/^2$ for all unit vector $x \in H$ [12].

Recently, authors in [13] have considered the new class of operators: An operator $T \in B(H)$ belongs to * - class A *normal* if $|T^2| \ge |T^*|^2$. The authors of [14] have extended * - class A normal operators to quasi - * - class A normal operators. An operator $T \in B(H)$ is said to be quasi - * class A normal if $T^*/T^2/T \ge T^*/T^*/^2T$ and quasi - * - paranormal if $//T^*Tx//^2 \le ||T^3x////Tx//$, for all $x \in H$ [15]. An operator T is said to be Quasi - * - class A normal operator [16] on a complex Hilbert space H if $T^*(|T^2| - |T^*|^2)T \ge T$ 0.

As a further generalization, [17] has introduced the class of k - quasi - * - class Anormal operators. An operator T is said to be k - quasi - * - class A normal operator on a complex Hilbert space H if $T^*(/T^2| - |T^{*2})T \ge 0$ where k is a natural number. An operator Tis called normal if $T^*T = TT^*$ and (p, k) quasihyponormal if $T^{*k}((T^*T)^p - (TT^*)^p)T \ge 0$ (0 . The authors in [18-23]introduced <math>p - hyponormal, p -

Received: 21.09.2018; *Received after Revision:* 09.10.2018; *Accepted:* 10.10.2018; *Published:* 17.10.2018 ©2018 *The Authors. Published by G. J. Publications under the CC BY license.*

quasihyponormal and k - quasihyponormal operators, respectively. The following classification has been done on these operarors [24, 25, 26]: p - hyponormal $\subset p$ posinormal $\subset (p, k)$ - quasiposinormal, p hyponormal $\subset p$ -quasihyponormal $\subset (p, k)$ quasihyponormal \subset (*p*, *k*) quasiposinormal and hyponormal $\subset k$ quasihyponormal $\subset (p, k)$ - quasihyponormal \subset (p, k) – quasiposinormal for a positive integer k and a positive number 0 . If $T \in B(H)$, we shall write N(T) and R(T) for the null space and the range of T, respectively [27].

Also, let $\sigma(T)$ and $\sigma_a(T)$ denote the spectrum and the approximate point spectrum of T, respectively. An operator T is called Fredholm [28] if R(T) is closed, $\alpha(T) = \dim N(T)$ $<\infty$ and $\beta(T) = \dim H/R(T) < \infty$. Moreover if $i(T) = \alpha(T) - \beta(T) = 0$, then T is called Weyl. The essential spectrum $\sigma_e(T)$ and the Weyl $\sigma W(T)$ are defined by $\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is }$ not Fredholm/and $\sigma W(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is }$ not Weyl, respectively. It is known [29,30] that $\sigma_e(T) \subset \sigma W(T) \subset \sigma_e(T) U$ acc $\sigma(T)$ where we write acc K for the set of all accumulation points of $K \subset C$. If we write iso $K = K \setminus \text{acc } K$, then we let $\pi 00(T) = \{\lambda \in I\}$ iso $\sigma(T) : 0 < \alpha(T - \lambda) < \infty$. We say that Weyl's theorem holds for T if $\sigma(T) \setminus \sigma W(T) =$ $\pi 00(T)$.

Let $\sigma_p(T)$ denotes the point spectrum of T, i.e., the set of its eigenvalues. Let $\sigma j_p(T)$ denotes the joint point spectrum of T. We note that $\lambda \in \sigma j_p(T)$ if and only if there exists a non-zero vector x such that $Tx = \lambda x$, $T^*x = \lambda x$. It is evident that $\sigma j_p(T) \subset \sigma_p(T)$. It is well known that, if T is normal, then $\sigma j_p(T) = \sigma_p(T)$. If T = U/T/ is the polar decomposition of T and $\lambda = |\lambda|e^{i\theta}$ be the complex number, $|\lambda| > 0$, $|e^{i\theta}| = 1$. Then $\lambda \in$ $\sigma i_p(T)$ if and only if there exist a non-zero vector x such that $Ux = e^{i\theta}$, $|T|x = |\lambda|x$. Let $\sigma_{ap}(T)$ denotes the approximate point spectrum of T, i.e., the set of all complex numbers λ which satisfy the following condition: there exists a sequence $\{x_n\}$ of unit vectors in H such that $\lim_{n} (T - \lambda)x_n =$ 0. It is evident that $\sigma_p(T) \subset \sigma_{ap}(T)$. It is evident that $\sigma_{jap}(T) \subset \sigma_{ap}(T)$, for all $T \in$ B(H). It is well known [5] that, for a normal operator T, $\sigma_{jap}(T) = \sigma_{ap}(T) = \sigma(T)$. An operator $T \in B(H)$ is said to have the singlevalued extension property (or SVEP) if for every open subset *G* of C and any analytic function $f: G \to H$ such that $(T - z)f(z) \equiv 0$ on *G*, we have $f(z) \equiv 0$ on *G*. An operator $T \in B(H)$ is said to have Bishop's property (β) if for every open subset *G* of C and every sequence $f_n: G \to H$ of H - valued analytic functions such that $(T - z)f_n(z)$ converges uniformly to 0 in norm on compact subsets of *G*, $f_n(z)$ converges uniformly to 0 in norm on compact subsets of *G*. An operator $T \in B(H)$ is said to have Dunford's property (*C*) if HT(F) is closed for each closed subset *F* of C.

It is well known [7, 9] that Bishop's property $(\beta) \Rightarrow$ Dunford's property $(C) \Rightarrow$ SVEP. Let $T \in B(H)$ and let A_0 be an isolated point of u(T). Then there exists a positive number r > 0 such that $\{A \in C: A - A_0 \le r\}$ flu $(T) = \{A_0\}$. Let γ be the boundary of $\{A \in C: A - A_0 \le r\}$. In general, it is well known that the Riesz idempotent E is not an orthogonal projection and a necessary and sufficient condition for E to be orthogonal is that E is self-adjoint.

In [15], the author showed that if T satisfies the growth condition G_1 , then E is self-adjoint and $E(H) = \ker(T - A_0)$. Recently, [11] and [18] obtained Stampfli's result for quasi - class A normal operators and paranormal operators. In general even if T is a paranormal operator, the Riesz idempotent E of T with respect to A_0 is not necessarily self - adjoint. In this study we show that if E is the Riesz idempotent for a nonzero isolated point A_0 of the spectrum of a quasi - * - class A normal operator T, then E is self - adjoint and $EH = \ker(T - A_0) = \ker(T^* - A_0)$.

Materials and methods

Lemma 2.1.

([12, Theorem 2.2, Theorem 2.3]) (1) Let T E B(H) be quasi - * - class A operator and T does not have a dense range, then **i**f T is an quasi - * - class A operator and M is its invariant subspace, then the restriction T _M of T to M is also an quasi - * - class A operator.

Lemma 2.2.

[12, Theorem 2.4] Let $T \in B(H)$ is an quasi -* - class A operator. If A = 0 and (T - A)x = 0 for some x E H, then $(T - A)^*x = 0$. Yuvaraj and Jayalakshmi, 2018. Extraction, purification and analysis of biological activity of anthocyanin like compound...

Lemma 2.3.

Let $T \in B(H)$ is an quasi - * - class A operator. Then T is isoloid.

Proof.

Let $T \in B(H)$ is an quasi - * - class A operator with representation given in Lemma 2.1. Let z be an isolated point in $\sigma(T)$. Since $\sigma(T) = \sigma(T1) \cup \{0\}$, z is an isolated point in $\sigma(T1)$ or z = 0. If z is an isolated point in $\sigma(T1)$, then $z \in \sigma_p(T1)$. Assume that z = 0 and z is not in $\sigma(T1)$. This completes the proof.

Theorem 2.4.

Let $A \in B(H)$ is an quasi - * - class A normal operator and let A be a non-zero isolated point of $\sigma(A)$. Let DA denote the closed disk that centered at A such that DA ^{fl} $\sigma(A) = \{A\}$. Then the Riesz idempotent E is self adjoint.

Proof.

If A is quasi - * - class A normal operator, then A is an eigenvalue of A and EH = ker(A)- A)* by Lemma 2.3. Since ker(A − A*) ⊂ $ker(A - A)^*$ by Lemma 2.2, it suffices to show that $\ker(A - A)^* \subset \ker(A - A)$. Since ker(A - A) is a reducing subspace of A by Lemma 2.2 and the restriction of a quasi - * class A normal operator to its reducing subspaces is also a quasi - * - class A normal operator by Lemma 2.1, hence A can be written as follows: $A = A \bigoplus A1$ on H = $ker(A - A) \bigoplus (ker(A - A))'$, where A1 is *class A normal with ker $(A1 - A) = \{0\}$. Since A E $\sigma(A) = \{A\} U \sigma(A1)$ is isolated, the only two cases occur, one is $A \in \sigma(A1)$ and the other is that A is an isolated point of $\sigma(A1)$ and this contradicts the fact that ker(A1 - A) = $\{0\}$. Since A1 is invertible as an operator on $(\ker(A-A))', \ker(A-A) = \ker(A-A)^*$. Next, we show that E is self-adjoint. Since $EH=ker(A-A)=ker(A-A)^*$, we have ((z $(-A)^*$)⁻¹E = $(z - \lambda)^{-1}E$. This completes the proof.

Results and discussions

The tensor products $T \otimes S$ preserves many properties of T, $S \in B(H)$, but by no means all of them. Thus, whereas the normaloid property is invariant under tensor products; again, whereas $T \otimes S$ is normal if and only if T and S are normal [10, 16], there exist paranormal operators T and S such that $T \otimes S$ is not paranormal [4]. It is shown in [11] that $T \otimes S$ is quasi-class A if and only if S, T are quasi-class A operators. In the following theorem we will prove a necessary and sufficient condition for $T \otimes S$ to be quasi - * - class A operator where T and S are both non-zero operators. Recall that $(T \otimes S)^*(T \otimes$ $S) = T^*T \otimes S^*S$ and so, by the uniqueness of positive square roots, $|T \otimes S|^r = |T|^r \otimes |S|^r$ for any positive rational number r. From the density of the rationales in the real, we obtain $|T \otimes S|' = |T|' \otimes |S|'$ for any positive real number p. If $T_1 \ge T_2$ and $S_1 \ge S_2$, then T_1 $\otimes S_1 \ge T_2 \otimes S_2$ (see, [17]).

Theorem 3.1.

Let S, T \in B(H) be non-zero normal operators. Then T \otimes S is quasi - * - class A normal operator if and only if one of the following holds:

a) S and T are quasi - * - class A normal operators.

b) $S^2 = 0$ or $T^2 = 0$.

Proof.

Since $T \otimes S$ is quasi - * - class A operator if and only if $(T \otimes S)^*(|(T \otimes S)|^2 - (|(T \otimes S)^*|))(T \otimes S) \ge 0 \Leftrightarrow T^*(|T^2| - |T^*|^2)T \otimes S^*|S^2|S + T^*|T^*|^2T \otimes S^*(|S^2| - |S^*|^2)S \ge 0$.Hence the sufficiency is clear. Conversely, assume that $T \otimes S$ is quasi - * - class A operator. Then for every x, y \in H we have $(T^*(|T^2| - |T^*|^2)Tx,x)(S^*|S^2|Sy, y) + (T^*|T^*|^2Tx,x)(S^*(|S^2| - |S^*|^2)Sy, y) \ge 0(3.1)$

It suffices to prove that if (a) does not hold, then (b) holds. Suppose that T2 = 0 and $S^2 = 0$. To the contrary, assume that T is not a quasi - * - class A operator, then there exists $x0 \in H$ such that $(T^*(|T^2| - |T^*|^2)Tx0,x0) = \alpha < 0$ and $(T^*|T^*|^2Tx0, x0 = \beta > 0$. From (3.1) we have $\alpha + \beta(S^*|S^2|Sy, y) \ge \beta(S^*|S^*|^2Sy, y)$, for all $y \in H$. (3.2)

Thus S is quasi - * - class A operator since α + $\beta \leq \beta$. Using the H⁻older-McCarthy inequality we have $(S^*|S^2|Sy,y) = ((S^{*2}S^2)^{1/2} Sy, Sy) \leq ||Sy||^{2(1/2)}(S^{*2}S^2Sy,Sy)^{1/2} = ||Sy||||S^3y||$ and $(S^*|S^*|^2Sy, y) = (SS^*Sy, Sy)$ = $((S^*S)y, S^*Sy) = ||S^*Sy||^2$. Thus, $(\alpha + \beta)||Sy||||S^3y||\geq \beta||S^*Sy||^2$. (3.3)

Since S is a quasi - * - class A operator, Lemma 2.1 imply that H = $ran(S^k) \bigoplus ker S^{*k}$. Then S1 is * - class A, $S^k_3 = 0$ and $\sigma(S) = \sigma(S1) \cup \{0\}$. Therefore (3.3)

implies $(\alpha + \beta)||S1\eta||||S_1^3\eta|| \ge \beta||S_1^*S1\eta||^2$, for all $\eta \in \text{ran } S^k$. Since S1 is * - class A and * class A is normaloid. Thus taking supremum on both sides of the above inequality, we have $(\alpha + \beta)||S_1||^4 \ge \beta||S_1S_1||^2$. Therefore, $S_1 = 0$. Hence $S^{k+1} = 0$. This contradicts the assumption $S^2 = 0$. Hence T must be a quasi -* - class A operator. A similar argument shows that S is also quasi - * - class A normal operator. This completes the proof.

Corollary 3.2.

Let S^n , $T^n \in B(H)$ be non-zero normal power operators. Then $T^n \bigotimes S^n$ is quasi - * - class A^n normal operator if and only if one of the following holds:

c) S^n and T^n are quasi - * - class A normal operators.

d) Either $S^n = 0$ or $T^n = 0$.

Proof:

Follows from Theorem 3.1 and considering all non-zero natural number n greater than 2 for case b.

Conclusions

In the present work we have characterized Hilbert space operators which are Quasi - * - class *A* normal operator. We have shown that if *S*, $T \in B(H)$ are non-zero normal operators. Then $T \otimes S$ is quasi - * - class *A* normal operator if and only if one of the following holds: S and T are quasi - * - class *A* normal operators, and that either S² = 0 or T² = 0. These results are useful in classification oh Hilbrt space operators.

Conflicts of interest

The authors declare no conflict of interest.

References

- [1] Sun LL, Gao W, Zhang MM, Li C, Wang AG, Su YL, Ji TF. Composition and Antioxidant Activity of the Anthocyanins of the Fruit of Berberis heteropoda Schrenk. Molecules 2014;19:19078-96.
- [2] Aluthge A, On p hyponormal operators for 0 . Integral Equations OperatorTheory 1990;13(3):307-15.
- [3] Aluthge A, Some generalized theorems on p - hyponormal operators. Integral Equations Operator Theory 1996;24(4):497-501.

- [4] Arora SC, and Arora P. On p quasihyponormal operators for 0 . Yokohama Math J 1993;41:25-9.
- [5] Ando T. Operators with a norm condition, Acta Sci Math (Szeged) 1973; 33:169-78.
- [6] Ando T. On some operator inequalities. Math Ann 1987;279(1):157-59.
- [7] Campbell SL, Gupta BC. On k quasihyponormal operators. Math. Joponica 1978;23:185-89.
- [8] Rhaly HC. Posinormal Operators. J Math Soc Japan 1974;46:587-605.
- [9] Duggal BP, Jeon IH, Kim IH. Weyl's theorem in the class of algebraically p hyponormal operators. Comment Math Prace Mat 2000;40:49-56.
- [10] Fututa T, Ito M, Yamazaki T. A subclass of paranormal including class of log hyponormal and several related classes. Scientiae Mathematicae 1998;1:389-403.
- [11] Hou JC. On the tensor products of operators. Acta Math Sinica 1992;9(2):195-202.
- [12] Jeon IH, Kim IH. On operators satisfying $T^*|T2|T \sim T^*|T|2T$, Linear Algebra Appl 2006;418(2):854-62.
- [13] Shen JL, Zuo F, Yang CS. On Operators Satisfying T*|T2|T ~ T*|T*|2T. Acta Mathematica Sinica 2010;26:2109-16.
- [14] Mecheri S. Isolated points of spectrum of kquasi * class A operators. Studia Math 2012;208(1):87-96.
- [15] Shen JL, Zuo F, Yang CS. On operators satisfying T*|T2|T ~ T*|T*2|T Part II. Acta Math. Sinica. 2013;32:3100-40.
- [16] Stampfli JG. Hyponormal operators and spectral density. Trans Amer Math Soc 1965;117:469-76.
- [17] Saito T. Hyponormal operators and related topics, Lectures on operator algebras Lecture Notes in Math., Springer, Berlin; 1972.
- [18] Stochel J. Seminormality of operators from their tensor product. Proc Amer Math Soc 1996;124(1):135-40.
- [19] Uchiyama A. On isolated points of the spectrum of paranomal operators. Integral Equations Operator Theory 2006;55:145-51.
- [20] Xia D. Spectral Theory of Hyponormal Operators. Birkhauser Verlag, Boston; 1983.

Yuvaraj and Jayalakshmi, 2018. Extraction, purification and analysis of biological activity of anthocyanin like compound...

- [21] Ringrose JR. Compact Non-self-adjoint operators, Van Nostrand Reinhold, London; 2015.
- [22] Schatten R. Norm ideals of completely continuous operators, Springer-Verlag, Berlin; 2017.
- [23] Taylor AE, Lay DC. Introduction to functional analysis, 2nd ed., John Wiley and Sons, New York; 2014.
- [24] Okelo NB; Agure JO, Ambogo DO. Norms of elementary operators and characterization of Norm-Attainable operators. Int J Math Anal 2010;4:1197-204.
- [25] Vijayabalaji S, Shyamsundar G. Intervalvalued intuitionistic fuzzy transition matrices, Int J Mod Sci Technol 2016; 1(2):47-51.
- [26] Judith J O, Okelo NB, Roy K, Onyango T. Numerical Solutions of Mathematical Model on Effects of Biological Control on Cereal Aphid Population Dynamics, IJMST, 2016; 1(4): 138-143.

- [27] Judith J O, Okelo NB, Roy K, Onyango T. Construction and Qualitative Analysis of Mathematical Model for Biological Control on Cereal Aphid Population Dynamics. Int J Mod Sci Technol 2016;1(5):150-58.
- [28] Vijayabalaji S, Sathiyaseelan N. Interval-Valued Product Fuzzy Soft Matrices and its Application in Decision Making. Int J Mod Sci Technol 2016;1(7):159-63.
- [29] Chinnadurai V, Bharathivelan K. Cubic Ideals in Near Subtraction Semigroups. Int J Mod Sci Technol 2016;1(8):276-82.
- [30] Okello B, Okelo NB, Ongati O. Characterization of Norm Inequalities for Elementary Operators. Int J Mod Sci Technol 2017;2(3):81-4.
- [31] Wafula AM, Okelo NB, Ongati O. Norms of Normally Represented Elementary Operators. Int J Mod Sci Technol 2018;3(1):10-6.
