Research Article

Certain Aspects of Normal Classes of Hilbert Space Operators

N. B. Okelo*
School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya.
*Corresponding author's e-mail: bnyaare@yahoo.com

Abstract

Let T be a Quasi - * - class A normal operator on a complex Hilbert space H. In this paper, we prove that if E is the Riesz idempotent for a non-zero isolated point λ of the spectrum of $T \in B(H)$ of Quasi * - class A normal operator, then E is self-adjoint and $E H=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. We will also prove a necessary and sufficient condition for $T \otimes S$ to be quasi - * class A normal where T and S are both non-zero operators.

Keywords: Paranormal operators; Weyl's theorem; * - class A normal operators; Quasi - * class A normal operators.

Introduction

Studies on Hilbert space operators has been carried out over a period of time by several authors [1]. Let $B(H)$ denote the algebra of all bounded linear operators acting on an infinite dimensional separable Hilbert space H. For a positive operators A and B, we write $A>B$ if $A-B>0$. If A and B are invertible [2] and positive operators, it is well known that $A>B$ implies that $\log A>\log B$ [3]. However from [4], $\log A>\log B$ does not necessarily imply $A>B$. A result due to [5] states that for invertible positive operators A and $B, \log A>\log B$ if and only if $A^{r}>\left(A^{r 2}\right.$ $\left.B^{r} A^{r 2}\right)^{1 / 2}$ for all $r>0$ [6]. For an operator T, let $U|T|$ denote the polar decomposition of T, where U is a partially isometric operator, $|T|$ is a positive square root of $T^{*} T$ and $\operatorname{ker}(T)=\operatorname{ker}$ $(U)=\operatorname{ker}(|T|)$, where $\operatorname{ker}(T)$ denotes the kernel of operator T [7]. An operator $T \in$ $B(H)$ is positive, $T>0$, if $(T x, x)>0$, for all $x \in H$ and posinormal if there exists a positive λ such that $T T^{*}=T^{*} \lambda T$. Here λ is called interrupter of T [8]. In other words, an operator T is called posinormal if $T T^{*}<$ $c^{2} T^{*} T$, where T^{*} is the adjoint of T and $c>0$ [9]. An operator T is said to be herminormal if T is hyponormal and $T^{*} T$ commutes with $T T^{*}$. An operator T is said to be $p-$ posinormal if $\left(T T^{*}\right) p<c^{2}\left(T^{*} T\right) p$ for some $c>$ 0 [10]. It is clear that p - posinormal is
posinormal. An operator T is said to be p hyponormal, for $p \in(0,1)$, if $\left(T^{*} T\right) p>\left(T T^{*}\right) p$. In [11], they have characterized class A operator as follows. An operator T belongs to class A if and only if $\left(T^{*}|T| T\right)^{1 / 2} \geq T^{*} T$. An operator T is said to be paranormal if $\left\|T^{2} x\right\| \geq$ $\|T x\|^{2}$ and * - paranormal if $\left\|T^{2} x\right\| \geq\left\|T^{*} x\right\|^{2}$ for all unit vector $x \in H$ [12].

Recently, authors in [13] have considered the new class of operators: An operator $T \in B(H)$ belongs to *-class A normal if $\left|T^{2}\right| \geq\left|T^{*}\right|^{2}$. The authors of [14] have extended *- class A normal operators to quasi - * - class A normal operators. An operator $T \in B(H)$ is said to be quasi - *class A normal if $T^{*}\left|T^{2}\right| T \geq T^{*}\left|T^{*}\right|^{2} T$ and quasi - * - paranormal if $\left\|T^{*} T x\right\|^{2} \leq\left\|T^{3} x\right\|\|| | x\|$, for all $x \in H$ [15]. An operator T is said to be Quasi - * - class A normal operator [16] on a complex Hilbert space H if $T^{*}\left(\left|T^{2}\right|-\left|T^{*}\right|^{2}\right) T \geq$ 0 .

As a further generalization, [17] has introduced the class of k-quasi - $*$ - class A normal operators. An operator T is said to be k - quasi - *- class A normal operator on a complex Hilbert space H if $T^{*}\left(\left|T^{2}\right|-\mid T^{* 2}\right) T \geq$ 0 where k is a natural number. An operator T is called normal if $T^{*} T=T T^{*}$ and $(p, k)-$ quasihyponormal if $T^{* k}\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) T \geq 0$ $(0<p \leq 1, k \in \mathrm{~N})$. The authors in [18-23] introduced p - hyponormal, p -
quasihyponormal and k - quasihyponormal operators, respectively. The following classification has been done on these operarors [24, 25, 26]: p - hyponormal $\subset p-$ posinormal $\subset(p, k)$ - quasiposinormal, $p-$ hyponormal $\subset p$-quasihyponormal $\subset(p, k)$ - quasihyponormal $\subset \quad(p, k) \quad-$ quasiposinormal and hyponormal $\subset k-$ quasihyponormal $\subset(p, k)$ - quasihyponormal $\subset(p, k)$ - quasiposinormal for a positive integer k and a positive number $0<p \leq 1$. If $T \in B(H)$, we shall write $N(T)$ and $R(T)$ for the null space and the range of T, respectively [27].

Also, let $\sigma(T)$ and $\sigma_{a}(T)$ denote the spectrum and the approximate point spectrum of T, respectively. An operator T is called Fredholm [28] if $R(T)$ is closed, $\alpha(T)=\operatorname{dim} N(T)$ $<\infty$ and $\beta(T)=\operatorname{dim} H / R(T)<\infty$. Moreover if $i(T)=\alpha(T)-\beta(T)=0$, then T is called Weyl. The essential spectrum $\sigma_{e}(T)$ and the Weyl $\sigma W(T)$ are defined by $\sigma_{e}(T)=\{\lambda \in \mathrm{C}: T-\lambda$ is not Fredholm $\}$ and $\sigma W(T)=\{\lambda \in \mathrm{C}: T-\lambda$ is not Weyl $\}$,respectively. It is known [29,30] that $\sigma_{e}(T) \subset \sigma W(T) \subset \sigma_{e}(T) \cup$ acc $\sigma(T)$ where we write acc K for the set of all accumulation points of $K \subset C$. If we write iso $K=K \backslash$ acc K, then we let $\pi 00(T)=\{\lambda \in$ iso $\sigma(T): 0<\alpha(T-\lambda)<\infty\}$. We say that Weyl's theorem holds for T if $\sigma(T) \backslash \sigma W(T)=$ $\pi 00(T)$.

Let $\sigma_{p}(T)$ denotes the point spectrum of T, i.e., the set of its eigenvalues. Let $\sigma j_{p}(T)$ denotes the joint point spectrum of T. We note that $\lambda \in \sigma j_{p}(T)$ if and only if there exists a non-zero vector x such that $T x=\lambda x$, $T^{*} x=\lambda x$. It is evident that $\sigma j_{p}(T) \subset \sigma_{p}(T)$. It is well known that, if T is normal, then $\sigma j_{p}(T)=\sigma_{p}(T)$. If $T=U|T|$ is the polar decomposition of T and $\lambda=|\lambda| e^{i \theta}$ be the complex number, $|\lambda|>0,\left|e^{i \theta}\right|=1$. Then $\lambda \in$ $\sigma j_{p}(T)$ if and only if there exist a non-zero vector x such that $U x=e^{i \theta},|T| x=|\lambda| x$. Let $\sigma_{a p}(T)$ denotes the approximate point spectrum of T, i.e., the set of all complex numbers λ which satisfy the following condition: there exists a sequence $\left\{x_{n}\right\}$ of unit vectors in H such that $\lim _{n}(T-\lambda) x_{n}=$ 0 . It is evident that $\sigma_{p}(T) \subset \sigma_{a p}(T)$. It is evident that $\sigma_{j a p}(T) \subset \sigma_{a p}(T)$, for all $T \in$ $B(H)$. It is well known [5] that, for a normal operator $T, \sigma_{j a p}(T)=\sigma_{a p}(T)=\sigma(T)$. An operator $T \in B(H)$ is said to have the single-
valued extension property (or SVEP) if for every open subset G of C and any analytic function $f: G \rightarrow H$ such that $(T-z) f(z) \equiv 0$ on G, we have $f(z) \equiv 0$ on G. An operator $T \in B(H)$ is said to have Bishop's property (β) if for every open subset G of C and every sequence $f_{n}: G \rightarrow H$ of H - valued analytic functions such that $(T-z) f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of $G, f_{n}(z)$ converges uniformly to 0 in norm on compact subsets of G. An operator $T \in B(H)$ is said to have Dunford's property (C) if $H \boldsymbol{T}(F)$ is closed for each closed subset F of C .

It is well known [7, 9] that Bishop's property $(\beta) \Rightarrow$ Dunford's property $(C) \Rightarrow$ SVEP. Let $T \in B(H)$ and let A_{0} be an isolated point of $u(T)$. Then there exists a positive number $r>0$ such that $\{A \in \mathrm{C}: A-$ $\left.A_{0} \leq r\right\} f l u(T)=\left\{A_{0}\right\}$. Let γ be the boundary of $\left\{A \in \mathrm{C}: A-A_{0} \leq r\right\}$. In general, it is well known that the Riesz idempotent E is not an orthogonal projection and a necessary and sufficient condition for E to be orthogonal is that E is self-adjoint.

In [15], the author showed that if T satisfies the growth condition G_{1}, then E is self-adjoint and $E(H)=\operatorname{ker}\left(T-A_{0}\right)$. Recently, [11] and [18] obtained Stampfli's result for quasi - class A normal operators and paranormal operators. In general even if T is a paranormal operator, the Riesz idempotent E of T with respect to A_{0} is not necessarily self adjoint. In this study we show that if E is the Riesz idempotent for a nonzero isolated point A_{0} of the spectrum of a quasi - $*$ - class A normal operator T, then E is self - adjoint and $E H=\operatorname{ker}\left(T-A_{0}\right)=\operatorname{ker}\left(T^{*}-A_{0}\right)$.

Materials and methods

Lemma 2.1.

([12, Theorem 2.2, Theorem 2.3]) (1) Let T E $\mathrm{B}(\mathrm{H})$ be quasi $-*$ - class A operator and T does not have a dense range, then if T is an quasi $-*-$ class A operator and M is its invariant subspace, then the restriction $\mathrm{T}_{\mathbf{m}}$ of T to M is also an quasi - * - class A operator.

Lemma 2.2.

[12, Theorem 2.4] Let $T \in B(H)$ is an quasi * - class A operator. If $\mathrm{A}=0$ and $(\mathrm{T}-\mathrm{A}) \mathrm{x}=$ 0 for some xE H , then $(\mathrm{T}-\mathrm{A})^{*} \mathrm{x}=0$.

Lemma 2.3.

Let $T \in B(H)$ is an quasi - * - class A operator. Then T is isoloid.

Proof.

Let $T \in B(H)$ is an quasi - * - class A operator with representation given in Lemma 2.1. Let z be an isolated point in $\sigma(T)$. Since $\sigma(T)=\sigma(T 1) U\{0\}, \mathrm{z}$ is an isolated point in $\sigma(\mathrm{T} 1)$ or $\mathrm{z}=0$. If z is an isolated point in $\sigma(\mathrm{T} 1)$, then $\mathrm{z} \in \sigma_{\mathbf{p}}(\mathrm{T} 1)$. Assume that $\mathrm{z}=0$ and z is not in $\sigma(\mathrm{T} 1)$. This completes the proof.

Theorem 2.4.

Let $A \in B(H)$ is an quasi - * class A normal operator and let A be a non-zero isolated point of $\sigma(\mathrm{A})$. Let DA denote the closed disk that centered at A such that DA ${ }^{\mathrm{fl}} \sigma(\mathrm{A})=\{\mathrm{A}\}$. Then the Riesz idempotent E is self adjoint.

Proof.

If A is quasi - * - class A normal operator, then A is an eigenvalue of A and $\mathrm{EH}=\operatorname{ker}(\mathrm{A}$ $-\mathrm{A})^{*}$ by Lemma 2.3. Since $\operatorname{ker}\left(\mathrm{A}-\mathrm{A}^{*}\right) \subset$ $\operatorname{ker}(\mathrm{A}-\mathrm{A})^{*}$ by Lemma 2.2 , it suffices to show that $\operatorname{ker}(A-A)^{*} \subset \operatorname{ker}(A-A)$. Since $\operatorname{ker}(\mathrm{A}-\mathrm{A})$ is a reducing subspace of A by Lemma 2.2 and the restriction of a quasi - * class A normal operator to its reducing subspaces is also a quasi - * - class A normal operator by Lemma 2.1, hence A can be written as follows: $\mathrm{A}=\mathrm{A} \oplus \mathrm{A} 1$ on $\mathrm{H}=$ $\operatorname{ker}(\mathrm{A}-\mathrm{A}) \oplus(\operatorname{ker}(\mathrm{A}-\mathrm{A}))^{\prime}$, where A 1 is *class A normal with $\operatorname{ker}(\mathrm{A} 1-\mathrm{A})=\{0\}$. Since $A E \sigma(A)=\{A\} U \sigma(A 1)$ is isolated, the only two cases occur, one is $\mathrm{A} \in \sigma(\mathrm{A} 1)$ and the other is that A is an isolated point of $\sigma(\mathrm{A} 1)$ and this contradicts the fact that $\operatorname{ker}(\mathrm{A} 1-\mathrm{A})=$ $\{0\}$. Since A1 is invertible as an operator on $(\operatorname{ker}(\mathrm{A}-\mathrm{A}))^{\prime}, \operatorname{ker}(\mathrm{A}-\mathrm{A})=\operatorname{ker}(\mathrm{A}-\mathrm{A})^{*}$. Next, we show that E is self-adjoint. Since $\mathrm{EH}=\operatorname{ker}(\mathrm{A}-\mathrm{A})=\operatorname{ker}(\mathrm{A}-\mathrm{A})^{*}$, we have ($(\mathrm{z}$ $\left.-A)^{*}\right)^{-1} E=(z-\lambda)^{-1} E$. This completes the proof.

Results and discussions

The tensor products $T \otimes S$ preserves many properties of $T, S \in B(H)$, but by no means all of them. Thus, whereas the normaloid property is invariant under tensor products; again, whereas $T \otimes S$ is normal if and only if T and S are normal $[10,16]$, there exist paranormal operators T and S such that
$T \otimes S$ is not paranormal [4]. It is shown in [11] that $T \otimes S$ is quasi-class A if and only if S, T are quasi-class A operators. In the following theorem we will prove a necessary and sufficient condition for $T \otimes S$ to be quasi - * - class A operator where T and S are both non-zero operators. Recall that $(T \otimes S)^{*}(T \otimes$ $S)=T^{*} T \otimes S^{*} S$ and so, by the uniqueness of positive square roots, $|T \otimes S|^{\mathrm{r}}=|T|^{\mathrm{r}} \otimes|S|^{\mathrm{r}}$ for any positive rational number r. From the density of the rationales in the real, we obtain $|T \otimes S|^{\prime}=|T|^{\prime} \otimes|S|^{\prime}$ for any positive real number p. If $T_{1} \geq T_{2}$ and $S_{1} \geq S_{2}$, then T_{1} $\otimes S_{1} \geq T_{2} \otimes S_{2}$ (see, [17]).

Theorem 3.1.

Let $S, T \in B(H)$ be non-zero normal operators. Then $\mathrm{T} \otimes \mathrm{S}$ is quasi $-*$ - class A normal operator if and only if one of the following holds:
a) S and T are quasi - * - class A normal operators.
b) $\mathrm{S}^{2}=0$ or $\mathrm{T}^{2}=0$.

Proof.

Since $T \otimes S$ is quasi - *- class A operator if and only if $(\mathrm{T} \otimes \mathrm{S})^{*}\left(|(\mathrm{~T} \otimes \mathrm{~S})|^{2}-\left(\left|(\mathrm{T} \otimes \mathrm{S})^{*}\right|\right)\right)(\mathrm{T} \otimes$ $S) \geq 0 \Leftrightarrow \mathrm{~T}^{*}\left(\left|\mathrm{~T}^{2}\right|-\left|\mathrm{T}^{*}\right|^{2}\right) \mathrm{T} \otimes \mathrm{S}^{*}\left|\mathrm{~S}^{2}\right| \mathrm{S}+$ $\mathrm{T}^{*}\left|\mathrm{~T}^{*}\right|^{2} \mathrm{~T} \otimes \mathrm{~S}^{*}\left(\left|\mathrm{~S}^{2}\right|-\left|\mathrm{S}^{*}\right|^{2}\right) \mathrm{S} \geq 0$. Hence the sufficiency is clear. Conversely, assume that T $\otimes \mathrm{S}$ is quasi - * - class A operator. Then for every $x, y \in H$ we have $\left(T^{*}\left(\left|T^{2}\right|-\right.\right.$ $\left.\left.\left|T^{*}\right|^{2}\right) T x, x\right)\left(S^{*}\left|S^{2}\right| S y, y\right)+\left(T^{*}\left|T^{*}\right|^{2} T x, x\right)\left(S^{*}\left(\left|S^{2}\right|\right.\right.$ $\left.\left.-\left|S^{*}\right|^{2}\right) S y, y\right) \geq 0(3.1)$
It suffices to prove that if (a) does not hold, then (b) holds. Suppose that T2 $=0$ and $\mathrm{S}^{2}=0$. To the contrary, assume that T is not a quasi $-*$ - class A operator, then there exists $x 0 \in H$ such that $\left(\mathrm{T}^{*}\left(\left|\mathrm{~T}^{2}\right|-\left|\mathrm{T}^{*}\right|^{2}\right) \mathrm{Tx} 0, \mathrm{x} 0\right)=\alpha<0$ and $\left(\mathrm{T}^{*}\left|\mathrm{~T}^{*}\right|^{2} \mathrm{Tx} 0\right.$, $\mathrm{x} 0=\beta>0$. From (3.1) we have $\alpha+\beta\left(\mathrm{S}^{*}\left|\mathrm{~S}^{2}\right| \mathrm{Sy}\right.$, $y) \geq \beta\left(S^{*}\left|S^{*}\right|^{2} S y, y\right)$, for all $y \in H$.

Thus S is quasi - *- class A operator since α $+\beta \leq \beta$. Using the H*older-McCarthy inequality we have $\left(S^{*}\left|S^{2}\right| S y, y\right)=\left(\left(S^{* 2} S^{2}\right)^{1 / 2}\right.$ Sy, \quad Sy) $\leq\|S y\|^{2(1 / 2)}\left(S^{* 2} S^{2} S y, S y\right)^{1} /^{2}=$ $\|S y\|\left\|\mid S^{3} y\right\|$ and $\left(S^{*}\left|S^{*}\right|^{2} S y, y\right)=\left(S S^{*} S y, S y\right)$ $=\left(\left(S^{*} S\right) y, S^{*} S y\right)=\left\|S^{*} S y\right\|^{2}$. Thus, $(\alpha+$ $\beta)\left\|S y\left|\left\|\mid S^{3} y\right\| \geq \beta \| S^{*}{ }^{*}\right.\right.$ Sy 2. (3.3)

Since S is a quasi - * - class A operator, Lemma 2.1 imply that $\mathrm{H}=$ $\operatorname{ran}\left(S^{\mathrm{k}}\right) \oplus \operatorname{ker} S^{*}$. Then S1 is $*-$ class A, $S_{3}{ }_{3}=0$ and $\sigma(S)=\sigma(S 1) \cup\{0\}$. Therefore (3.3)
implies $(\alpha+\beta)\|S 1 \eta\|\left\|S^{3}{ }_{1} \eta\right\| \geq \beta\left\|S^{*}{ }_{1} S 1 \eta\right\|^{2}$, for all $\eta \in \operatorname{ran} S^{k}$. Since $S 1$ is $*-$ class A and $*-$ class A is normaloid. Thus taking supremum on both sides of the above inequality, we have $(\alpha+\beta)\left\|S_{1}\right\|^{4} \geq \beta\left\|S_{1}{ }_{1} S_{1}\right\|^{2}$. Therefore, $S_{1}=0$. Hence $S^{k+1}=0$. This contradicts the assumption $S^{2}=0$. Hence T must be a quasi * - class A operator. A similar argument shows that S is also quasi - * - class A normal operator. This completes the proof.

Corollary 3.2.

Let $S^{n}, T^{n} \in B(H)$ be non-zero normal power operators. Then $\mathrm{T}^{\mathrm{n}} \otimes \mathrm{S}^{\mathrm{n}}$ is quasi - *- class A^{n} normal operator if and only if one of the following holds:
c) S^{n} and T^{n} are quasi - *- class A normal operators.
d) Either $\mathrm{S}^{\mathrm{n}}=0$ or $\mathrm{T}^{\mathrm{n}}=0$.

Proof:

Follows from Theorem 3.1 and considering all non-zero natural number n greater than 2 for case b .

Conclusions

In the present work we have characterized Hilbert space operators which are Quasi - * class A normal operator. We have shown that if $S, T \in B(H)$ are non-zero normal operators. Then $T \otimes S$ is quasi - *- class A normal operator if and only if one of the following holds: S and T are quasi $-*$ - class A normal operators, and that either $\mathrm{S}^{2}=0$ or $\mathrm{T}^{2}=0$. These results are useful in classification oh Hilbrt space operators.

Conflicts of interest

The authors declare no conflict of interest.

References

[1] Sun LL, Gao W, Zhang MM, Li C, Wang AG, Su YL, Ji TF. Composition and Antioxidant Activity of the Anthocyanins of the Fruit of Berberis heteropoda Schrenk. Molecules 2014;19:19078-96.
[2] Aluthge A, On p - hyponormal operators for $0<\mathrm{p}<1$. Integral Equations Operator Theory 1990;13(3):307-15.
[3] Aluthge A, Some generalized theorems on p - hyponormal operators. Integral Equations Operator Theory 1996;24(4):497-501.
[4] Arora SC, and Arora P. On p quasihyponormal operators for $0<\mathrm{p}<1$. Yokohama Math J 1993;41:25-9.
[5] Ando T. Operators with a norm condition, Acta Sci Math (Szeged) 1973; 33:169-78.
[6] Ando T. On some operator inequalities. Math Ann 1987;279(1):157-59.
[7] Campbell SL, Gupta BC. On k quasihyponormal operators. Math. Joponica 1978;23:185-89.
[8] Rhaly HC. Posinormal Operators. J Math Soc Japan 1974;46:587-605.
[9] Duggal BP, Jeon IH, Kim IH. Weyl's theorem in the class of algebraically p hyponormal operators. Comment Math Prace Mat 2000;40:49-56.
[10] Fututa T, Ito M, Yamazaki T. A subclass of paranormal including class of \log hyponormal and several related classes. Scientiae Mathematicae 1998;1:389-403.
[11] Hou JC. On the tensor products of operators. Acta Math Sinica 1992;9(2):195-202.
[12] Jeon IH, Kim IH. On operators satisfying $\mathrm{T} *|\mathrm{~T} 2| \mathrm{T} \sim \mathrm{T}^{*}|\mathrm{~T}| 2 \mathrm{~T}$, Linear Algebra Appl 2006;418(2):854-62.
[13] Shen JL, Zuo F, Yang CS. On Operators Satisfying $\mathrm{T}^{*}|\mathrm{~T} 2| \mathrm{T} \sim \mathrm{T}^{*}\left|\mathrm{~T}^{*}\right| 2 \mathrm{~T}$. Acta Mathematica Sinica 2010;26:2109-16.
[14] Mecheri S. Isolated points of spectrum of k - quasi - * - class A operators. Studia Math 2012;208(1):87-96.
[15] Shen JL, Zuo F, Yang CS. On operators satisfying $T^{*}|T 2| T \sim T^{*}\left|T^{*} 2\right| T$ Part II. Acta Math. Sinica. 2013;32:3100-40.
[16] Stampfli JG. Hyponormal operators and spectral density. Trans Amer Math Soc 1965;117:469-76.
[17] Saito T. Hyponormal operators and related topics, Lectures on operator algebras Lecture Notes in Math., Springer, Berlin; 1972.
[18] Stochel J. Seminormality of operators from their tensor product. Proc Amer Math Soc 1996;124(1):135-40.
[19] Uchiyama A. On isolated points of the spectrum of paranomal operators. Integral Equations Operator Theory 2006;55:14551.
[20] Xia D. Spectral Theory of Hyponormal Operators. Birkhauser Verlag, Boston; 1983.
[21] Ringrose JR. Compact Non-self-adjoint operators, Van Nostrand Reinhold, London; 2015.
[22] Schatten R. Norm ideals of completely continuous operators, Springer-Verlag, Berlin; 2017.
[23] Taylor AE, Lay DC. Introduction to functional analysis, 2nd ed., John Wiley and Sons, New York; 2014.
[24] Okelo NB; Agure JO, Ambogo DO. Norms of elementary operators and characterization of Norm-Attainable operators. Int J Math Anal 2010;4:1197204.
[25] Vijayabalaji S, Shyamsundar G. Intervalvalued intuitionistic fuzzy transition matrices, Int J Mod Sci Technol 2016; 1(2):47-51.
[26] Judith J O, Okelo NB, Roy K, Onyango T. Numerical Solutions of Mathematical Model on Effects of Biological Control on Cereal Aphid Population Dynamics, IJMST, 2016; 1(4): 138-143.
[27] Judith J O, Okelo NB, Roy K, Onyango T. Construction and Qualitative Analysis of Mathematical Model for Biological Control on Cereal Aphid Population Dynamics. Int J Mod Sci Technol 2016;1(5):150-58.
[28] Vijayabalaji S, Sathiyaseelan N. IntervalValued Product Fuzzy Soft Matrices and its Application in Decision Making. Int J Mod Sci Technol 2016;1(7):159-63.
[29] Chinnadurai V, Bharathivelan K. Cubic Ideals in Near Subtraction Semigroups. Int J Mod Sci Technol 2016;1(8):276-82.
[30] Okello B, Okelo NB, Ongati O. Characterization of Norm Inequalities for Elementary Operators. Int J Mod Sci Technol 2017;2(3):81-4.
[31] Wafula AM, Okelo NB, Ongati O. Norms of Normally Represented Elementary Operators. Int J Mod Sci Technol 2018;3(1):10-6.

