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Nonlinear Partial Differential Equations

Charpit’s Method

Obtaining exact solutions to nonlinear PDEs such as

xux − u2
y = 2u (1)

is quite difficult as we are required to solve equations such as

xs = x, (2a)

ys = −2q, (2b)

us = xp − 2q2, (2c)

ps = p, (2d)

qs = 2q. (2e)

It’s not so much in solving these characteristic equations but eliminating the 5 arbitrary

functions that appear upon integration. So we ask, is it possible to come up with exact

solutions another way?

Consider the PDE

uy = −y. (3)

This integrates to give

u = −y2

2
+ f (x) (4)

and substitution into the original PDE (1) gives

x f ′ = 2 f . (5)

This ODE is solved giving

f = c1x2 (6)

which from (4) leads to

u = c1x2 − y2

2
. (7)
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Consider the PDE

ux = x. (8)

This integrates to give

u =
x2

2
+ g(y) (9)

and substitution into the original PDE (1) gives

−g′2 = 2g. (10)

This ODE is solved giving (we will omit the trivial solution g = 0)

g = −y2

2
+ c2y − c2

2
2

. (11)

leading to the solution

u =
x2

2
− y2

2
+ c2y − c2

2
2

(12)

noting that setting

As for the final example, consider the PDE

ux + xuy = x − xy. (13)

This integrates to give

u = −1
2
(y − 1)2 + f

(
y − 1

2
x2
)

(14)

and substitution into the original PDE (1) gives

2(λ − 1) f ′ − f ′2 = 2 f (15)

where f = f (λ) and λ = y − 1
2 x2. This ODE actually has two solutions

f = cλ − c3 −
1
2

c2
3, f =

(λ − 1)2

2
, (16)

and lead to the exact solutions

u = −1
2
(y − 1)2 + c3

(
y − 1

2
x2
)
− c3 −

1
2

c2
3,

u = −1
2
(y − 1)2 +

1
2

(
y − 1

2
x2 − 1

)2

>

(17)

So are there others? For example, both

uy = x2

xux + 2yuy = 2u − y2
(18)
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will lead to exact solutions of the given PDE. In fact any PDE of the form

F
(

ux

x
,

u2
x

uy
, uy + y, xux − u2

y − 2u
)
= 0 (19)

will give rise to exact solution to (1). A number of questions arise.

1. Where did these associated PDEs come from?

2. How do we know that they will lead to a solution that also satisfies the BC?

Before trying to answer such questions, it is important to know that an actual solution

exists. Namely, does a solution exist that satisfies both the original PDE and second one

that we appended to the original. So, in the first example, does a solution exist that

satisfies both

xux − u2
y = 2u and uy = −y? (20)

Here, we use the second in the first and ask, does there exist an solution to

ux =
2u
x

+
y2

x
, uy = −y? (21)

If so, then they certainly would be compatible so
∂ux

∂y
=

∂uy

∂x
. Calculating these gives

2uy

x
+

2y
x

?
= 0 (22)

and since uy = −y this gives

−2y
x

+
2y
x

?
= 0 (23)

which is true, so the two equations are compatible. For the second example we ask, are

the following compatible

xux − u2
y = 2u and ux = x? (24)

We certainly could substitute the second into the first and solve for uy and then seek

compatibility but instead we consider

x2 − u2
y = 2u and ux = x? (25)

Now we differentiate the first with respect to x giving

2x − 2uyuxy = 2ux (26)

and since ux = x then (26) is identically satisfied. For the final example, we ask are these

compatible?

xux − u2
y = 2u and ux + xuy = x − xy? (27)

3



Definitely a harder problem to explicitly find ux and uy but is that really necessary? If we

calculate the x and y derivatives of each we obtain

xuxx − 2uyuxy = ux, (28a)

xuxy − 2uyuyy = 2uy, (28b)

uxx + xuxy + uy = 1 − y, (28c)

uxy + xuyy = −x. (28d)

Eliminating uxy from (28b) and (28d)

(2uy + x2)(uyy + 1) = 0 (29)

so we see two cases emerge:

(i) 2uy + x2 = 0,

(ii) 2uy + x2 ̸= 0.

In the first case uy = −1
2 x2, (28) reduces to

2uy + x2 = 0, ux −
1
2

x3 − x + xy = 0,

and these are compatible whereas in the second case we obtain uyy = −1, (28) reduces to

ux + xuy + x(y − 1) = 0

which is identically satisfied by virtue of (27).

So now we know how to determine when two PDEs are compatible. Our next step is

to determine how they come about.

Consider the compatibility of the following first order PDEs

F(x, y, u, p, q) = 0,

G(x, y, u, p, q) = 0,
(30)

where p = ux and q = uy. Calculating the x and y derivatives of (30) gives

Fx + pFu + uxxFp + uxyFq = 0,

Fy + qFu + uxyFp + uyyFq = 0,

Gx + pGu + uxxGp + uxyGq = 0,

Gy + qGu + uxyGp + uyyGq = 0.

(31)
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Solving the first three (31) for uxx, uxy and uyy gives

uxx =
−Fx Gq − p Fu Gq + Fq Gx + p Fq Gu

Fp Gq − Fq Gp
,

uxy =
−Fp Gx − p Fp Gu + Fx Gp + p Fu Gp

Fp Gq − Fq Gp
,

uyy =

F2
p Gx + p F2

p Gu − Fy Fp Gq − q Fu Fp Gq
+q Fu Fq Gp − Fx Fp Gp − p Fu Fp Gp + Fy Fq Gp

(Fp Gq − Fq Gp)Fq
.

Substitution into the last of (31) gives

Fp Gx + Fq Gy + (p Fp + q Fq)Gu − (Fx + p Fu)Gp − (Fy + q Fu)Gq = 0,

or conveniently written as∣∣∣∣ DxF Fp
DxG Gp

∣∣∣∣ +

∣∣∣∣ DyF Fq
DyG Gq

∣∣∣∣ = 0, (33)

where Dx F = Fx + p Fu, Dy F = Fy + q Fu and | · | the usual determinant. These are

known as the Charpit equations. We also assumed that FpGq − FqGp ̸= 0 and Fq ̸= 0. These

cases would need to be considered separately.

Example 1.1 Consider

xux − u2
y = 2u (34)

This is the example we considered already, however now we will determine all classes of

equation that are compatible with this one. Denoting

G = xux − u2
y − 2u

= xp − q2 − 2u

where p = ux and q = uy, then

Gx = p, Gy = 0, Gu = −2, Gp = x, Gq = −2q,

and the Charpit equations are∣∣∣∣ DxF Fp
−p x

∣∣∣∣ +

∣∣∣∣ DyF Fq
−2q −2q

∣∣∣∣ = 0,

or, after expansion

xFx − 2qFy +
(

xp − 2q2
)

Fu + pFp + 2qFq = 0.
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Solving this linear PDE by the method of characteristics gives the solution as

F
(

p
x

,
p2

q
, q + y, xp − q2 − 2u

)
= 0 (35)

which is exactly the one given in (19)!

Example 1.2 Consider

uxuy = 1 (36)

Denoting

G = uxuy − 1 = pq − 1,

where p = ux and q = uy, then

Gx = 0, Gy = 0, Gu = 0, Gp = q, Gq = p,

and the Charpit equations are∣∣∣∣ DxF Fp
0 q

∣∣∣∣ +

∣∣∣∣ DyF Fq
0 −p

∣∣∣∣ = 0,

or, after expansion

qFx + pFy + 2pqFu = 0,

noting that the third term can be replaced by 2Fu due to the original equation. Solving

this linear PDE by the method of characteristics gives the solution as

F = F(uq − 2x, up − 2y, p, q). (37)

or

F = F(uuy − 2x, uux − 2y, ux, uy). (38)

For example, if we choose

uuy − 2x = 0 (39)

then on integrating we obtain

u2 = 4xy + f (x) (40)

and substituting into the original PDE gives

x f ′ = f (41)

and leads to the exact solution

u2 = 4xy + cx. (42)
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If we choose

uux + uy − 2y = 0 (43)

then on integrating we obtain

u − y2 + f
(

x +
2
3

y3 − yu
)
= 0 (44)

and substituting into the original PDE gives

f f ′2 − 1 = 0 (45)

and leads to the exact solution

u − y2 ±
(

3
2
(x +

2
3

y3 − yu + c)
)2/3

= 0. (46)

Example 1.3 Consider

u2
x + u2

y = u2. (47)

Denoting p = ux and q = uy, then

G = u2
x + u2

y − u2 = p2 + q2 − u2.

Thus

Gx = 0, Gy = 0, Gu = −2u, Gp = 2p, Gq = 2q,

and the Charpit equation’s are∣∣∣∣ DxF Fp
−2pu 2p

∣∣∣∣ +

∣∣∣∣ DyF Fq
−2qu 2q

∣∣∣∣ = 0,

or, after expansion

pFx + qFy +
(

p2 + q2
)

Fu + puFp + quFq = 0, (48)

noting that the third term can be replaced by u2Fu due to the original equation. Solving

(48), a linear PDE, by the method of characteristics gives the solution as

F = F
(

x − p
u

ln u, y − q
u

ln u,
p
u

,
q
u

)
.

Consider the following particular example

x − p
u

ln u + y − q
u

ln u = 0,
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or

ux + uy = (x + y)
u

ln u
.

If we let u = e
√

v then this becomes

vx + vy = 2(x + y),

which, by the method of characteristics, has the solution

v = 2xy + f (x − y).

This, in turn, gives the solution for u as

u = e
√

2xy+ f (x−y). (49)

Substitution into the original equation (47) gives the following ODE

f ′2 − 2λ f ′ − 2 f + 2λ2 = 0,

where f = f (λ) and λ = x − y. If we let f = g + 1
2 λ2 then we obtain

g′2 − 2g = 0 (50)

whose solution is given by

g =
(λ + c)2

2
, g = 0 (51)

where c is an arbitrary constant of integration. This, in turn, gives

f = λ2 + cλ +
1
2

c2, f =
1
2

λ2 (52)

and substitution into (49) gives

u = e
√

x2+y2+c(x−y)+ 1
2 c2

, u = e
√

2xy+(x−y)2/2,

as an exact solution to the original PDE.

It is interesting to note that when we substitute the solution of the compatible equation

into the original it reduces to an ODE. A natural question is, does this always happen?

This was proven to be true in two independent variables.

Daniel J. Arrigo, Nonclassical Contact Symmetries and Charpit’s Method of Compatibil-

ity, J. Non Math Phys. 12(3), 321-329 (2005).

Boundary Conditions

So now we ask, of the infinite possibilities here, can we choose the right one(s) to give rise

8



to the solution that also satisfies the given boundary condition? The following example

illustrates.

Example 1.4 Solve

uxuy − xux − yuy = 0 (53)

subject to the boundary conditions

(i) u(x, 0) = 0

(ii) u(x, 0) =
1
2

x2

(iii) u(x, x) = 2x2

(54)

Denoting

G = pq − xp − yq,

where p = ux and q = uy, then

Gx = −p, Gy = −q, Gu = 0, Gp = q − x, Gq = p − y,

and the Charpit equations are∣∣∣∣ DxF Fp
−p q − x

∣∣∣∣ +

∣∣∣∣ DyF Fq
−q p − y

∣∣∣∣ = 0,

or, after expansion

(q − x)Fx + (p − y)Fy + (2pq − xp − yq)Fu + pFp + qFq = 0,

noting that the third term can be replaced by pqFu due to the original equation. Solving

this linear PDE by the method of characteristics gives the solution as

F = F(q2 − 2xq, p2 − 2yp, p/q, pq − 2u). (55)

or

F = F
(

u2
y − 2xuy, u2

x − 2yux,
ux

uy
, uxuy − 2u

)
. (56)

So how do we incorporate the boundary conditions? We will look at each separately.

Boundary Condition (i) In this case u(x, 0) = 0 and differentiating with respect to x

gives ux(x, 0) = 0 or p = 0 on the boundary. From the original PDE we then have q = 0.

Substituting these into (62) gives

F = F(0, 0, ?, 0), (57)

noting that we have included a ? in the third argument of F since where have 0
0 . So what

does this mean? If we choose any of the arguments that are zero, it means the boundary
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conditions are satisfied by that particular PDE. Thus, if we choose the first, for example,

we have

u2
y − 2xuy = 0 (58)

and we know that this is compatible with the original PDE and satisfies the BC, it means

that it will give rise to a solution. As there are two cases (i) uy = 0 and (ii) uy − 2x = 0,

we consider each separately.

Case (i) If uy = 0 then ux = 0 from the original PDE giving u = c and the BC u(x, 0) =

0 gives c = 0 so the solution is u ≡ 0.

Case (ii) In the second case where uy − 2x = 0, integrating gives u = 2xy + g(x)

and substituting into the original PDE gives x f ′ = 0 so f = c. Thus, we have the exact

solution u = 2xy + c. The BC u(x, 0) = 0 gives that c = 0 and so the solution is u = 2xy.

Boundary Condition (ii) In this case u(x, 0) =
1
2

x2 and differentiating with respect

to x gives ux(x, 0) = x or p = x on the boundary. From the original PDE we then have

xq − x2 = 0 or q = x. Substituting these into (62) gives

F = F(−x2, x2, 1, 0), (59)

So what does this mean? Again, if we choose any combination of the arguments that is

zero (combined), then the boundary conditions are satisfied by that particular PDE. Thus,

if we choose the sum of the first two arguments ı.e. u2
y − 2xuy + u2

x − 2yux = 0 then the

solution of this will satisfiy the BC u(x, 0) = 1
2 x2. However, this PDE is nonlinear. As

we wish to solve a linear problem if we can we will choose different. Another choice is

p/q = 1. So we are to solve

ux − uy = 0. (60)

This is easily solved giving u = f (x + y) and substitution into the original PDE gives

f ′2 − λ f ′ = 0 or f ′ = 0, f ′ − λ = 0, (61)

where λ = x+ y. Only the second gives rise to a correct solution and we find that f = 1
2 λ2

and leads to the exact solution u =
1
2
(x + y)2

Boundary Condition (iii) In this case u(x, x) = 2x2 and differentiating with respect to

x gives ux(x, x) + uy(x, y) = 4x or p + q = 4x on the boundary. From the original PDE

we then have pq − xp − xq = 0. Solving for p and q gives p = q = 2x. Substituting these

into (62) gives

F = F(0, 0, 1, 0), (62)
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So now we have lots of possibilities Again, if we choose any combination of the arguments

that is zero (combined), then the boundary conditions are satisfied by that particular PDE.

For example,

(a) u2
y − 2xuy = 0,

(b) u2
x − 2yux = 0,

(c) ux/uy − 1 = 0,

(d) uxuy − 2u = 0,

(63)

will all leads to solutions that satisfy the BC. PDE (a) leads to u = 2xy. PDE (b) leads to

the same solution. PDE (c) leads to u = 1
2(x + y)2 and for the last PDE (d), we use the

original PDE (53) so we solve

xux + yuu = 2u (64)

This is easily solved giving u = x2 f (y/x) and substitution into the original PDE gives

2 f f ′ − λ f ′2 − 2 f = 0. (65)

Now (65) is nonlinear but is homogeneous and can be solved giving the solution is

f = 1
2c1

(λ + c1)
2 but with the boundary condition ultimately leads to u = 1

2(x + y)2.
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