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Abstract— The increasing reliance on state assessments in 

civil engineering has sparked extensive research into methods 

for damage detection based on structural vibrations. Modal 

parameters, such as natural frequencies and mode shapes, have 

gained significant attention due to their invariance across 

structures. These parameters provide a global perspective, 

meaning their variations can help identify damage without the 

need for sensor placement directly at the damaged site. This 

feature is a key advantage in structural health monitoring 

(SHM) systems. Integrating MEMS sensors into SHM 

frameworks holds great potential for long-term monitoring, 

particularly for large-scale infrastructures. This paper 

introduces an innovative anomaly detection technique that 

analyzes raw sequential data through a statistical approach to 

identify damage associated with tendon prestress loss. The 

technique leverages a distributed monitoring system consisting 

of six high-performance MEMS sensors. To validate the 

system, the first mode frequency is initially analyzed, and the 

method is then tested on acceleration data from a 240 cm 

beam under three distinct damage scenarios. The results 

demonstrate high accuracy in damage detection and show that 

the system can also localize the damage effectively. 

Keywords— Distributed monitoring system, structural health 

monitoring, MEMS sensors, frequency domain decomposition, 

anomaly detection. 

I.  INTRODUCTION 

The significance of structural condition assessments in civil 

engineering has driven considerable research into developing 

advanced methods for damage detection, especially those 

utilizing vibration measurements. Modal parameters, including 

natural frequencies, mode shapes, and modal damping, have 

become critical indicators due to their invariance despite 

changes in the structure. These parameters reliably reflect the 

presence of damage as they vary with alterations in the 

structure’s integrity. Additionally, the global nature of modal 

parameters enables damage detection without requiring sensor 

placement directly on the damaged area. Recent advancements 

in system identification techniques, such as output-only 

stochastic subspace algorithms, have strengthened the focus 

on modal parameters by offering numerically stable and 

reliable methods to determine these parameters experimentally 

from ambient excitations. 

Structural health monitoring (SHM) plays a crucial role in 

ensuring the safety and longevity of structures by providing 

vital insights into their stress states and identifying potential 

damage. SHM encompasses various techniques and 

technologies widely adopted in both aerospace and civil 

engineering sectors. In infrastructure asset management, 

ensuring the safety of structures is paramount, necessitating 

prompt and precise maintenance actions based on an in-depth 

understanding of the structural behavior, health conditions, 

and traffic load data. This is especially critical for bridges, 

where maintaining low vulnerability levels is essential for 

ensuring both safety and operational efficiency. 

Damage and failure modes in complex systems like bridges 

can manifest in several ways. For prestressed concrete 

structures (PSCs), failure of the prestressing system is 

particularly critical, as it typically exhibits brittle behavior 

with little to no warning, potentially leading to catastrophic 

collapse. Prestressed concrete has been widely adopted for 

large-span structures, especially in bridge construction. 

However, this construction type is highly susceptible to 

degradation, and tendon rupture can result in fragile failure. 

Therefore, ongoing monitoring and maintenance of these 

structures are essential, requiring continuous inspection and 

monitoring. Early detection of damage is vital to prevent 

sudden failures, ensuring both user safety and reducing the 

financial burden of emergency repairs. While damage 

detection techniques for prestressed systems have been 

explored in the literature, a unified solution has not yet been 

established. Therefore, evaluating and developing methods 

that detect damage, particularly at early stages, remains 

necessary. 

The integration of monitoring systems can help mitigate 

inconveniences to users and, in extreme cases, ensure their 

safety by enabling rapid interventions in the event of 

anomalies. This can be achieved through either direct 

intervention or by adopting a Bridge Management System 

(BMS) that optimizes maintenance activities while 

considering the structure’s health. Additionally, these systems 

can be incorporated into broader frameworks that focus on 

goals such as reducing environmental impact or enhancing 

structural robustness. 

This research primarily aims to develop a method for 

interpreting monitoring data that can be implemented in the 

workflows of entities responsible for managing reinforced 

concrete structures. 

SHM systems are essential for providing reliable, real-time 
assessments of the monitored structures' conditions. Typically, 
SHM systems are categorized based on the type of data they 
collect: static and vibration monitoring. Static monitoring, 



IJRECE VOL. 13 ISSUE 1 JAN-MAR 2025                   ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  7 | P a g e  

which tracks parameters like displacements, deformations, and 
rotations, is commonly used to monitor damage evolution. 
Although static methods have been explored for detecting 
tendon damage, they often require expensive measurement 
technologies such as fiber Bragg gratings or emerging systems 
still undergoing validation. 

Recently, Micro-Electro-Mechanical System (MEMS) sensors 

have gained traction in SHM systems. MEMS sensors are 

compact, low-cost, and low-power devices that can accurately 

measure various physical parameters such as acceleration, 

strain, pressure, and temperature. Their integration into SHM 

systems offers several advantages, including improved data 

acquisition, processing capabilities, enhanced reliability, and 

reduced power consumption. MEMS sensors enable real-time 

monitoring of stress states, early damage detection, and 

predictions regarding the structural lifespan. In bridge 

applications, MEMS sensors have proven effective in 

continuously monitoring structural changes caused by external 

loads, traffic, or environmental factors. However, challenges 

such as noise and sensitivity to environmental changes require 

careful consideration. For example, random noise and bias 

drift can complicate error compensation and affect the long-

term applicability of inertial MEMS sensors. These challenges 

necessitate advancements in sensor classification based on 

bias instability and random walk parameters. 

Traditional SHM methods, such as strain gauges and wired 

sensor networks, are known for their reliability and precision. 

However, these methods often face challenges, including high 

installation costs, limited scalability, and vulnerability to 

environmental interference. MEMS technology presents a 

promising alternative, offering advantages such as 

compactness, high sensitivity, and wireless capabilities. While 

traditional accelerometers excel in high-frequency vibration 

monitoring, MEMS sensors are particularly effective in low-

frequency applications and can easily integrate into wireless 

sensor networks. Recent innovations in MEMS technology 

have focused on advancements in smart sensors for SHM, 

embedded sensor improvements, and durability enhancements 

for high-temperature environments. 

MEMS sensors combine mechanical and electrical 

components at the microscale to measure physical parameters 

like acceleration and displacement. Their working principles 

are based on changes in capacitance, which translate structural 

responses into electrical signals for further analysis. Their 

small size, low power requirements, and wireless capabilities 

make them ideal for deployment in challenging environments 

such as prestressed concrete structures. These features enable 

MEMS sensors to detect early signs of structural deterioration, 

such as crack propagation and shifts in modal frequencies. 

However, challenges such as temperature sensitivity and long-

term degradation remain, which has prompted ongoing 

research into improving sensor durability and developing 

algorithms to mitigate environmental effects. 

By analyzing the capabilities and limitations of MEMS 

sensors in SHM, particularly for prestressed concrete 

structures, this research highlights their potential to 

revolutionize modern infrastructure monitoring. The 

integration of MEMS-based solutions represents a significant 

advancement in SHM methodologies, offering scalable, cost-

effective tools to ensure the safety and longevity of critical 

infrastructure. 

Despite existing challenges, MEMS sensors have the potential 

to significantly enhance SHM systems. They offer efficient, 

accurate, and cost-effective solutions for structural monitoring 

and maintenance. Further advancements in MEMS technology 

and data analytics are expected to improve SHM capabilities, 

introducing novel approaches to structural monitoring and 

maintenance. 

Vibration monitoring captures a structure's dynamic behavior 

under operational and ambient conditions using 

accelerometers or velocimeters. This data can be analyzed 

directly or used in Operational Modal Analysis (OMA) to 

determine the dynamic properties of a structure. Although this 

approach offers a global assessment of the structure, it may be 

less effective at detecting localized or early-stage damage, 

such as tendon failures, which might not significantly affect 

dynamic properties. 

The primary aim of this research is to develop and validate an 

anomaly detection method using MEMS-based sensors to 

monitor tendon integrity in prestressed concrete structures, 

grounded in vibration-based methods that can detect structural 

changes even when the sensors are not located near the 

damage. 

II. THE PROPOSED METHOD 

Early detection of damage in prestressing systems is crucial 

for ensuring the safety and reliability of prestressed concrete 

structures (PSCs). The methodology proposed in this paper 

employs a similarity analysis of acceleration time histories to 

differentiate between healthy and damaged structural states. 

The method consists of two phases: the calibration phase, 

where reference data from the undamaged structure are 

collected, and the operational phase, where new data are 

analyzed for damage detection. 

During the calibration phase, multiple acceleration time 

histories are gathered to represent the dynamic behavior of the 

structure in its undamaged state. These data are used to define 

baseline conditions, serving as the reference for anomaly 

detection. The number of accelerometers installed on the 

structure is denoted by K, and the number of histories acquired 

from each accelerometer during calibration is denoted by N. 

The acceleration data from the sensors form a reference matrix 

of acceleration time histories: 
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(1) 

The similarity between time histories is measured using a 

function such as the Minimum Jump Cost (MJC), which 

calculates the cost of transitioning from one-time history to 

another. The similarity index (SI) matrix is constructed by 

comparing each time history with others from the same sensor: 

(2) 

To detect anomalies, a control chart approach is used. The 

mean (μ\mu) and standard deviation (σ\sigma) of the SI matrix 

are computed, and threshold values are defined as: 

(3) 

Here, λ=3 is used, based on Chebyshev’s theorem, which 

states that the probability of observing values outside these 

thresholds is at most 11%. These thresholds define the 

baseline for detecting anomalies during the operational phase. 

As new acceleration data are collected, the similarity index is 

recalculated for the new measurements: 

(4) 

If any value in the new SI matrix falls outside the defined 

thresholds, the system triggers an anomaly alert. When more 

than 11% of the values are outliers, the system detects an 

anomaly in the structural behavior. 

The MJC function evaluates the cost of transitioning between 

two sequences, x and y, and is calculated as the sum of the 

minimum costs for each jump: 

(5) 

where Ji represents the cost of the jump between data points in 

sequences x and y. 

 

 

 

Minimum Jump Cost description. 

 

In this work, the Minimum Jump Cost (MJC) measure is 

adopted as the criterion for comparing two distinct time 

histories, i.e., for evaluating the distance between them. 

However, alternative approaches can be employed for defining 

the distance measure. In fact, Equation (2) introduces a 

generic notation, Sim, to represent any arbitrary similarity 

measure, emphasizing the flexibility of the proposed method. 

III. SYSTEM ARCHITECTURE  

The data acquisition system, as depicted in Figure 2, is 

based on MEMS sensors and consists of six high-

performance inertial sensors provided by Sensonor™ 

(Skoppum, Norway), along with six microcontrollers from 

STMicroelectronics™ (Geneva, Switzerland). In this setup, 

the STM32F446RE microcontrollers collect data from the 

STIM318 sensors via the UART protocol. To enable 

seamless communication, an interface between the RS422 

and UART protocols is established using the SN75C1167 

chip from Texas Instruments (Dallas, TX, USA), allowing 

the microcontrollers to effectively acquire data through 

UART. 

System architecture based on six high-grade 
MEMS sensors. 

 

 

STIM318 sensors are configured to sample data at a frequency 

of 2 kHz, with the triggering frequency set to 250 Hz. This 

configuration ensures that the average delay between the data 

request and actual sampling is limited to 250 μs. Additionally, 

the Master microcontroller generates a start signal, which is 

captured by the other microcontrollers to synchronize the 

initiation of the data acquisition process. The collected data 

are then transmitted to a PC, where they are used to trigger 
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acquisition by the Master and facilitate data collection from all 

microcontrollers via serial communication. 

The architecture of this system was carefully selected based on 

several important factors that enhance its effectiveness in 

structural health monitoring applications. Firstly, the 

integration of high-performance sensors and microcontrollers 

ensures the system can meet the demands of accurate data 

collection. The STIM318 sensor, capable of high-frequency 

data acquisition at 2 kHz, offers a low noise density of 0.015 

𝑚/𝑠/√ℎ𝑟. Paired with the STM32F446RE microcontroller, 

which features an Arm Cortex-M4 processor running at 180 

MHz, the system efficiently processes and manages the 

acquired data. Another key consideration was the need for 

precise synchronization, which is crucial for structural 

monitoring. The synchronization between the sensors and 

microcontrollers is achieved via an external clock and the start 

signal from the Master microcontroller, reducing delays and 

improving data reliability. Communication reliability was also 

a priority, and the use of an RS422-to-UART interface ensures 

efficient and robust data transmission. Finally, the modular 

and scalable nature of the system was essential, allowing it to 

adapt to various structural elements and incorporate additional 

sensors if necessary. The system is also designed for 

integration with Internet of Things (IoT) protocols, ensuring 

compatibility with future SHM applications. 

IV. MEASUREMENT SETUP 

The proposed methodology was validated through an 

experimental case study involving a prestressed concrete joist, 

a common structural element used in floor construction. The 

joist tested in the study had a length of 240 cm and featured a 

T-shaped cross-section with a height of 10 cm, a major base 

width of 12 cm, and a minor base width of 5 cm. The 

reinforcement configuration consisted of three prestressing 

tendons placed in the lower section of the joist and one tendon 

in the upper section, with each tendon having a cross-sectional 

area of 12 mm². The joist was constructed using C45/55 grade 

concrete, which has a cylindrical compressive strength (fck) of 

45.65 N/mm² and an elastic modulus (EEE) of 36,416.11 

N/mm². The tendons were made of harmonic steel, with a 

characteristic yield stress (fp(1)k) of 1670 N/mm² and a 

characteristic ultimate tensile strength (fptk) of 1860 N/mm². A 

detailed representation of the joist’s cross-section is shown in 

Figure 3, and the concrete and tendon properties are provided 

in Table 1. 

 

 

 

 

 

 

Depiction of the joist section and tendon layout. 

 

Table 1. Characteristics of concrete and tendons 
of harmonic steel. 

 

Feature Dimension Value 
𝑓𝑐𝑘 MPa 45.65 
E𝑐 MPa 36,416.11 
Es MPa 201,000 
𝑓ptk MPa 1860 
𝑓p(1)k MPa 1670 

 

The experimental setup, shown in Figure 4, consisted of 

positioning the joist specimen on two symmetrical vertical 

supports, each placed 35 cm from the ends of the beam. To 

replicate loading conditions, two 24 kg masses were 

positioned 65 cm from the respective ends of the beam, 

ensuring that the load was evenly distributed across the 

structure. 

 

 

Setup for the experiments. 

The proposed monitoring system was preliminarily assessed 

through a comparison with measurements taken from a low-

noise MEMS sensor, the EPSON M-A352 accelerometer, 

which served as the reference system [36]. Data acquisition 

for the reference system was managed by an additional 

microcontroller that generated the clock signal and acted as an 

interface between the sensor and the PC. Synchronization 

between the proposed monitoring system and the reference 

system was achieved through a digital start signal transmitted 

from the Master microcontroller. 

The sensors were arranged in two different configurations: 
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1. Parallel Configuration: In this setup, the STIM 

sensors were placed in two sections, with three 

sensors in each section. The first section was located 

114 cm from the left end of the beam, and the second 

was positioned 160 cm from the left end. In each 

section, one STIM sensor was placed on the front 

side, one on the rear side, and one on the top side. 

The EPSON sensor was placed on the top side of the 

beam, 110 cm from the left end, near STIM sensor 3. 

The arrangement of these sensors is shown in Figure 

5. 

2. Longitudinal Configuration: In this configuration, 

four STIM sensors and the EPSON sensor were 

positioned on the front side of the beam, while two 

STIM sensors were placed on the rear side. A visual 

representation of this arrangement is provided in    

Figure 6. 

Distributed monitoring system of six STIM318 
sensors (highlighted in red and green colors for 
front and back, respectively) in parallel 
configuration.     Figure No.5 

 

Distributed monitoring system of six STIM318 
sensors (highlighted in red and green colors for 
front and back, respectively) in longitudinal 
configuration.   Figure No.6 

 

Optimizing the layout of accelerometers is a key area of 

research in structural health monitoring (SHM). Numerous 

studies have proposed various methods and strategies for 

determining the ideal sensor placement to enhance detection 

capabilities and improve the identification of a structure's 

dynamic properties [37]. While determining the optimal sensor 

placement is beyond the scope of this paper, the authors tested 

two different configurations to assess their effectiveness in 

dynamic identification. For the damage detection analysis, 

however, only the parallel configuration was used, as it offered 

better sensitivity to off-center damage, such as a clipped 

tendon, which could lead to changes in internal stress and beam 

deflection. 

V. SYSTEM CHARACTERIZATION 

Measurement Synchronization:-The distributed monitoring 

system was first evaluated using controlled displacements in a 

single direction to assess the synchronization of the acquired 

acceleration signals (Figure 7). During this evaluation, the 

correlation between the signals was examined, and the outcome 

of combining two signals is shown in Figure 8. 

Figure No.7 Comparison of acceleration 
measurements of all sensors under controlled 
displacements in one direction. 
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Figure No.8 Correlation of two acceleration 
measurements. 

 

The cross-correlation between two acceleration signals was 

computed using MATLAB's xcorr function (version: 2024b). 

The x-axis represents the lag in terms of sample shifts (N 

samples), while the y-axis shows the correlation values. The 

peak of the correlation occurs at lag = 0, indicating a high 

degree of synchronization between the two signals, with no 

apparent time delay. Furthermore, the symmetrical shape of the 

curve suggests that the signals are temporally aligned without 

significant phase shifts. The side lobes surrounding the main 

peak indicate secondary correlations, which arise from periodic 

or repeating patterns in the signals. This result confirms that the 

synchronization between the two signals is valid, reflecting 

shared, similar dynamic responses. 

In addition to the synchronization analysis, the time required 

for data retrieval from the sensor, along with the transmission 

and reception times for the acquisition start signal, was 

measured. The average data retrieval time was found to be 0.54 

ms, with a standard deviation of approximately 500 ns, while 

the transmission and reception times were about 40 ns each. 

The internal timers of the microcontroller were also used to 

measure the actual sampling rate, which was determined to be 

4 ms. 

Performance Evaluation: -Frequency Domain Decomposition 

(FDD) is a valuable output-only method used to identify the 

vibration frequencies and corresponding modal shapes of a 

structural system based on acceleration data recorded from the 

structure. This technique operates on the principle that the 

eigenvectors, which represent the vibration modes, form a basis 

due to their linear independence. As a result, any displacement 

in the system can be represented as a linear combination of 

these eigenvectors, allowing the decoupling of mode 

components. This property is particularly useful when 

analyzing the system's response at each accelerometer 

placement or when examining the Power Spectral Density 

(PSD) of the accelerometer's history using Singular Value 

Decomposition (SVD) of the matrix defined for each frequency 

ω [38]. 

The FDD method utilizes frequency response functions (FRFs) 

to extract the eigen periods, damping, and modal deformations 

of the structure. Fourier transforms are employed to convert the 

differential equations governing the dynamic behavior of the 

structure into a system of algebraic equations, simplifying their 

resolution. 

Figure 9 presents a flowchart outlining the data processing 

steps using the FDD technique, along with its mathematical 

description. Initially, the PSDs are estimated through Fourier 

transforms of the acceleration signals, 𝑥(𝑡), which represent 

the acceleration measurements. The resulting PSD matrices, 

one for each frequency 𝑓, are then decomposed into singular 

values. In this decomposition, 𝑼𝒇 and 𝑽𝒇 represent the 

singular vectors, while Σ𝑓 denotes the singular values. These 

singular values correspond to the degrees of the structural 

system, and the singular vectors provide insights into the modal 

form. Vibration modes are identified based on the graphical 

representation of the singular value spectrum, specifically at 

the resonance peaks. Natural frequencies are identified using 

the peak-picking method, where each peak corresponds to a 

singular value, which is matched with a singular vector. The 

suitability of attributing a frequency to a specific vibration 

mode is evaluated using the Modal Assurance Criteria (MAC) 

[39,40]. It is critical to assess the frequency in order to identify 

the component of interest. To validate the proposed system, 

the results were compared with those obtained using Artemis 

Modal Pro software (version 8) and the reference system. 
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          Figure No.9 FDD Technique Flow Chart 

 

 

In particular, Table 2 shows the frequencies obtained by 
means of the software, which identifies that the first mode 
exhibits frequencies of about 50 Hz and 53 Hz in the absence 
of an applied load for the parallel and longitudinal 
configurations, respectively, while frequencies of about 40 Hz 
and 41 Hz for the parallel and longitudinal configurations, 
respectively, are observed with an applied load, a result that is 
also evident in the finite element model. For the unloaded 
beam, the discrepancies between the FEM and Artemis, 
ranging between 5% and 10%, likely stem from minor 
differences in the boundary conditions and material properties 
inherent to the theoretical and experimental Setups. 

 

  [Hz] Parallel 
Config. 

[Hz] 

Longitudinal   
Config. [Hz] 

Unloaded 55.16 50.68 53.83 

Loaded 34.10 40.87 41.62 

 

On the other hand, in the presence of a load on the analyzed 

beam, the differences are slightly more pronounced, at around 

20%. This variation can be attributed to the influence of the 

applied load, which affects the stiffness and stress distribution. 

These factors are more accurately reflected in the experimental 

conditions than in the FEM’s idealized assumptions. Once the 

first mode had been evaluated through the FEM analysis and 

using Artemis Modal Pro software, the outcomes obtained by 

the proposed system and the reference system were then 

examined around the frequency of interest, as shown in Figure 

10 and Figure 11 for the parallel configuration in the absence 

of an applied load and in the presence of an applied load, 

respectively. Both systems correctly identify the frequency of 

the first mode, with values equal to 50.01 Hz for the reference 

system and equal to 50.01 Hz for the proposed system for an 

unloaded beam and values equal to 40.29 Hz for the reference 

system and equal to 40.18 Hz for the proposed system in the 

loaded case. Furthermore, both systems demonstrate a variation 

in the frequency of the first mode of the beam from about 50 

Hz to 40 Hz when a load is applied, i.e., in dynamic conditions. 

Figure 10. First mode of the parallel configuration 
without applied load. 

 

VI. RESULTS 

The experimental campaign consisted of four tests (T0–T3), 

with each aiming to evaluate both the identification system’s 

performance under an increasing damage severity and the 

effectiveness of the proposed methodology for identifying 

tendon failure. All of the experimental tests involved the 

acquisition of 146-time histories of 600 s in ambient 

conditions. The damage was induced by creating narrow, deep 

cuts near the tendons, as shown in Figure 12. In each test, the 

system’s abilities to detect anomalies and correlate the number 

of alerts with the damage extent were assessed. Test T0 served 

to confirm that the system does not trigger alerts in response to 

minor variations in the positions of the masses or sensors, 

while tests T1 to T3 assessed the system performance under the 

conditions of progressively increasing damage. This study 

further sought to explore the potential correlation between the 

number of alerts generated and both the extent and location of 

the damage. Figure 13 provides a detailed overview of the 

damage patterns applied in each experiment. For this 

campaign, the similarity function introduced previously, in the 

context of time-series analysis, was utilized. 

Figure 12. Example of cuts near the tendons. 

 

 

 

 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-t002
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f010
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f010
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f011
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f012
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f013
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. Figure 13. Experimental damage patterns 
adopted. 

 

The initial test evaluates the methodology's sensitivity to minor 

alterations in the experimental setup. Specifically, the response 

of the undamaged joist is analyzed by disassembling and 

reassembling the sensors to determine how slight modifications 

in the sensor–structure configuration affect the system. 

According to Chebyshev's theorem, the control chart 

probability of exceeding the set thresholds is at most 11%, 

meaning anomalies can be detected as follows: 

(6) 

The results of the outlier analysis are shown in the control 

charts, which depict the performance across three data groups: 

training, testing, and validation. The training data, shown in 

blue, are used to establish the control chart thresholds. The 

validation data, represented in green, come from the 

undamaged structure's measurements collected during the 

training phase. The testing data, shown in red, correspond to 

the testing group. 

Figure 14 illustrates the T0 damage detection analysis, 

presenting the control chart based on the similarity index under 

undamaged conditions. The chart includes data for the 

calibration-free validation measurements (green) and those 

obtained after sensor disassembly and reassembly (red). 

According to Figure 14, the number of outliers detected in the 

"Undamaged 2" dataset is 8, resulting in an occurrence 

frequency of 5.5% for 146 five-minute time histories 

(approximately 12 hours). This value is below the 11% 

threshold required to trigger an alert, demonstrating the 

robustness of the system to minor sensor adjustments. 

Figure 14. Control chart for experiment T0 for 
sensor arrangement: 8/146 (5.5%) outliers for 
the group Undamaged 2, confirmed using the 
validation group as a part of the undamaged data. 

 

The results from test T1, with the D1 damage scenario, 
are shown in Figure 15, where the similarity index 
computed for the time histories under D1 conditions is 
represented in red. The methodology detected 64 
outliers, approximately 43.8% of the dataset, which 
exceeded the 11% threshold, leading to anomaly 
detection and indicating structural changes.  

Figure 15. Control chart for experiment T1 for D1 
damage detection: 64/146 (43.8%) outliers for 
the group D1, confirmed using the validation 
group as a part of the undamaged data. 

 

 In advanced damage scenarios (T2 and T3), as shown 
in Figure 16 and Figure 17, the control charts visually 
illustrate an increased number of outliers for damage 
scenarios D2 and D3, with the alerts totaling 80 and 
146, respectively, corresponding to 54.8% and 100% of 
the newly collected measurements. These findings 
confirm the detection of anomalies in each case. 

 Regarding T2 and T3, the control charts in Figure 
15 and Figure 17 already visually highlight a 
considerable number of outliers that result in the 
detection of an anomaly. In cases D2 and D3, there are 
80 and 146 alerts, respectively, which consist of 54.8% 
and 100% of the sample of new measurements. 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f015
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f016
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f017
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f015
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f015
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f017
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 The system successfully detected damage in all 
scenarios (D1–D3) and demonstrated a direct 
correlation between the damage severity and the 
percentage of outliers. As the damage intensified, the 
percentage of outliers rose, reaching 100% in the most 
severe cases. Therefore, referring only to the 
investigated scenarios and adopting the 11% outlier 
threshold gives an overall accuracy of 100% because 
the presence or absence of damage was correctly 
detected in all four investigated scenarios. 

Figure 16. Control chart for experiment T2 for D2 
damage detection: 80/146 (54.8%) outliers for 
the group D2, confirmed using the validation 
group as a part of the undamaged data. 

 

Figure 17. Control chart for experiment T3 for D3 
damage detection: 146/146 (100%) outliers for 
the group D3, confirmed using the validation 
group as a part of the undamaged data. 

 

A further analysis involved the detection of damage 

localization using a sensor-based analysis; in particular, this 

was conducted on test T2 by evaluating each sensor 

individually. Figure 18 shows that sensor 6, located near the 

damage, registered a higher number of outliers compared to 

sensor 5 (Figure 19), positioned on the opposite face of the 

same section. This suggests that the methodology may 

effectively localize damage within the structure. All of the 

experiments and the results they achieved are reported in Table 

3, where the damage scenarios, key objectives, number of 

alerts, outlier percentages, and observations have been 

summarized. 

Figure 18. Control chart for experiment T2 for D2 
damage detection from sensor 6 (S6): 99/146 
(67.8%) outliers for the group D2-S6, confirmed 
using the validation group as a part of the 
undamaged data. 

 

Figure 19. Control chart for experiment T2 for D2 
damage detection from Sensor 5 (S5): 25/146 
(17.1%) outliers for the group D2-S5, confirmed 
using the validation group as a part of the 
undamaged data. 

 

VII. CONCLUSION 

This study presents a distributed monitoring system based on 

MEMS sensors for structural health monitoring (SHM). The 

system's performance was preliminarily evaluated by 

comparing it with a low-noise sensor in a case study involving 

both unloaded and loaded prestressed concrete beams. The goal 

was to validate the proposed method, which was then 

compared with results from analytical and finite element 

models. The authors proposed a damage detection framework 

for prestressed concrete (PSC) beams, leveraging direct 

analysis of acceleration time histories obtained from a reliable 

and cost-effective SHM system. Damage detection in 

prestressed bridge systems is a critical challenge in structural 

engineering, as accurate assessments are essential for ensuring 

transportation safety. The methodology for identifying damage 

in PSC elements involves analyzing acceleration time histories 

using a similarity index to detect anomalies. Thresholds for this 

analysis are established using a reference dataset, and any 

measurements exceeding these thresholds are classified as 

outliers. According to Chebyshev’s theorem, a structural 

anomaly is identified if the outliers exceed 11% of the total 

measurements; otherwise, the values are considered part of the 

normal distribution variance. 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f018
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-f019
https://pmc.ncbi.nlm.nih.gov/articles/PMC11723454/#sensors-25-00289-t003
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The methodology was experimentally validated using a 

reinforced concrete joist in four tests. The first test evaluated 

the system's resilience to false positives, showing no anomalies 

when the sensor configuration was slightly adjusted. The 

following tests focused on damage detection, with outlier 

percentages ranging from 43% to 100%, demonstrating strong 

accuracy in detecting damage and a clear correlation between 

outlier frequency and damage intensity. The final test, which 

analyzed data from individual sensors, indicated the potential 

for damage localization using single-sensor data, as sensors 

located near the damage exhibited a higher number of outliers. 

In summary, the proposed methodology exhibited robust 

performance in detecting various levels of damage under 

controlled conditions. However, its effectiveness relies on a 

comprehensive baseline dataset and an adequate number of 

sensors for multiscale damage detection. Future work will 

explore alternative similarity metrics and machine learning 

techniques to address environmental variability and further 

improve damage detection capabilities. 
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