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Part I:
Introduction



Generative Models
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❑ Given:  Training data
Example: MNIST digits

❑ Goal:  Learn a parametric model capable of producing new samples

❑ Deep generative models use neural networks for implicitly or 
explicitly defining the density 
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Types of Deep Generative Models

deep generative models
(partial* list of recent examples)

explicit

generative 
adversarial 
networks

tractable density approximate density

variational 
autoencoder

implicit

autoregressive invertible 
flows

*For additional examples, see tutorial [Goodfellow, 2016]



Implicit Deep Generative Models

deep generative models
(partial* list of recent examples)

explicit

generative 
adversarial 
networks

tractable density approximate density

variational 
autoencoder

implicit

autoregressive invertible 
flows

*For additional examples, see tutorial [Goodfellow, 2016]



Implicit Deep Generative Modeling
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Generative Adversarial Networks:

❑ Based on game theory, Nash 
equilibrium

❑ 8679 citations  [Goodfellow et al., 2014]

Popular Example

explicit form generally 
not feasible to compute

easy to 
sample
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Generative Adversarial Networks (GANs)

real samples Discriminator 
Network

Generator 
Network

noise samples

fake samples

real/fake

[Goodfellow et al., 2014]

  ( )( ) ( )

1
,

n
i i d

gt
i

p
=

x x x

  ( )( ) ( )

1
,  ~ | ,

m
j j

j
N

=
z z z 0 I

 :    (0,1)dD →φ

Gθ

( ) ( ) ( ) ( )( )| ,
min max  E log E log 1

gtp N
D D G    + −     φ φ θx z 0 I

θ φ
x z

expectations approximated with samples

Basic GAN objective (cross-entropy-based):
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 φ φ θx z

Binary classification:

real fake



GAN Strengths

State-of-the-art GAN models generate highly realistic samples, 
e.g., StyleGAN [Karras et al, 2019]:

Examples from http://www.whichfaceisreal.com/

real fake



GAN Weaknesses

❑ No explicit density estimate                                 , cannot infer the 
latent code that produced a sample:

( ) ( )  gtp pθ x x

( )|pθ z x ?

cannot compute low-
dimensional representation

❑ Training involves potentially unstable minimax problem, 
iterations may diverge, be sensitive to tuning.

[Lucic et al., 2018]

❑ Can be susceptible to mode collapse:

true 
distribution

generated 
samples

low sample diversity

[Arora and Zhang, 2017]



deep generative models
(partial* list of recent examples)

explicit

generative 
adversarial 
networks

tractable density approximate density

variational 
autoencoder

implicit

autoregressive invertible 
flows

Explicit Deep Generative Modeling w/ 
a Tractable Density

*For additional examples, see tutorial [Goodfellow, 2016]



❑ Density               and gradients                 can be computed exactly( )pθ x ( )p θ x

❑ Key advantage: Closed-form test data likelihood ( )testp
θ

x

Explicit Deep Generative Modeling w/ 
a Tractable Density

❑ Given training data                                ,  can solve via SGD:

( )( )  arg min  log i

i

p = − θ
θ

θ x
maximum 

likelihood estimator
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❑ Disadvantages:

▪ Generated samples arguably inferior to GANs

▪ No dimensionality reduction, representation learning (mostly)



Examples
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conditionals parameterized 

as RNN or CNN

❑ Autoregressive methods:

Apply chain rule to form: 

[Larochelle & Murray, 2011; van den Oord et al., 2016]

❑ Invertible flows:

[Dinh et al., 2016; Kingma & Dhariwal, 2018]
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Change of variables formula: 

tractable determinant because 
of special DNN structure 



deep generative models
(partial* list of recent examples)

explicit

generative 
adversarial 
networks

tractable form approximate density

variational 
autoencoder

implicit

autoregressive invertible 
flows

this talk (mostly)

Explicit Deep Generative Modeling Using 
a Density Approximation/Bound

*For additional examples, see tutorial [Goodfellow, 2016]



❑ Often interested in densities of the form:

( ) ( ) ( )   |p p p d= θ θx x z z z

Explicit Deep Generative Modeling Using 
a Density Approximation/Bound

low-dimensional latent factors

❑ Required integral 
is intractable …

Optimize upper bound 
on ( )( )log i

i

p− θ x

bound

orig.

❑ Popular example:   The variational autoencoder (VAE)
[Kingma and Welling, 2014; Rezende et al., 2014]

6079 citations

Encoder
DNN

zx x̂

Decoder
DNN

low dim 
representation

Upper bound based on 
autoencoder-like structure



Variational Autoencoders
(details in Part II)

Advantages:  

❑ Less prone to mode collapse than GANs, more stable training.

❑ Provides explicit estimate of latent distribution                ; 
many applications in representation learning.

❑ Natural generalization of dimensionality reduction tools in 
common use for signal processing (Part III).

Disadvantages:  

❑ Optimizes a bound on the data likelihood, not exact likelihood 
(but conditions for when bound is tight discussed in Part IV).

❑ Generated samples usually inferior to GANs ...

( ) |pθ z x

… although improvements possible (Part IV).



Representative Applications
Generative models in general:

VAEs in particular:

❑ Compression:
Encoder

DNN

z

x x̂

compressible 
representation

Decoder
DNN

❑ Data cleaning, 
outlier removal:

[Dai et al., 2018]

[Ballé et al., 2018]

❑ Many more, a generic unsupervised learning tool

❑ Image-to-image translation:

❑ Model-based 
reinforcement learning:

[Finn et al., 2016]

current 
state

time

simulated 
future states

[Isola et al., 2016]



Caveat

❑ Deep generative modeling is a rapidly changing field.

❑ Strengths and weaknesses of various methods frequently 
need recalibration in accordance with new developments.

❑ Also, important to differentiate:

1) General-purpose improvements in DNN architectures 

2) Advances in specific generative modeling paradigms



Remainder of Tutorial

❑ Part II:  Details of the variational autoencoder

❑ Part III:  Connections with existing signal processing 
methods for finding low-dimensional structure in data

❑ Part IV:  From signal reconstruction to generative modeling

❑ Part V:  Practical usage issues and examples



Questions?



Part II:
Details of the Variational Autoencoder

Note:  Updated version of slides available at  http://www.davidwipf.com/



Latent Variable Model
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prior on 
latent factors 
of variation

mapping to 
observation space; 

could be delta function
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low-dimensional 
representation of significant 

factors of variation candidate latent factors:

digit type, stroke width, 
slant angle, etc.

Example

28x28 = 784 dim 
MNIST digit

20 784d  =

sufficient in practice



Parameterized Latent-Variable Model

Without loss of generality, assume: ( ) ( )  | ,gtp N=z z 0 I

( ) ( )s.t.   |       | ,    for some    gtp p
   θ x z x z θ

Also assume parameterized family:
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equivalent to maximum likelihood



Naïve Approximation

Finite-sample approximation to intractable integral for each i:
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Revised tractable objective:
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Need huge number of samples for reasonable approximation …

Lingering problem:
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[Doersch, 2016]



A Useful Variational Bound
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Variational upper bound:
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Basic VAE Energy Function Decomposition
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regularization factor data-fit term

[Kingma and Welling, 2014; Rezende et al., 2014]



Handling the Regularization Term

( ) ( )( )KL | || | ,iq N 
 φ z x z 0 I is still intractable in general

Encoder moments computed by deep networks:

( ) ,i  zμ x φ( )i
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KL term now satisfies:
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[Kingma and Welling, 2014; Rezende et al., 2014]

Differentiable, suitable for minimization via SGD

Simplifying Gaussian approximate posterior assumption:

( ) ( )( ) ( ) ( )|      | , ,   ,  i i iq N    =    φ z zz x z μ x φ Σ x φ
encoder 

distribution



Basic VAE Energy Function Decomposition
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regularization factor data-fit term

[Kingma and Welling, 2014; Rezende et al., 2014]



Handling the Data-Fit Term
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Decoder moments computed by deep networks:
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For continuous data, typical assumption is

decoder 
distribution
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[Kingma and Welling, 2014; Rezende et al., 2014]
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Revisiting Finite-Sample Approximations

But what about the present situation: ( )( , ) ( ) | ,    1, ,i j iq j m=φz z x
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❑ Confines mass to narrow region of z-space

❑ Excludes regions that are unlikely to have produced x(i)

( )( )| iqφ z xUnlike the prior                 ,   during training the encoder                  :( )| ,N z 0 I

much better 
for sampling

[Kingma and Welling, 2014; Rezende et al., 2014]

In practice, can use just  m = 1 sample at each training iteration:
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From before:
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Reparameterization Trick

Data-term approximation:
2
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over      via SGDθ

( )( ) ( ) |i iqφz z xBut what about sampling operator                            ?     

Problem: Cannot directly propagate gradients w.r.t.
through sampling operator …               
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[Kingma and Welling, 2014; Rezende et al., 2014]

SGD 
friendly

differentiable sample from encoder



VAE Optimization Summary

Basic energy function:
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Generating New Samples
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MNIST Examples

 , ,   = xΣ z θ I zGround-truth samples
VAE-generated samples 
with

(better VAE options available; Part IV)



Computing Negative Log-Likelihood (NLL) Estimates

Can apply unbiased estimate of VAE bound:
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Comparison with an Autoencoder

Autoencoder (AE):

compressed 
representation,

Encoder
DNN

z
x x̂

Decoder
DNN

( ) ( )xz dim    dim 

VAE:

stochastic 
representation

Encoder
DNN

x
Decoder

DNN

( ) ( )zzφ Σμxzz ,|~ Nq =

zΣ

zμ

xΣ

xμ

z
x̂

( ) ( )xxθ Σμzxx ,|~ˆ Np =



Questions?



Part III:
Connections with Existing Signal Processing 

Models for Finding Low-Dimensional Structure

Note:  Updated version of slides available at  http://www.davidwipf.com/



Outline

❑ Finding low-dimensional structure in high-dimensional data, 
possibly corrupted with outliers

❑ NP-hard decompositions into inlier and sparse outlier 
components

❑ Weaknesses of existing methods and useful VAE-based 
alternatives

❑ Case Study:  Robust PCA

▪ Connections with restricted class of VAE models

▪ Advantages of the VAE in  finding low-dimensional structure

representative 
example



Context
❑ Data is increasingly massive, high-dimensional

[John Wright and Yi Ma, 2014]

??

Images Videos User data

❑ Blessing of dimensionality:

Real data often concentrate on low-dimensional or degenerate structures in 
high-dimensional ambient space

local regularities, global symmetries, repetitive patterns, redundant sampling …



Robust Estimation

❑ But real-world data also frequently contain extraneous features, 
missing observations, or corruptions/outliers

gene expression
[Wang et al., 2012]

3D reconstruction
[Zhang et al., 2011]

face recognition
[Wright et al., 2009]

❑ Traditional methods (e.g., PCA, least squares regression) break 
down …

Replacements:  Robust PCA, sparse 
representations/regression, and many others

[John Wright and Yi Ma, 2014]



Building Blocks for Robust Estimation

❑ Sparse representations:

❑ Low-Rank matrices:
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High-Level Data Decomposition

Basic building blocks can be combined in various ways to 
construct models of the form:

( )             inlier component       +      outlier/noise component ( )=X L E
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n
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i
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=
=  X x x  Observed data:

+=

Background detection example:

observed video 
frames

1D subspace 
background 
component

sparse foreground 
component

❑ low-dimensional latent structure, e.g.,         

U defines a low-dim inlier subspace

❑ sometimes not fully observable, e.g., 
have measurement operator A(L)
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n
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❑ sparse corruptions (possibly large)

❑ other errors or model mismatch
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Typical Objective for Signal Recovery

( ) ( ) ( )
2

1 1 2 22,
min      g g − − + +

L E
X L E L E

Challenging ill-posed inverse problem to recover low-dimensional 

representation L :

(constrained version)( ) ( ) ( )1 2
,

min     ,   s.t.  g g+ = +
L E

L E X L E

Example penalties: ( ) ( ) ( )1 0
   rank      g = L L L

#  nonzero singular 

values of  L

( )2 0
      g =E E

#  nonzero      

elements in E

Note:  Penalties are primarily used for limiting:

1) the intrinsic dimensionality of the inlier space

2) the cardinality of outliers

… not used for learning distribution within the inlier space

1

2

: linear meaurement  operator

: favors  low-dim  representations

: favors  sparsity

g

g

*=   L    U
   Z



Special Cases

+
low rank L sparse E

=
observations X

low rank  L partial observations 

case study

❑ Matrix recovery/completion:

❑ Robust PCA:

❑ Source localization: ?

source space L 

(row sparse)
sensor space X

( ) = L L

❑ Many more …

[Chandrasekaran et al., 2011; Candès et al. 2011]

[Candès and Recht, 2008]

[Baillet et al., 2001]

( )L



Weakness of Traditional Pipeline

remainder of Part III

( ) ( ) ( )1 2
,

min     ,   s.t.  g g+ = +
L E

L E X L E

❑ Difficult nonconvex, NP-hard estimation process:

(and convex relaxations often fail …)

❑ Limited capacity inlier models, e.g.,

Primary:

*=   L    U
   Z

Secondary:

❑ Limited generative modeling capability, primarily used for data 
reconstruction … 3D ambient space

2D principal subspace 
reconstructs inlier data. ...

.
...

... .......
. . .

... .
clean data with 

unknown density

... . .. ... . .
.

Part IV



How might the VAE model help?

❑ VAE Encoder covariance:

1) At global optima: determines inlier dimensionality

2) Elsewhere:             smooths bad local minima

Correspondences between VAE components and signal recovery:

High-Level Picture 

[Dai et al., 2018]

❑ Deterministic path provides 
nonlinear inlier model: ( )( ) ( ), ,         i i   = x zμ μ x φ θ l

❑ Decoder covariance path 
models sparse outliers: ( ) ( )

2
( ) ( ), ,   i i   = x zΣ μ x φ θ e

Basic VAE architecture:

Encoder
DNN

( ) ( ) ( )i i i= +x l e

Decoder
DNN

( ) ( )zzφ Σμxzz ,|~ Nq =

zΣ

zμ

xΣ

xμ

z ( ) ( ) ( )ˆ ˆˆ i i i= +x l e

( ) ( )xxθ Σμzxx ,|~ˆ Np =

easy to add 
observation 

model A here



Case Study:  Robust PCA

❑ Highly influential model e.g., 4358 citations to [Candès et al, 2011].

❑ Exactly follows inlier + outlier data decomposition (common to 
many signal processing applications …).

❑ Limited by 

▪ NP-hard estimation, 

▪ simple low-rank (bilinear inlier) model

❑ Correspondences with VAE can be explicitly quantified.

❑ Representative of connections between the VAE and other ill-posed 
inverse problems (e.g., compressive sensing, source localization, 
subspace clustering, matrix completion, …).

Why this is a good choice?



PCA Background

PCA finds directions 
of maximal variance:

2D data

1D direction of 
maximal variance

(first principal component)

1    x

2x

Many different formulations given data  ( )

1
    

n
i d n

i



=
= X x

[Bourlard and Kamp, 1988]

2
( ) ( ) ( ) ( )

2,
1

,   arg min ,   s.t.   ,   ,  
n

i i i i d d

i

i   

 

=

= − =   
U V

U V x Uz z Vx U V

Example (AE-like):

defines  principal 
component directions

linear 
encoder

linear 
decoder

Simple AE can compute principal components



PCA Sensitivity to Outliers

No Outliers Single Outlier

first principal 
component direction

dashed line

2x 2x

1x 1x



Robust PCA

+=
observations (X) low rank (L) sparse outliers (E)

  1
* * 0,
,       arg min  rank        s.t.  

n
= + = +

L E
L E L E X L E

[Chandrasekaran et al., 2011; Candès et al. 2011]

NP-hard

1

* 1,

ˆ ˆ,       arg min         s.t.  
n

= + = +
L E

L E L E X L E

Convex relaxation:

RPCA inverse problem:

Theory: in very specialized conditions, but these 
rarely hold in practice …

   * *
ˆ ˆ, ,=L E L E

What about the VAE?



Illustrative Degenerate Case

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

|
,   KL | ||   E log |i

i i

q
i

L q p p   = −
   

φ
φ θz x

θ φ z x z x z

Original VAE objective:

Two assumptions:

1. Degenerate encoder covariance

2. High capacity decoder covariance

 ,   =zΣ x φ 0

Can collapse VAE objective using assumption 1:

Equivalent to a deterministic autoencoder with Gaussian entropy loss …

( ) ( )( ) ( ),   log | ,i i

i

L p   − =   θ zθ φ x z μ x φ

 ,   arbitraryxΣ z θ

Further simplification possible using assumption 2:

( ) ( ) ( ) ( ) ( ) ( )min ,   log      s.t.  , , ,  i i i i i

j

i j

L e    = −   
x

x z
Σ

θ φ e x μ μ x φ θ x



VAE and Induced AE Side-by-Side

Induced AE is like a typical AE but with an outlier robust loss function:

Both VAE and Induced AE have a distinct relationship with Robust PCA …

 ,   =zΣ x φ 0

 ,   arbitraryxΣ z θ

 ,   arbitraryzΣ x φ

 ,   arbitraryxΣ z θ

VAE is like a smoothed, regularized version of the induced AE:

VAE model Induced AE

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

|
, KL | ||   E log |i

i i

q
i

L q p p   = −
   

φ
φ θz x

θ φ z x z x z

approximates 
ℓ0 norm

( ) ( ) ( ) ( ) ( ) ( )

AE ,   log      s.t.  , , ,  i i i i i

j

i j

L e   = −    x zθ φ e x μ μ x φ θ x

( )( ) ( )1

00
log   lim 1   

p
i i

j jp
p

i j i j

e e
→

= −   E

smoothingregularization  ( ) ( )s.t.  ,i i= − xe x μ z θ

( ) ( ) ( )( )

( ) ( )

|
KL | ||  E logi

i i

jq
i i j

q p e
 

  +   
 

  
φ

φ z x
z x z

best possible w/

 ,   arbitraryxΣ z θ



RPCA and the Induced AE

Result: Induced AE shares the same combinatorial constellation 
of local and global minima of the constrained RPCA problem

   0,
*

min       s.t. 
rank rank

= +

L E

X L E
E

L L

  1
* * 0,
,       arg min  rank        s.t.  

n
= + = +

L E
L E L E X L ERPCA:

   ,   ,    ,= + =xμ z θ Wz b θ W b

Assume affine decoder mean (arbitrary encoder mean):

   *dim   rank=z L

Additional concern:  If                                     , then even the 
global minimum need not be optimal …

local minima a 
huge issue

   *dim   rankz L

superfluous 
dimensions can 
cause trouble



RPCA and the VAE

Any VAE global optimum                 is such that:

Theorem (Perfect Recovery):

Matching global optima … even after smoothing!

… true even if

  1
* * 0,
,       arg min  rank        s.t.  

n
= + = +

L E
L E L E X L ERPCA:

   *dim   rankz L

 ,   = +xμ z θ Wz b

Assume affine decoder mean (arbitrary encoder mean):

   *dim   rankz L

( ) ,i


  zμ x φ

encoder
mean

)(i
x

decoder
mean

decoder
covariance

( ) ( )

*, ,   i i

 
   =  x zμ μ x φ θ l

( )
2

( ) ( )

*, ,  i i

 
   =  x zΣ μ x φ θ e

 * *,θ φ

[Dai et al., 2018]



Two Underappreciated Distinctions

1) VAE can learn the optimal/minimal latent dimension of inlier model 
… unnecessary dimensions can be automatically discarded.

2) VAE smoothing/KL regularization impacts bad local minimum, 
does not change the global optimum.

Note: VAE capabilities motivated by Robust PCA example, 
but also translate to more complex inlier models



Encoder
DNN

( )i
x

Decoder
DNN

( ) ( )zzφ Σμxzz ,|~ Nq =

zΣ

zμ

z ( )ˆ i
x

( ) ( )ˆ~ | ,p N =θ xx x z μ I

Assumed VAE (arbitrary encoder/decoder networks):

 I

xμ

Discarding Unnecessary Latent Dimensions

Theorem (Reconstruction Invariance):

Under some technical conditions, any VAE global optimum                  is 
such that   0 →

 , θ φ

( ) ( )( ) 1/2 ( ) ( ) ( ), , ,    , ,    =   ,     ,i i i i i    
     + =       x z z x zμ μ x φ Σ x φ ε θ μ μ x φ θ x ε

and reconstructions are exact:

[Dai & Wipf, 2019]

Observed data:  ( ) ( ) ( )

1
  ,       

n
i i i

i=
= = X x x l X 

arbitrary inlier manifold; 
for simplicity no outliers

Key Conclusion: At global minimum, encoder randomness will not 
impact perfect reconstructions              can be “pruned” with white noise



Discarding Unnecessary Latent Dimensions Cont.

❑ Recall VAE KL term with Gaussian encoder satisfies

( ) ( ) ( )
2

( ) ( ) ( ) ( )

2
KL | || | ,   , tr , log ,i i i iq N        + −      φ z z zz x z 0 I μ x φ Σ x φ Σ x φ

❑ With diagonal covariance (common choice), further decouples to

( ) ( ) ( ) 2
( ) ( ) 2 ( ) 2 ( )

1

KL | || | ,   , , log ,i i i i

j j j
j

q N


  
=

        + −       φ z z zz x z 0 I x φ x φ x φ

❑ Reconstruction Invariance Theorem implies that certain dimensions 
will not influence VAE data term.

❑ Along these dimensions, KL term can be minimized independently:

2
( ) 2 ( ),   0,      ,   1i i

j j
    → →   z zx φ x φ

Optimal moments for these unnecessary dimensions:

❑ This non-informative white noise will be filtered out by the decoder.



Empirical Example

2 ( ) ,i

j
   z x φHistogram of                       values for VAE trained on MNIST data

for useful dimensions, encoder 
variance is near zero; facilitates 

good reconstructions

for unnecessary dimensions, 
encoder variance is near one; 

optimizes KL term

( Encoder noise will serve an important purpose in Part IV… )



Filtering Unnecessary Dimensions

2 ( ) ,   1.0   i

j
   = z x φ unnecessary 

dimension

Reconstructions as we change latent code along this dimension 
(other dimensions fixed)

2 ( ) ,   0.005  0i

j
   =  z x φ

necessary 
dimension

Reconstructions as we change latent code along this dimension 
(other dimensions fixed)

no changes

large changes



Two Underappreciated Distinctions

1) VAE can learn the optimal/minimal latent dimension of inlier model 
… unnecessary dimensions can be automatically discarded.

2) VAE smoothing/KL regularization impacts bad local minimum, 
does not change the global optimum.

Note: VAE capabilities motivated by Robust PCA example, 
but also translate to more complex inlier models



Benefits of VAE smoothing

With induced AE (no smoothing), we enter a local minima 
at any outlier support pattern

(1) ( )  , ,   =n =  E e e
zero-valued 

elements can 
never change

( ) ( ) ( ) , ,i i i  = −   x ze x μ μ x φ θ

But for the VAE, every support pattern need not be a local 
minimum because of selective smoothing …

[Dai et al., 2018]

does not impact global minimum 
(unlike convex relaxations …)



Illustration of Selective Smoothing Effects

Convex Approximation Induced Autoencoder VAE Approximation

en
er

g
y

(1)

1e

Representative 1D slice of energy functions while varying 
the coefficient (1) (1) (1)

1 1
1

, ,e x    = −   x zμ x φ θ

(1)

1e
(1)

1e

opt. RPCA 
solution

+=
observations (X) low rank (L) sparse outliers (E)

Generated
data

local minima



Non-Linear Manifold Recovery
  low-dimentional manifold component  + sparse outlier component=X

( ) ( ), , ,   i i      x zμ μ x φ θ x

[Dai et al., 2018]

Outlier RatioOutlier RatioOutlier Ratio

white = success (zero error),    blue = failure (large error)

induced AE with extra

ℓ1 penalty on latent codeconvex relaxation



MNIST Example

Original data 40% corrupted
VAE 

reconstructions
Convex RPCA 
reconstructions

[Wang et al., 2018]



A large training corpus                        is required for learning 
complex manifolds with outliers

A Lingering Issue …

Solution:

Recycle dirty samples via specialized recurrent 
connections … automated data augmentation

[Wang et al., 2018]

 nii

1

)(

== xX

FACES DIGITSSCENES



Recycled/Recurrent VAE
Given a single input sample, bootstrap 

virtual samples via recurrent connection

❑ No additional parameters required (simple SGD still works …)

❑ Partially detected outliers can be removed in multiple passes

❑ Close connection to iterative reweighting algorithms

[Wang et al., 2018]

Properties:

Encoder
DNN

x
Decoder

DNN

zΣ

zμ

xΣ

xμ

z
x̂

add simple feedback loop during training



Frey Face Data Recovery

Dirty Samples

Clean Samples

VAE

Convex RPCA

VAE + recycling

[Wang et al., 2018]



Summary of Robust PCA Case Study

❑ The VAE with an affine decoder mean collapses to a robust 
PCA variant with attractive properties.

❑ In broader regimes, can be viewed as powerful nonlinear 
extension.

❑ Representative of connections between the VAE and other 
ill-posed inverse problems.

❑ Analysis reveals underappreciated effects of VAE 
regularization:

1. Can learn optimal latent dimensionality

2. Can selectively smooth away bad local minima while preserving good 
global solutions

3. Can potentially be useful for deterministic data cleaning tasks unrelated to 
generative modeling per se.

4. Extra recurrent connections/recycling, can serve as a useful fo rm of data 
augmentation.



Questions?



Part IV:
From Signal Reconstruction to 

Generative Modeling

Note:  Updated version of slides available at  http://www.davidwipf.com/



Recap

❑ VAE can extend/enhance capabilities of traditional algorithms for 
finding low-dimensional structure.

❑ Low-dimensional structure could be an arbitrary manifold.

❑ Can reconstruct data (possibly corrupted by outliers) by fitting a 
parsimonious inlier model.

❑ But this is not sufficient for a full generative model …

Note: Will mostly assume no outliers in Part IV 
for simplicity … but the key concepts generalize.



Illustration

❑ Reconstructing data using parsimonious inlier model 
provides estimate of the 1D manifold (Part III).

❑ But it does not provide any information about the data 
distribution within the manifold.

❑ Key question:  How can good reconstructions segue to a 
good generative model?

•

•

•• • •

•
•

•
•

•
•
•

•

•
•

•

••
•

•

••
•

•

high density

high density

1D manifold

2D ambient space

• =  observation ( )     i
x



Revisiting Original VAE Bound

( )( )log i

i

p−  θ x ( ) ( ) ( ) ( ) ( ) ( ) KL | || |     log  i i i

i

q p p  −
  φ θ θz x z x x

( ) ( ) ( ) ( ) ( )

( ) ( )

|
 KL | || | ,     E log |  i

i i

q
i

q N p    −
   

φ
φ θz x

z x z 0 I x z

Variational upper bound (from Part II):

Equality iff:
( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

| | ,
|      |      

| | ,

i

i i

i

p N
q p

p N d
= =



θ

φ θ

θ

x z z 0 I
z x z x

x z z 0 I z

encoder distribution
decoder distribution

Problem: But typical VAEs for continuous data often involve Gaussian
encoder and decoder distributions … no match with true latent posterior.

Consequence:  If encoder and decoder are sufficiently complex such that

( ) ( )

( ) ( ) ( ) ( )

|      |

  | | ,    =    gt

q p

p p N d p

 

 

=

= 

φ θ

θ θ

z x z x

x x z z 0 I z x

can estimate ground-truth 
distributions just by 

minimizing VAE cost

generally not
GaussianGaussian 

encoder/decoder



Impact of VAE Gaussian Assumptions

Assume for simplicity:

❑ Asymptotic regime

( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( )  ( )

( )

( ) ( )

|
1

|

,  KL | || | ,     E log |  

KL | || | ,     E log |

i

n
i i

q
i

n

gtq

L q N p

q N p d

=

→

    −
   

   ⎯⎯⎯→ −   





φ

φ

φ θz x

φ θz x

θ φ z x z 0 I x z

z x z 0 I x z x

ground-truth measure

asymptotic 
loss( ),L θ φ

❑ Potential low-dimensional structure in data (and no outliers):

0  on  -dimensional manifoldgt r    X ( )Pr   0 =x X

 , ,   = xΣ z θ I z single learnable parameter 
(common in practice if no outliers)

❑ Decoder covariance:

❑ Decoder mean, encoder mean/covariance all arbitrary functionsm
o

d
el

d
at

a

(Note: If                          , then no manifold structure)( )  dimr = x



Impact of VAE Gaussian Assumptions Cont.

Notation: ( ) ( )    dim ,   dimd = =x z  

Positive:
❑ When there is no manifold, VAE global optimum exactly corresponds 

with recovery of ground-truth measure even with Gaussian assumptions.

❑ When there is a manifold, i.e.,               , cannot rule out globally optimal 
solutions that do not correspond with the ground-truth measure …

Negative Corollary:

      r d  

Conclusion:  VAE needs modifications to correctly handle manifolds

Theorem (Exact Density Recovery):

( ) ( ), ,   and   gt gtr d r d p d =  =x x x  Scenario:

[Dai & Wipf, 2019]

Then any optimum                                              will be such that*  ( )
,

,   arg min ,L  
θ φ

θ φ θ φ

( ) ( ) ( ) ( ) ( ) ( )KL | || |     0   and     | | ,   gtq p p p N d p
   

  = = =  φ θ θ θz x z x x x z z 0 I x x

*Some additional technical conditions apply

i.e., no manifold, VAE 
latent dim large enough, 

and density exists



One Candidate Solution: 
More Complex, Non-Gaussian Encoders

❑ A variety of non-Gaussian decoders have been proposed based 
on invertible flows (Part I) and related.

[Burda et al., 2015; Kingma et al., 2016; Rezende 
& Mohamed, 2016; van den Berg et al., 2018]

2) Has not yet shown quantitative improvement generating new 
samples (… this is of course subject to change).

❑ Weaknesses:

1) Does not solve the non-uniqueness issue with low-dim manifolds.

❑ This can improve non-negative likelihood (NLL) scores on test 
data:

[Rezende & Mohamed, 2016]

flow 
length

❑ Similar conclusions for non-Gaussian VAE latent priors 

[(Tomczak & Welling, 2018; Zhao et al., 2018)]



Potentially Misleading NLL Scores

•

•

•• • •

•
•

•
•

•
•
•

•

•
•

•

••
•

•

••
•

•

high density

high density

1D manifold X

2D ambient space

• =  observation ( )     i
x

( )log   
i

p− → − θ x

( )Pr   0 =x Xwith just a uniform measure on X and

Can have                                              (infinite density)

But samples drawn from the low-density manifold 
regions might be bad …

good

bad

[Theis et al., 2016]

NLL scores need not correlate with sample quality



Helpful Alternative Viewpoint

❑ Fix:    ,  =  ,     ,   =z xΣ x φ 0 Σ z θ I

❑ Compute: ( )AE
,

,    arg min  ,L  =
θ φ

θ φ θ φ

❑ Collect corresponding latent variables:  ( ) ( ) ( )

1
 ,    ,

n
i i i

i


=
 =  zz z μ x φ

❑ Hypothetical: Suppose                                and ( )AE ,   0L   θ φ   ( )( )

1
  ,

n
i

i
N

=
z 0 I

Can in principle apply an AE for generating new samples …

❑ VAE energy collapses to a simple deterministic, induced AE:

( )
2

( ) ( ) ( ) ( )

AE
2

1

,   , ,    s.t.  ,
n

i i i i

i

L
=

   − =    x zθ φ x μ z θ z μ x φ

encoderdecoder

Good reconstruction of training 
data (like VAE from Part III)

Criteria A:
Approximation to some 

known latent distribution

Criteria B:



Illustration of AE Required Criteria

❑ Could generate new samples via:

( ),N 0 I  ( )

1

m
j

j=
xDecoder

DNN

  ( )( )

1
ˆ ,

n
i

i
N

=
z 0 I  ( )( )

1
~ 

n
i

gt
i

p
=

x x    ( ) ( )

1 1
ˆ  

n n
i i

i i= =
x xEncoder

DNN
Decoder

DNN

Criteria ACriteria B

❑ In practice, an AE can satisfy Criteria A, but will generally not
satisfy Criteria B …

If Criteria A and B hold, 
should be similar to

ground truth samples

Can penalize some measure of the distance 
between  samples                  and    

Practical workaround:

( ),N 0 I ( )

1
ˆ 

n
i

i=
z



Generic Form of AE-Based Generative Model

( ) ( )   ( )
2

( ) ( ) ( ) ( ) ( )

AE
12

1

, , , , ,    s.t.  , ,       
n

n
i i i i i

i
i

L N i+
=

=

   − +  =    
 x zθ φ x μ z θ z 0 I z μ x φ

Enhanced AE energy:

[Tolstikhin et al., 2018]

data fit term
penalty favors latent 
samples “similar” to 

standardized Gaussian

(Note: There also exists stochastic versions of the WAE encoder, but empirical results are not available)

Two main variants incorporate:

❑ Maximum mean discrepancy (MMD)

❑ Generative adversarial network (GAN)
WAE-MMD, WAE-GAN

Candidate penalties based on 
Wasserstein distance measures

Wasserstein AE (WAE)



WAE Results

quantitative measure of 
perceptual quality; lower is better

WAE-MMD generated samples:

[Tolstikhin et al., 2018]

significant 
improvement 
over the VAE



Potential WAE Limitations

❑ Must tune trade-off parameter 

❑ If  dim(z) is too small

❑ If  dim(z) is too high

large reconstruction error 
(fails Criteria A)

large distribution mismatch 
(fails Criteria B)



The Problem of Excess Latent Dimensions
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easy to transform to 1D Gaussian
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(suboptimal)
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•
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 
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 
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2z
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zμ

1D latent space, 
(optimal)

• • •• • • •• • • •
• =  latent code ( )     iz

  z=z

( ) ( ) , ,       i i i =  zz μ x φ
deterministic encoder mapping 

between x and z space



Returning to the VAE …

❑ How does the VAE behave w.r.t. Criteria A (perfect 
reconstructions) and B (latent space distribution match)?

❑ And can we use this information to make improvements?

Critical Questions:



Perfect VAE Reconstructions (Criteria A)

Recall from Part III:

Theorem (Reconstruction Invariance):

Under some technical conditions, any VAE global optimum                  is 
such that   0 →

 , θ φ

Key (rephrased) Conclusion: At global minimum, encoder randomness 
will not impact perfect reconstructions                VAE can satisfy Criteria A

( ) ( )( ) 1/2 ( ) ( ) ( ), , ,    , ,    =   ,     ,i i i i i    
     + =       x z z x zμ μ x φ Σ x φ ε θ μ μ x φ θ x ε

and reconstructions are exact:



Example Reconstructions

Ground Truth Samples VAE Reconstructions

So poor VAE performance may be related to Criteria B



Addressing the VAE Latent Space (Criteria B)

 ( )

1
 

n
i

i=
zEncoder

DNN

❑ Deterministic AE encoder:

  ( )( )

1
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p
=

x x
set of latent 

samples

  ( )( )

1
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n
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p
=

x x

zΣ

zμ

❑ Stochastic VAE encoder:

Encoder
DNN

( ) ( )

1
|

n
i

i
q

 =
φ z x

set of latent 
distributions

aggregated 
posterior

( ) ( ) ( ) ( )( )1

1

    |    |
n

i

gt n
i

q q p d q
  

=

 φ φ φz z x x x z x

❑ Aggregated distribution of VAE latent space:

( )| ,N z 0 I

For generating good samples, 
should be close to

VAE version 
of Criteria B

( )| ,N z 0 I

Recall:  Samples 
generally not close 
to

fails Criteria B 
(without help…)



Properties of VAE Aggregated Posterior

❑ When data lies on a manifold (            ),  at global minimum 
can have

      r d  

( ) ( )    | ,q N


φ z z 0 I fails Criteria B

❑ But under reasonable assumptions, VAE aggregated posterior      
will satisfy conditions of Exact Density Recovery Theorem.    

(Note: samples from an AE generally will not)

❑ This means that a second VAE could be trained to learn            . ( ) q
φ

z

( ) q
φ

z

[Dai & Wipf, 2019]

implicitly addresses Criteria B



Matching the VAE Aggregated Posterior

❑ From Exact Density Recovery Theorem, when              we have

( ) ( ) ( ) ( )KL | || |     0   and     gtq p p p
  

  = = φ θ θz x z x x x

    r d=  

r  at any optimal solution, provided           .

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   |   =  |   | | ,   | ,gtq q p d p p d p N d N
    

= =  φ φ θ θ θz z x x x z x x x x z z 0 I x z 0 I

❑ This implies that:

perfect match!

❑ But when the data lie on a manifold (i.e.,             ), this no longer 
need be the case, i.e.,

    r d  
( ) ( )     | ,q N


φ z z 0 I

( )

( )

( )

( )

( ) ( )

( ) ( )( ) ( )

| ,
     

||

j j

j jj j

q N

pp






φ

θθ

z z z z 0 I

x x zx x z

generates training 
data, but is intractable

?

❑ But intrinsic VAE properties suggest a practical solution … 



2D Illustration
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Optimal VAE encoder 
mapping to 2D latent space

Aggregated posterior does not lie on a low-dim manifold as with deterministic AE
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2D VAE latent space,

• • •• • • •• • • •
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image of 1D manifold
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Comparing Aggregated Posterior Samples

2D VAE latent space,

• • •• • • •• • • •

1

2

  
z

z

 
=  

 
z

1z

2z

image of 1D manifold

• =
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
  zμ x φ( )( )| iqφ z x
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i

q q p d q
  

=

 φ φ φz z x x x z x

❑ But samples will not lie on a low-dimensional manifold

❑ The VAE decoder “fills out” unnecessary dimensions with random noise (Part III)

Aggregated 

posterior samples:

•
•

••

•

• •
•

•

•

•

1z

2z

•

•
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•
•

•
•
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•
•

•• •
•• •

( )( ) ~  j q
φ

z z

 ( )

1

m
j

j=
z

Remarks:
❑ Still no guarantee that the aggregated posterior will be close to ( ),N 0 I

❑ This leads to a simple 2-stage VAE enhancement based on Exact Density 
Recovery Theorem from earlier …



Two-Stage VAE Strategy

 ( ) ( )
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θ φ

θ φ θ φ❑ Solve via SGD: first-stage VAE
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q q
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 φ φz z x❑ Form aggregated posterior approximation:

❑ Samples from this approximation form new data set:
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=
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=  φZ z z z x
latent codes associated with training 

data; no manifold structure 

❑ This is regime where Exact Density Recovery Theorem applies

❑ Train a second VAE on data Z with latent code u, and ( )dim =u

( )
2 2

2 2 2 2
,

,    arg min  ,L  =
θ φ

θ φ θ φ second-stage VAE
(much smaller)

❑ By design, this VAE will (asymptotically) learn the exact aggregated 
posterior from the first-stage VAE

❑ Choose                       sufficiently large, ensure r   ( )dim =z (do not need 
exact value)

[Dai & Wipf, 2019]



Two-Stage VAE Visualization
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[Dai & Wipf, 2019]



Two-Stage VAE Intuition

❑ First-stage VAE learns manifold model by efficiently 
reconstructing samples (analogous to Criteria A).

❑ Second-stage VAE learns distribution within the manifold 
(analogous to Criteria B).
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•

•

••
•

•

••
•

•

high density

high density

1D manifold
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• =  observation ( )     i
x

good

bad

❑ Note:  Joint training does not work in this context.



Aggregated Posterior Comparisons
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low values; close to Gaussian



Two-Stage VAE Results

Averaged FID Score Comparisons

quantitative measure of perceptual 
quality; lower is better

Neutral testing conditions from [Lucic et al., 2018]

WAE testing conditions from [Tolstikhin et al., 2018]
similar to GANs, 

no tuning

improvement 
over WAE



Robustness to the Latent Space Dimension

Fashion 
MNIST

CelebA



Comparison of Generated CelebA Samples
Two-Stage VAE

Single-Stage VAE (fixed )

WGAN-GP [Gulrajani et al., 2017]

https://github.com/LynnHo/WGAN-GP-
DRAGAN-Celeba-Pytorch

Single-Stage VAE (learned )
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MNIST Example with Corruptions
Note:  MNIST data is much simpler than CelebA, but with 
corruptions it is challenging to generate new clean samples

Originals
Enhanced VAE

N
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e-

fr
ee

  ( ),  arbitrary + recyclin Par Ig t IIxΣ z θ

new samples, 
easy case

C
o

rr
u

p
te

d

new samples, 
ignoring noise

clean generated samples, even 
though training data fully corrupted



Summary

❑ Standard VAE can reconstruct data lying on a low-
dimensional manifold (first-stage VAE).

❑ But generated samples may not resemble training data.

❑ Fortunately, the distribution of the VAE latent codes can be 
successfully modeled and sampled from (second-stage VAE).

❑ Combined stages can produce more realistic samples, 
comparable to many GANs (w/ same neutral architecture).

❑ Alternative VAE-inspired approaches like the WAE can also 
produce good results (but may be more sensitive to latent 
dimensions).

❑ But two-stage model retains original VAE advantages (and 
additional complexity is minimal, second-stage can be small).



Questions?



Part V:
Practical Usage Issues and Examples

Note:  Updated version of slides available at  http://www.davidwipf.com/



Outline

❑ Cases of over- and under-regularization

❑ Identifiability of semantically-meaningful latent factors

❑ Practical applications via Conditional VAEs 



Over-Regularized/Degenerate VAE Local Solutions

( ) ( ) ( ) ( ) ( ) ( )
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i i
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φ
φ θz x

θ φ z x z 0 I x z

VAE Objective:

Candidate workarounds:

minimizing data term requires complex 
coordination of all parameters in 
encoder/decoder networks (hard)

KL term has trivial minimum, only 
requires parameters of last encoder layer

( ) 2
( ) 2 ( ) 2 ( )

1

, , log ,i i i

j j j
j



  
=

     + −      z z zx φ x φ x φ

2
( )

2 ( )

,   0
     

,   1

i

j

i

j





  → 

  → 

z

z

x φ

x φ

trivial 
minimum

Potential for convergence to bad, 
overregularized (local) solutions

❑ KL warm-start  [Bowman et al., 2015; Sønderby et al., 2016]

❑ Skip connections [Cai et al., 2017; Dieng et al., 2018]

❑ Ladder networks [Sønderby et al., 2016; Maaløe et al., 2019]



Under-Regularized VAE Global Optima

❑ Likewise, decoder covariance can be arbitrarily complex to 
learn outlier locations (Part III).

❑ But the decoder mean network is more subtle …

❑ In principle, VAE encoder can be arbitrarily complex; this just 
tightens the original upper bound

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )log   KL | || |     log  i i i i

i i

p q p p −  −
  θ φ θ θx z x z x x

 0    w/ complex  encoder→

Problem:  While the VAE cost does penalize excessive dimensions 

of z (Part III), it cannot prevent overfitting from excessive depth.

Even with                         , VAE cost can be globally optimized by solution 
that just memorizes the training data if the decoder mean is too complex.

( )dim   1=z

[Dai et al., 2018]

Theorem



Outline

❑ Cases of over- and under-regularization

❑ Identifiability of semantically-meaningful latent factors

❑ Practical applications via Conditional VAEs 



Interpretability of the VAE Latent Space
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Independence vs. Semantic Meaning

“Disentangled” representations (ideal):

Encoder
DNN

digit label

stroke thickness

•
•
•
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p
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x x

( ) q
φ

z

semantically meaningful 
independent factors of variation

Useful for numerous computer vision, image processing applications, 
e.g., photo editing/manipulation:
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x
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z x

Encoder
DNN

( )2 | testq z
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 φ x

+ Decoder
DNN

modified
x

updated image displays 
isolated change in thickness

[Higgins et al., 2017]
perturbation to “thickness” channel



Identifiability Issues

Identifiability Problem:  Exact same samples can be generated 
using a simple transformed process … 

( ) ( )gt gt j

j

p p z=z

Also assume a disentangled latent density:
semantically 

meaningful factors 
of variation

Assume the ground-truth generative process:
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arbitrary deterministic decoder
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distribution by design
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disentangled factors

[Locatello et al., 2019; Dai & Wipf, 2019]



Trivial Discrete Example

Data set of 4 
equiprobable 
images:

FYx FOx
MYx MOx

Two latent attributes:   gender {female, male},  age {young,old}

Candidate 2D latent codes

FYx

FOx

MYx

MOx

1 2 z z
1 2 z z

Disentangled 
Representation

Entangled 
Representation

both 
attributes 

change

one 
attribute 
changes

( ) ( ) ( )1 2gt gt gtp p z p z=z ( ) ( ) ( )1 2p p z p z=z

both latent distributions factorize not identifiable



Workarounds
❑ Constraints on the ground-truth generative process, e.g., 

( ) ( )|   =  | ,gtp N x z x Wz I

( ) ( ) ( )
1

     | ,
r

gt gt j

j

p p z N
=

= z z μ Σ

linear ground-
truth decoder

VAE model: Use linear decoder mean network and non-
Gaussian (possibly parameterized) prior ( )pθ z

Leads to ICA-like model
identifiable up 
to permutation 

and scaling [Hyvärinen et al., 2001]

❑ Apply some form of weak supervision or semi-supervised learning 
to resolve ambiguity, e.g., 

[Kingma et al., 2014]

test set images generated images using same style



Outline

❑ Cases of over- and under-regularization

❑ Identifiability of semantically-meaningful latent factors

❑ Practical applications via Conditional VAEs 



Conditional VAEs

❑ Often want a generative model for data conditioned on 
some variable of interest, e.g.,

( ) ( ) ( )|   =  | ,gt gt gtp p p dx y x z y z z

independent of y

❑ Basic VAE derivations go through as before, with extra 

conditioning variable y.

[Sohn et al., 2015]

❑ Many applications, e.g., structured output prediction:

( )|gtp x y

mean has low probability; 
bad predictor



Example Applications

❑ Forecasting possible motions from static images:

[Walker et al., 2016]

( )| ,     static image,     dense motion trajectorygtp = =x y y x

❑ Image Captioning:

[Wang et al., 2017]

( )| ,     image,     captiongtp = =x y y x



Final Thoughts

❑ The VAE represents a natural extension of many existing signal 
processing, dimensionality reduction tools

❑ This is complementary to its role capability as a generative model

❑ Many diverse applications, algorithmic variants, extensions …



Questions?


