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Part I:

Introduction




Generative Models

i i E le: MNIST digit
o Given: Training data xample igits

DXL X pw(x)

i=1

0 Goal: Learn a parametric model capable of producing new samples

Similar to real data

{X(j)}m | (D pe(x) ~ pgt(x)

j=1

a0 Deep generative models use neural networks for implicitly or
explicitly defining the density p,(x)



Types of Deep Generative Models

deep generative models

(partial* list of recent examples)

/

implicit explicit
generative tractable density approximate density
adversarial / \ \
networks
autoregressive invertible variational
flows autoencoder

*For additional examples, see tutorial [Goodfellow, 2016]



Implicit Deep Generative Models

E> deep generative models

(partial* list of recent examples)

| implicié } explicit

/ N\

generative tractable density approximate density
adversarial / \ \
networks
autoregressive invertible variational
flows autoencoder

*For additional examples, see tutorial [Goodfellow, 2016]



generator network
A

Implicit Deep Generative Modeling

2 ~N(1) ot

l

X =Py (X) ~ Py (X)
\_Y_l

explicit form generally
not feasible to compute

Example

S

Popular Example

Generative Adversarial Networks:

Based on game theory, Nash
equilibrium

8679 citations [Goodfellow et al., 2014]



Generative Adversarial Networks (GANSs)

noise samples

{z“)}_ L zP=N(z]ol) fake samples

Generator
Network

—

Discriminator
| | — real/fake
{X()}inl’X() eR® ~ Pyt (X) Network /

D : R - (0,2

¢

Binary classification:

D,(x")~1, D,|G,(z")]~0

real fake
Basic GAN objective (cross-entropy-based):

minmax E_ . (logD, (X on | 109(1-D, | G,
0 ¢ ,\pgt()[ g ()]f [g( [ ])J

expectations approximated with samples

[Goodfellow et al., 2014]



GAN Strengths

State-of-the-art GAN models generate highly realistic samples,
e.g., StyleGAN [Karras et al, 2019]:

Examples from http://www.whichfaceisreal.com/



GAN Weaknesses

0 Training involves potentially unstable minimax problem,
iterations may diverge, be sensitive to tuning.

[Lucic et al., 2018]
a0 Can be susceptible to mode collapse: L
low sample diversity
generalted true F; J
SAMPIES  Jistribution [ 7
/ J/ jl> 2 |
/ 7
/ ?
/ l
— 7 1

[Arora and Zhang, 2017]

a0 No explicit density estimate [, (X) X Py (X) , cannot infer the
latent code that produced a sample: @
Py (21X) 2

cannot compute low-
dimensional representation



Explicit Deep Generative Modeling w/
a Tractable Density

deep generative models

(partial® list of recent examples)

implicit Fexplieit |

generative Itractable density I approximate density
adversarial / \ \
networks

|autoregressive | invertible variational
flows autoencoder

*For additional examples, see tutorial [Goodfellow, 2016]



Q

a

a

Explicit Deep Generative Modeling w/
a Tractable Density

Density P, (X) and gradients Vp, (X) can be computed exactly
Given training data {X(i)}in:l, x" e R, can solve via SGD:

maximum

= I (i)
O* ot mﬂm B Z |Og Po (X ) |:> likelihood estimator
Key advantage: Closed-form test data likelihood P, ( Xtest)

Disadvantages:
Generated samples arguably inferior to GANSs
No dimensionality reduction, representation learning (mostly)



Examples

0 Autoregressive methods:

Apply chain rule to form:
d o :
conditionals parameterized
pe(X)—H Pa (X e %4 ) } as RNN or CNN
[Larochelle & Murray, 2011; van den Oord et al., 2016]

o Invertible flows:

Assumptions:
p(z) = N(z|0,1), dim(z) = dim(x), z=f,(x), x=f,"(z)

Change of variables formula:
of :
o) (X) — N ( 7| 0,|) det( 0 (Tx)j } tractable determinant because
X

P of special DNN structure

[Dinh et al., 2016; Kingma & Dhariwal, 2018]



Explicit Deep Generative Modeling Using
a Density Approximation/Bound

deep generative models
(partial* list of recent examples)

implicit I explicit I

/ /

generative
adversarial
networks

tractable form

VARV

approximate density

flows

autoregressive invertible variational

autoencoder

this talk (mostly)

*For additional examples, see tutorial [Goodfellow, 2016]



Explicit Deep Generative Modeling Using
a Density Approximation/Bound

Often interested in densities of the form:

po(X) = [Py (x]2)p(z)dz

low-dimensional latent factors

bound

Required integral Optimize upper bound
is intractable ... on  _%"log p, (X(i)) M

Popular example: The variational autoencoder (VAE)
[Kingma and Welling, 2014; Rezende et al., 2014]
\ )

Upper bound based on 6079 citations
autoencoder-like structure
Z X
Encoder Decoder ., !
DNN DNN "

low dim
representation



Variational Autoencoders
(details in Part II)

Advantages:
0 Less prone to mode collapse than GANSs, more stable training.

o Provides explicit estimate of latent distribution p,(z|X);
many applications in representation learning.

0 Natural generalization of dimensionality reduction tools in
common use for signal processing (Part III).
Disadvantages:

0 Optimizes a bound on the data likelihood, not exact likelihood
(but conditions for when bound is tight discussed in Part IV).

0 Generated samples usually inferior to GANSs ...

... although improvements possible (Part IV).



Representative Applications

Generative models in general:

+ simulated
current ifuture states

a Model-based S \‘M

reinforcement learning:

[Finn et al., 2016]
0 Image-to-image translation:
[Isola et al., 2016]
0 Many more, a generic unsupervised learning tool
VAEs in particular: .
. Encoder = Decoder Q2
o Compression: X~ pnn ' " DNN %
compressible [Ballé et al., 2018]
representation
0 Data cleanin CIFEEIPICIEE
. & ) DHENDBO
outlier removal: BAEARE

6|7|4]6/8]0] [Dai et al., 2018]



Caveat

1)

2)

Deep generative modeling is a rapidly changing field.

Strengths and weaknesses of various methods frequently
need recalibration in accordance with new developments.
Also, important to differentiate:

General-purpose improvements in DNN architectures

Advances in specific generative modeling paradigms




Remainder of Tutorial

Part II: Details of the variational autoencoder

Part III: Connections with existing signal processing
methods for finding low-dimensional structure in data

Part IV: From signal reconstruction to generative modeling

Part V: Practical usage issues and examples




Questions?



Part Il:

Details of the Variational Autoencoder

Note: Updated version of slides available at http://www.davidwipf.com/



Latent Variable Model

Observed data: X = {X(i)}n o xVe R VI

i=1
Assumed latent factors:

.\ N . .
Z = {Z(I)}- L’ 2V e R, Vi, x<d 28x28 = 784 di
I= X = m
' MNIST digit

candidate latent factors:
digit type, stroke width,

slant angle, etc.

Example

low-dimensional
representation of significant
factors of variation

k<20«d=784

|_'_l

Ground-truth generative process: . .
sufficient in practice

29~ pu(2), xO ~ p,(x]2")

— Y
prior on mapping to
latent factors observation space;
of variation could be delta function

) X = pe(x) = [Py (x12) py(2)dz



Parameterized Latent-Variable Model

Without loss of generality, assume:  p,(z) = N(z|0,1)

Also assume parameterized family:
P (X]2), 6 € Q

st. p, (x|z) = py(x]|z), forsome 0, € O

High-level goal:
Given X:{x(”}in:l, X ~ p_ (x)

Solve  min —an“log p, (xV) = min —iznl“logjlpe(x(‘)|z)N(z|O,I)dz

|
\ J

|
equivalent to maximum likelihood

Key problem: Py (x7) :,[ o (X7 12)N (2]0.1)dz
pe(z|x(”)= pe(x(” |z)N (z]0,1)/ pﬁ(x“))

intractable




Naive Approximation

Finite-sample approximation to intractable integral for each I:

sample z"? ~ N(z|01), j=1...m

:> 'fpe(x(”lz)N(z|O,l)dz EN(z|0,|)|:p9<X(i)|Z)J - %Zm:pg(x(i)lz(i’”)
=

Revised tractable objective:

mein —glog {%i o) (X(i) |Z(i’j))}

j=1
Lingering problem:

formost z"Y ~ N(z|0,1) :> pe(x“)|z("”)z0

Need huge number of samples for reasonable approximation ...

[Doersch, 2016]



A Useful Variational Bound

Define an approximate distribution as

q¢(2|x(”) ~ pﬂ(z|x“)) = pe(x(”|z)N(z|O,I)/pe(x(”)

|_'_l l_'_l
tractable intractable

Variational upper bound: \bo‘md/
orig.

_ng p(x") < L(6,9) Z{ <La, (21x")11py (21%%)] - tog py(x") |

> 0

1>

After standard manipulations ...

L(0,9) = Z{ KL[q(p(Z|x(i>)||N(z|0,I)] - E%(le(i))[log pe(x(i)|z)]}

i l J
|

Does not depend on intractable p,(z|x®) or p,(x?)




Basic VAE Energy Function Decomposition

regularization factor data-fit term

L(6,0) = Z{ KL q, (z]x”)IN(z|00)| |~ E_ 0| log pe(x(i)|zﬂ}

[Kingma and Welling, 2014; Rezende et al., 2014]



Handling the Regularization Term

KL[q(P (z | x® ) IN(z] O,I)] is still intractable in general

Simplitying Gaussian approximate posterior assumption:
M\ _ (i) (i) encoder
% (Z X ) Bl N( Zlm, [X ’(P]’ =, [X ’(P] ) } distribution

Encoder moments computed by deep networks:

x® __, @ o, [X(i),(p] () ¢ —x [X(i),(p:'

KL term now satisfies:

2 KL[qq, (zIxP)[IN(z] o,|)] = |p, [x(i),(p][ +tr(Ez [xm,(p])—log

r,[x".0]

Differentiable, suitable for minimization via SGD

[Kingma and Welling, 2014; Rezende et al., 2014]



Basic VAE Energy Function Decomposition

regularization factor data-fit term

L(6,0) = Z{ KL q, (z]x”)IN(z|00)| [~ E_ 0 |log pe(x(i)|zﬂ}

[Kingma and Welling, 2014; Rezende et al., 2014]



Handling the Data-Fit Term

= E%(le(i)) [Iog o) (x“) |z)] is also generally intractable

For continuous data, typical assumption is

Po (x(i) |z) =N ( x|, [Z,g], ) [Z’g] ) } decoder

distribution
Decoder moments computed by deep networks:

Z— @ —n [Z,B] Z— @ —I [Z,g]
\ J

|
simplified [> 2y [Z, 9] — 41, Vz

version

But ...
o qu)(zp((i)) |:|Og Po (X(i) | Z)]

E, (20) [2_17“)(“) —n, [Zﬂ]Hj |:> still intractable

[Kingma and Welling, 2014; Rezende et al., 2014]



Revisiting Finite-Sample Approximations
From before: z"Y ~ N(z|0,1), j=1...,m

EN(le,I) [ P (X(i) |Z)J " %Zm: 0, (X(i) |Z(i,j)) [> bad appro>.<imation

= unless M is huge

But what about the present situation: z"" ~ g, (z | x(‘)), j=1....,m

€ oy [ 30w | @0 2320 40,0

Unlike the prior N(z]0,1), during training the encoder d,(z|x"):

0 Confines mass to narrow region of z-space much better
for sampling

a  Excludes regions that are unlikely to have produced x®

In practice, can use just M = 1 sample at each training iteration:

() _ q(,,(Z|X(i))’ E%(le(i))[zy Hx(l) ux z,0 H } ‘7 x® ux[ (I),G}

|
unbiased estimator

N

[Kingma and Welling, 2014; Rezende et al., 2014]



Reparameterization Trick

Data-term approximation:

i : 2 easy to minimize
X" By [Z()’()]Hz E> over @ via SGD

1
2y
But what about sampling operator z" ~ g, (z|x")?

Problem: Cannot directly propagate gradients w.r.t.
through sampling operator ...

Equivalent sampling procedures: |
1 puns p e’ ~N(£]0,1)

Z(i) ~ q(p (Z | X(i)) <:> Z(i) = n, |:X(i),(|):| n 21/2 [X(i),([):|8(i)

Revised approximation:
1[G 21 _ |l (i) v2 [ (i) ’
Eq¢(zlx(i))|:ZHX ”X[Z’O]HZJ = EN(sm,I){zy X ”x("z[x 0]+ X|x "P]s’e)z} SGD
friendly
[Kingma and Welling, 2014; Rezende et al., 2014]

~
~

x _ I, (l’l‘z [X(i) ’ (P:| + Zi/Z |:X(i) ’ (p:le(i) ’ 9) ?

1
2
4 2

differentiable sample from encoder



VAE Optimization Summary

Basic energy function:

L(6.9) = Z{ KL| g, (2x")IIN(z[00)| - E%(lem)[log pe(x(”IZ)]}

> —Zi: log p, (x®)

Solve:

0,0, = argrgjpn L(0,9) n

st. g, (Z | X(i)) ~N ( Z|n, [X(i),(p}, > |:X(i) | (P} ) _ approximate via

reparameterization

Po (X(i) | z) =N ( x 0 | I [Z,G], Ex [Z,O] ) | trick + SGD




Generating New Samples

Simple hierarchical sampling:

z ~ N(z|0l), j=1...,m
only decoder with

x ~ Po, (X|Z(j)), j=1...,m :l- optimized parameters
is needed

Typical to ignore decoder noise variance, i.e.,

replace x) ~ D, (x|z(”) with x() = HX(Z”),G*) [> cleaner

samples

Ideal scenario:
new samples training data

O @ X~ py(x)

similar in
distribution



MNIST Examples

VAE-generated samples

with X, [z,0]

I, Vz

Ground-truth samples

W O I %QM©MNN\
LIS =<~Q O N
TAROXNYPR=wI -0
ANSSXNOONT N
— A A~r2N QIO

SR O ngoron=—-
VEeLVLho~sdAdAg MY
MENQQEESNSLY N
TA~3m~oc~lnmo

B -G M RNO ND RN
AN AP —JQ o
NN~ QT M NO %
—ND W= 0~ O™~
W e - NONPOQ

MODVD P TrrMITr~ndx
LTINS 2NN Qe
mTITNFTAO LW oS T
QAN ™I D

NOMYSEIrQ—NV

(better VAE options available; Part IV)



Computing Negative Log-Likelihood (NLL) Estimates

Can apply unbiased estimate of VAE bound:

—log p, (X*) < KL[qq,(z|xteS‘)||N(z|0,|)] = E%(ﬂxm)[log pﬂ(x‘es“|z)]

\ J
|

exact, closed-form

\ J
|

use unbiased estimate




Comparison with an Autoencoder

Autoencoder (AE):
X £ X
5‘ . Encoder i | Decoder
DNN ' ~ DNN 5
compressed
representation,

dim(z) << dim(x)

Encoder Hz\ Decoder
DNN \ = /' DNN \

Z

stochastic
representation

z~0,(z[x)=N(p,,Z,)




Questions?



Part Ill:

Connections with Existing Signal Processing
Models for Finding Low-Dimensional Structure

Note: Updated version of slides available at http://www.davidwipf.com/



Outline

Finding low-dimensional structure in high-dimensional data,
possibly corrupted with outliers

NP-hard decompositions into inlier and sparse outlier
components

Weaknesses of existing methods and useful VAE-based
alternatives

representative

Case Study: Robust PCA ) example

Connections with restricted class of VAE models

Advantages of the VAE in finding low-dimensional structure



Context

a0 Data is increasingly massive, high-dimensional

H B E

W R e

e ??

e * | *
User data

0 Blessing of dimensionality:

Real data often concentrate on low-dimensional or degenerate structures in
high-dimensional ambient space

local regularities, global symmetries, repetitive patterns, redundant sampling ...

[John Wright and Yi Ma, 2014]



Robust Estimation

o Butreal-world data also frequently contain extraneous features,
missing observations, or corruptions/outliers

face recognition 3D reconstruction gene expression
[Wright et al., 2009] [Zhang et al., 2011] [Wang et al., 2012]

0 Traditional methods (e.g., PCA, least squares regression) break

down ... @

Replacements: Robust PCA, sparse
representations/regression, and many others

[John Wright and Yi Ma, 2014]



Building Blocks for Robust Estimation

feasible solutions to Y = PX
a0 Sparse representations: - L

4 0
—4 14 1 1 6 -1 0
y{s}, @:{2 1 -4 2 3} u= 3 Up=| 2
3 33 2 2 1 5 0
__2_ __l_

non—sparse sparse

o Low-Rank matrices:

k
defines low-dimensional
subspaces




High-Level Data Decomposition

Observed data: X = {x(‘)}:, x"e R, Vi

Basic building blocks can be combined in various ways to

construct models of the form:

X = inliercomponent (L) +

\ J
L={10}" = Uz, 10 = uz®

0 low-dimensional latent structure, e.g.,
U defines a low-dim inlier subspace

o sometimes not fully observable, e.g.,
have measurement operator A(L)

Background detection example:

ingi - e

observed video
frames

_,j,

1D subspace
background
component

= "i‘mg i +

outlier/noise component (E)
\ J

|
E = e,

0 sparse corruptions (possibly large)
o other errors or model mismatch

-

sparse foreground
component




Typical Objective for Signal Recovery

Challenging ill-posed inverse problem to recover low-dimensional
representation L :

min |x-4(L EH + 40,(L) + 409, (E)
min g,(L) + 29,(E), st X =A4(L)+E

(constrained version)

A . linear meaurement operator

g, : favors low-dim representations === . - *
9> - favors sparsity m=) OoETETTTETD

Example penalties: g,(L) = rank(L HG H

QZ(E) _ HEHO E> # nonzero

elements in E

# nonzero singular
values of L

Note: Penalties are primarily used for limiting:

1) the intrinsic dimensionality of the inlier space
2) the cardinality of outliers

.. not used for learning distribution within the inlier space



Special Cases

'Fl':_-"'_.-"' e -
a0 Matrix recovery/completion: O Lt

o Source localization:

source space L sensor space X

(row sparse) ,
[Baillet et al., 2001]

o Robust PCA:

observations X  low rank L sparse E

case study [Chandrasekaran et al., 2011; Candes et al. 2011]

0 Many more ...




Weakness of Traditional Pipeline

Primary:
o Difficult nonconvex, NP-hard estimation process:
min g,(L) + 29,(E), st X =A(L)+E
(and convex relaxations often fail ...)

0 Limited capacity inlier models, e.g., . = *

remainder of Part 111

Secondary:

0 Limited generative modeling capability, primarily used for data
reconstruction ... 3D ambient space

2D principal subspace
reconstructs inlier data

clean data with
unknown density

Part IV




How might the VAE model help?

easy to add

observation
Basic VAE architecture: model .4 here
x® — 1 4 o0 z £ 70 4 fa®

z~0q,(zIx)=N(p,.X,) %~ py(x]z)=N(p,.Z,)

High-Level Picture

Correspondences between VAE components and signal recovery:

0 | Deterministic path/provides 0 0
nonlinear inlier model: ﬁ> n, (llz[ ,(P} = 1V =

0 |Decoder covariance path 0 r )
models sparse outliers: E> X, (llz [X ,(P] ~

0 | VAE Encoder covariance:

1) Atglobal optima: [) determines inlier dimensionality

2)  Elsewhere: ﬁ> smooths bad local minima
[Dai et al., 2018]



Case Study: Robust PCA

Why this is a good choice?

Q

Q

Highly influential model e.g., 4358 citations to [Candes et al, 2011].

Exactly follows inlier + outlier data decomposition (common to
many sighal processing applications ...).

Limited by
NP-hard estimation,
simple low-rank (bilinear inlier) model

Correspondences with VAE can be explicitly quantified.

Representative of connections between the VAE and other ill-posed
inverse problems (e.g., compressive sensing, source localization,
subspace clustering, matrix completion, ...).




PCA Background

PCA finds directions
of maximal variance:

Many different formulations given data X = {X(i)}

Example (AE-like):
U* ' V* =

defines x principal
component directions

n
arg min ZHX(') - uz®
uVv i=1 l—'—‘

>

[ax]

1 2D data <

/,’ i

. '

. ’//.'
e
..r’
FECHA
/’, .
“.,: 1D direction of
o maximal variance

(tirst principal component)

4 E

Xl &} 7 8

n

c Rdxn

i=1

2 i i . X X
st 2V =Vvx® vi, UeR™, VR
\_'_’
linear linear
decoder encoder

E> Simple AE can compute principal components

[Bourlard and Kamp, 1988]




PCA Sensitivity to Outliers

No Outliers

Single Outlier

a -
e
/,”
7 . .
»”
. .-
/,.
& e
‘e
)( ,o,;
2 M
5 >
o W
./‘
4 e
&
3_
3 4 =] 5] 7

=
7 -
g )
. I e
- .
& *y
)( - .o *
2 ,,f” L]
37 *
L d"
.
41 .
&
3_
3 4 =] 5] 7

dashed line

>

first principal
component direction




Robust PCA

[Chandrasekaran et al., 2011; Candes et al. 2011]

observations (X) IOW rank (L)  sparse outliers (E)
RPCA inverse problem:
L.,E. = argmin rank[L]+%HEH0 st. X=L+E
. J
Y
NP-hard

Convex relaxation:

LLE = arg min L. +£[E], st X=L+E

Theory: {I:, E} ={L.,E.} in very specialized conditions, but these
rarely hold in practice ... =) What about the VAE?



Illustrative Degenerate Case
Original VAE objective:

L(0,9) = Z{KL[qq,(zlx“))” p(z)] - Eq¢(z|x<i>)[|°9 pe(x<i)|z)]}

Two assumptions:

1. Degenerate encoder covariance = I[xe] =0

>, High capacity decoder covariance =) X,[z,6] arbitrary

Can collapse VAE objective using assumption 1:
L(6,9) = - Z log p, (x(i) |z=p, [X(i),(p])

Further simplification possible using assumption 2:

rr;ixn L(B,(P) = Z;log‘e?)‘ st. e =xU —p, [uz [X(i),¢:|,9], vx®

Equivalent to a deterministic autoencoder with Gaussian entropy loss ...



VAE and Induced AE Side-by-Side

VAE model Induced AE
X, [x,9] arbitrary X, [x0] =0
X, [z,0] arbitrary X, [z,0] arbitrary

Induced AE is like a typical AE but with an outlier robust loss function:

LAE (9’(P) = ZZlog‘eﬁ”‘ s.t. e =xW -, [Hz [X(i),(p],ﬂ], vx®
U J

!
approximates

¢, norm — szllog‘e?)‘ - Iimzi:z]:%(‘e?)‘p_l) = |El,

p—0
VAE is like a smoothed, regularized version of the induced AE:

L00) = {L[a(21)1p()] - €, 0 [l0an(x"12)]

Zi: KL[q(p (z | X(i)) I p(z)] + Z E%(le(i)) {ZJ: log

> 50) [> best possible w/
- J X, [z,0] arbitrary
' ' iy A0) _ (D 0
regularization smoothing S.t. 7 =X" —n, [Z, ]

Both VAE and Induced AE have a distinct relationship with Robust PCA ...



RPCA and the Induced AE

RPCA: L.E. = argmin rank[L]+%|E| ~ st X=L+E
L,E

Assume affine decoder mean (arbitrary encoder mean):
n[z,0] = Wz+b, 6={W,b/}
dim[z] = rank[L.]

Result: Induced AE shares the same combinatorial constellation
of local and global minima of the constrained RPCA problem

X=L+E :> local minima a

in [El, st rank|[L | <rank|[L.]| huge issue

Additional concern: If dim|z] # rank|[L.], then even the

global minimum need not be optimal ... .

superfluous
dimensions can
cause trouble




RPCA and the VAE

RPCA: L.,E. = argmin rank[L]+%|E|, st X=L+E
L.E

Assume affine decoder mean (arbitrary encoder mean):
n, [Z,O: = Wz+b

dim[z][>|rank[L.]

Theorem (Perfect Recovery):

Any VAE global optimum {6.,9.} is such that:
uz |:X(I) ! (p*:|

decoder

mean ”x[“z[x(i)""*]’ﬂ*] 1)

encoder
mean

(),

decoder

covariance — EX |:uz [X(i) ' (P*:| ' 9*:| - (eg) )2

Matching global optima ... even after smoothing!

... true even if dim[z] > rank|[L.] (Dai et al,, 2018]



Two Underappreciated Distinctions

1)

VAE can learn the optimal/minimal latent dimension of inlier model
... unnecessary dimensions can be automatically discarded.

2)

VAE smoothing/KL regularization impacts bad local minimum,
does not change the global optimum.

Note: VAE capabilities motivated by Robust PCA example,
but also translate to more complex inlier models




Discarding Unnecessary Latent Dimensions

Observed data: X = {X(i)}n xO = |0 g g =) arbitrary inlier manifold;
i=1’

for simplicity no outliers

Assumed VAE (arbitrary encoder/decoder networks):
X(I) X(u)

Iﬂl\ er/ \
- X/

z~q¢(z| X)=N(p,,xZ,) %=py (x12) = N (n,.71)

Theorem (Reconstruction Invariance):

Under some technical conditions, any VAE global optimum {0,,¢,} is
such that | y — 0] and reconstructions are exact:

m (i [x2 0. [+H22[x"0.]ef0.) = (1, [x"0.],0.) = xO, vevi

Key Conclusion: At global minimum, encoder randomness will not
impact perfect reconstructions %) can be “pruned” with white noise

[Dai & Wipf, 2019]



Discarding Unnecessary Latent Dimensions Cont.

0 Recall VAE KL term with Gaussian encoder satisfies

KL[qq, (z | x(‘))|| N(z| O,I)] o |, [x(”,(p]Hz + tr():z [X(i),(p])— log

2 [X(i) , (p]
o With diagonal covariance (common choice), further decouples to

L[ )N (00] = S [<00] +07[.0], -os(ei 0]

0 Reconstruction Invariance Theorem implies that certain dimensions
will not influence VAE data term.

0 Along these dimensions, KL term can be minimized independently:
Optimal moments for these unnecessary dimensions:

1, [x(”,(p]z_ — 0, azz[x(i),(p]j -1

J

0 This non-informative white noise will be filtered out by the decoder.



Empirical Example

Histogram of o7 | x®, (pl_ values for VAE trained on MNIST data

% 10°

w o
T T

Frequency
[\

L

0 0.2 0.4 0.6 0.8 1 1.2

7 A

for unnecessary dimensions,
encoder variance is near one;
optimizes KL term

for useful dimensions, encoder
variance is near zero; facilitates
good reconstructions

( Encoder noise will serve an important purpose in PartIV...)



Filtering Unnecessary Dimensions

GZZ[X(i)’(P]_ ~ 10 E; un.neces§ary
J dimension

Reconstructions as we change latent code along this dimension
(other dimensions fixed)

2727777277777 77777777
Image Variance : no changes

2 [ _ 0.005 ~ 0 E; necessary
GZ[ (P] dimension

Reconstructions as we change latent code along this dimension
(other dimensions fixed)

j

EKEEREREKEEREEREE

Image Variance ={ 27.20| large changes




Two Underappreciated Distinctions

1)  VAE can learn the optimal/minimal latent dimension of inlier model
... unnecessary dimensions can be automatically discarded.

2)  VAE smoothing/KL regularization impacts bad local minimum,
does not change the global optimum.

Note: VAE capabilities motivated by Robust PCA example,
but also translate to more complex inlier models




Benefits of VAE smoothing

With induced AE (no smoothing), we enter a local minima
at any outlier support pattern

| =" T, | zero-valued
E = |:e(1) . e(n):| = 5 g n > elements can
[ g [ | never change

e = x —p_ [Hz [x“),(p],ﬂ] _ B & '. ' :

But for the VAE, every support pattern need not be a local
minimum because of selective smoothing ...

\ )
1

does not impact global minimum
(unlike convex relaxations ...)

[Dai et al., 2018]



Illustration of Selective Smoothing Effects

Generated :> _ -
data Hi

observations (X) 10W rank (L)  sparse outliers (E)

Convex Approx1mat1on Induced Autoencoder VAE Approximation

opt. RPCA | ﬁ\( K
| solution ﬁ> 11 a _

local minima

energy

I 1 L 1 1 1 L LY 1 1 L L 1 1 1 1 1 L II 1 L L I 1 1 1 1 1 1 i 1 1 I
10 8 6 4 -2 0 2 4 6 8 10 -0 -8 -6 -4 -2 %1)2 4 6 8 10 10 8 6 4 -2 0 2 4 6 8 10
@) 1)
e € €

Representative 1D slice of energy functions while varying

the coefficient e =xP — [uz [X(l) : (P} ) 9]
1



convex relaxation

K_H

Manifold Dimension

Non-Linear Manifold Recovery

X = low-dimentional manifold component + sparse outlier component

0

RP

0.1

h . [uz [x(i),(p']ﬂ’], vx®

induced AE with extra
¢, penalty on latent code

'VAE

AE-L1
- 47 c 4
(=] o]
2 2
S 8 S 8
E E
a
12 = 12
2 S
< 167 £ 16
= =
20+ 20 . ‘ ‘ ‘ .
0-2. 0.3 .0-4 0.5 0 01 02 03 04 05 0 01 02 03 04 05
Outlier Ratio Outlier Ratio Outlier Ratio

white = success (zero error), blue = failure (large error)

[Dai et al., 2018]



MNIST Example

VAE

Original data 40% corrupted reconstructions
BHECAGENEINE SESineaEne HrEaEnEnEne
3]|136]17127]6]7] EIEEIANKEIRAR
M|o]7]/7]4]2]4]3]2]7] qlolv]/15]2]1]3]7]/]
3| P16 710]516]0]3 6] B plel7]0]<]6lo]1]6]
1]2]7]7]3]9]28]s73]3] 1]8]7]9[3]9[8]s]5]3]
3l0]2]|#|7|2]0]7]4]/] 3lo]7]/]9]2]0]7]a]/]
S #16loly|16]7]0]0) ulv]6loly]<1é]/]0]0]
1]7]11]e]3]0]2]/])]7] [1]7]1]e]3]0]2]/]/]7]
6]0[3]6]7]8]>]9]0]¥] 5]0]a]6]7]3]3]9]0]7|
G6171416191017(8]13]/] 617]416191017(813]/]

Convex RPCA
reconstructions
EEIIEEIEII

IEIIIIIIII
d|#6lolal7]6]7|0]8)
1|7]1|e]3]8]2[/|7]7]
6]0]a|e]7]z|~[9|0]7]
617]4]16]210]7]7]3] /]

[Wang et al., 2018]



A Lingering Issue ...

n
i=

A large training corpus X = {x“)} ., is required for learning
complex manifolds with outliers

Solution:

Recycle dirty samples via specialized recurrent
connections ... automated data augmentation

[Wang et al., 2018]

el Y W]

*
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Recycled/Recurrent VAE

Given a single input sample, bootstrap
virtual samples via recurrent connection

Z
= . Encoder llz\
S DNN \ S

b

t

Decoder |

DNN \

My

N

/

J

add simple feedback loop during training

Properties:

0 No additional parameters required (simple SGD still works ...)
0 Partially detected outliers can be removed in multiple passes
0 Close connection to iterative reweighting algorithms

[Wang et al., 2018]



Frey Face Data Recovery

- R R
Convex RPCA h

AN

VAE

L B

VAE + recycling

K
’
&
B

4=

¥

[Wang et al., 2018]



Summary of Robust PCA Case Study

a The VAE with an affine decoder mean collapses to a robust
PCA variant with attractive properties.

0 In broader regimes, can be viewed as powerful nonlinear
extension.

0 Analysis reveals underappreciated effects of VAE
regularization:

1. Can learn optimal latent dimensionality

2. Can selectively smooth away bad local minima while preserving good
global solutions

3. Can potentially be useful for deterministic data cleaning tasks unrelated to
generative modeling per se.

4. Extra recurrent connections/recycling, can serve as a useful fo rm of data
augmentation.

0 Representative of connections between the VAE and other
ill-posed inverse problems.



Questions?



Part IV:

From Signal Reconstruction to
Generative Modeling

Note: Updated version of slides available at http://www.davidwipf.com/



Recap

0 VAE can extend/enhance capabilities of traditional algorithms for
finding low-dimensional structure.

0 Low-dimensional structure could be an arbitrary manifold.

0 Can reconstruct data (possibly corrupted by outliers) by fitting a
parsimonious inlier model.

0 But this is not sufficient for a full generative model ...

Note: Will mostly assume no outliers in Part IV
for simplicity ... but the key concepts generalize.



Illustration

2D ambient space

high density @

high density \

.".. ®ee °

e = observation x?

0 Reconstructing data using parsimonious inlier model
provides estimate of the 1D manifold (Part III).

0 But it does not provide any information about the data
distribution within the manifold.

o Key question: How can good reconstructions segue to a
good generative model?




Revisiting Original VAE Bound

Variational upper bound (from Part II):

~Ylogp,(x?) = X KLan(zx")im(zx")] ~ Togp(x") |

_ Z{ KL|:q(p(Z|X(i))“N(Z|O,|):| - E%(le(i))[log pe(x(nlz)}}
Equality iff: . o B (xX?[zZ)N(z]0)
q(p(zlx ) = pe(zlx ) - IPQ(X“)|Z)N(Z|O")dZ

encoder distribution '

decoder distribution

Consequence: If encoder and decoder are sufficiently complex such that
generally not

Gaussian

encoder/decoder T 0. (Z|X)| = | Py, (2]X) L ¥ Gaussian can estimate ground-truth
* * distributions just by
Po, (X) = J|Pe, (X | Z) N (Z | O,I)dz = Py (X) minimizing VAE cost

Problem: But typical VAEs for continuous data often involve Gaussian
encoder and decoder distributions ... no match with true latent posterior.




model

data

Impact of VAE Gaussian Assumptions

Assume for simplicity:

-

o Decoder covariance: Y [ Z, (—)] — 7/1’ \v&// single -learnab'le p'arameter.
X (common in practice if no outliers)

0 Decoder mean, encoder mean/covariance all arbitrary functions

-

" o Asymptotic regime

L(6,¢) = Z{ KL| g, (21x)IN(z]01)] - E%<Z|X(i))[|og pe(x“>|z)]}

—s [IKL[G, (21X)IN(2101)] = E, ) [l0g by (x]2) ]} 1 (dX)

ground-truth measure

\ }
! asymptotic

E(O,(p) —> loss

o Potential low-dimensional structure in data (and no outliers):

ty, =0 on r-dimensional manifold £ = Pr(xgZ) = 0

(Note: If r = dim (X) , then no manifold structure)



Impact of VAE Gaussian Assumptions Cont.

Notation: dim(x)=d, dim(z)= i.e., no manifold, VAE

latent dim large enough,

Theorem (Exact Density Recovery): /] and density exists

Scenario: r=d, x>r, and u, (dx) = Pyt (x)dx <

Then any optimum {0,,¢,} € arg nJ!pn L(0,0) will be such that*

KL[q(p*(z|x)|| pe*(z|x)] = 0 and p, ( jpe N(z]0,1)dx = pg (x)

o [Dai & Wipf, 2019]
Positive:

0 When there is no manifold, VAE global optimum exactly corresponds
with recovery of ground-truth measure even with Gaussian assumptions.

Negative Corollary:

0  When there is a manifold, i.e., I < d, cannot rule out globally optimal
solutions that do not correspond with the ground-truth measure ...

Conclusion: VAE needs modifications to correctly handle manifolds

*Some additional technical conditions apply



One Candidate Solution:
More Complex, Non-Gaussian Encoders

A variety of non-Gaussian decoders have been proposed based

on invertible flows (Part I) and related.

[Burda et al., 2015; Kingma et al., 2016; Rezende
& Mohamed, 2016; van den Berg et al., 2018]

This can improve non-negative likelihood (NLL) scores on test
data:

Test set performance on the CIFAR-10 data.
K=0 K=2 K=5 K=10 |},

—Inp(x) -293.7 -308.6 -317.9 -320.7
[Rezende & Mohamed, 2016]

flow
ength

Weaknesses:

1) Does not solve the non-uniqueness issue with low-dim manifolds.

2) Has not yet shown quantitative improvement generating new
samples (... this is of course subject to change).

Similar conclusions for non-Gaussian VAE latent priors
[(Tomczak & Welling, 2018; Zhao et al., 2018)]



Potentially Misleading NLL Scores

2D ambient space

high density

\

o’..... ®

high density @

e

e = observation x"

Can have —Z|09 Po (X) — —% (infinite density)

with just a uniform measure on X and Pr (xgX) =0

But samples drawn from the low-density manifold

regions might be bad ...

NLL scores need not correlate with sample quality

[Theis et al., 2016]



Helpful Alternative Viewpoint

Fix: X, [x,(p] =0, X [Z,O] =1

VAE energy collapses to a simple deterministic, induced AE:

Le(0.9) 2 Zn;Hx(i)_”x [Z(”"’]H; st 20 =p [x“),(p]

decoder encoder

n

Collect corresponding latent variables: {Z(i)} . 2V =p, [X(i) , (P*}

1=1

Hypothetical: Suppose L, (0,,9,) =~ 0 and {Z(i)}n ~ N(0,1)

i=1
L J \ J

Y Y
Criteria A: Criteria B:
Good reconstruction of training Approximation to some
data (like VAE from Part III) known latent distribution

:> Can in principle apply an AE for generating new samples ...



[llustration of AE Required Criteria

" - Encod 5@\" Decod OIS Ol
) — Bt ], (o1 Peceder (1)«
Criteria B Crit\e(ria A

a0 Could generate new samples via:

4 om If Criteria A and B hold,
N(0,1) — Decoder _, {1 i [> should be similar to
DNN ground truth samples

0 In practice, an AE can satisfy Criteria A, but will generally not
satisty Criteria B ...

Practical workaround:

Can penalize some measure of the distance
between samples {2”} and N(0,I)




Generic Form of AE-Based Generative Model

Enhanced AE energy:

x -R, (z(i),ﬂ)Hi + AA [{z(i)}in:l, N (0,1)}, s.t. zV = n, [x(i),(p], Vi

\ J \ Y ]
|
data fit term penalty favors latent
samples “similar” to

standardized Gaussian

n

Laes (O,q)) = Z

i=1

Candidate penalties based on E> Wasserstein AE (WAE)
Wasserstein distance measures

Two main variants incorporate:
0 Maximum mean discrepancy (MMD) } WAE-MMD. WAE-GAN

0 Generative adversarial network (GAN)

(Note: There also exists stochastic versions of the WAE encoder, but empirical results are not available)

[Tolstikhin et al., 2018]



WAE Results

quantitative measure of
perceptual quality; lower is better

X WAE MMD generated samples:
Algorithm |FID | '

VAE 63
WAE-MMD 55 } significant

Improvement
WAE-GAN 42 over the VAE

[Tolstikhin et al., 2018]



Potential WAE Limitations

0 Must tune trade-off parameter A

o If dim(z) is too small E>

large reconstruction error
(fails Criteria A)

a If dim(z) is too high E)

large distribution mismatch
(fails Criteria B)




The Problem of Excess Latent Dimensions
L) _ " [x(i) | (P], Vi deterministic encoder mapping

between X and Z space

' X, 1D latent space, Z
2D observation space, X =

= 7
X (optimal)
- ® e0 00 ®mooce o .
I, e = latent code z"
% easy to transform to 1D Gaussian
°
|
®
®
4 Z
’.o.. y 2D latent space, 7 = | *
p ®e o o 1 (suboptimal) Z,
o
°
° _ °
® = observation X" 7 o o,
2 ([ ] ®
X1 ® o0 ©
°

e = latent code z®
Zl

difficult to transform samples on 1D
manifold to a 2D Gaussian




Returning to the VAE ...

Critical Questions:

0 How does the VAE behave w.r.t. Criteria A (perfect
reconstructions) and B (latent space distribution match)?

0 And can we use this information to make improvements?




Perfect VAE Reconstructions (Criteria A)

Recall from Part III:

Theorem (Reconstruction Invariance):

Under some technical conditions, any VAE global optimum {@,,¢,} is
such that ¥ — 0 and reconstructions are exact:

m (i [x00. ]+ 2 [x7.0. ]2.0.) = n,(n,[x".0.].0.) = x?, Vevi

Key (rephrased) Conclusion: At global minimum, encoder randomness
will not impact perfect reconstructions 5> VAE can satisfy Criteria A



Example Reconstructions

Ground Truth Samples VAE Reconstructions

So poor VAE performance may be related to Criteria B



Addressing the VAE Latent Space (Criteria B)

0 Deterministic AE encoder:

o . ; N set of latent Recall: Samples
{X(I)}i=1~ Pyt (X) - I]SCISINer - {Z(I)}il} |:>

: generally not close
SAMpIes to N(z|0[)

fails Criteria B
(without help...)

o Stochastic VAE encoder:

1,
0] =py o) Enoder T

i \\" set of latent
DNN \ /{q%(ZlX )}”}

distributions
)D

z

0 Aggregated distribution of VAE latent space:

Q. (2) 2 [0, (21%) Py (X)dx = £°q, (z]x")

\_'_’ i=1
aggregated |:> For generating good samples,
posterior

VAE version
should be close to N(z|0,1) of Criteria B




Properties of VAE Aggregated Posterior

When data lies on a manifold (r < d ) at global minimum
can have J,. (Z) e N z|0,l |:> fails Criteria B

But under reasonable assumptions, VAE aggregated posterior
Q,. (Z) will satisty conditions of Exact Density Recovery Theorem.
(Note: samples from an AE generally will not)

This means that a second VAE could be trained to learn a,_ (Z).
B implicitly addresses Criteria B

[Dai & Wipf, 2019]




Matching the VAE Aggregated Posterior

From Exact Density Recovery Theorem, when r=d we have
KLLd,. (D)1l po, (21%)] = 0 and p, (x) = Py (x)

at any optimal solution, provided x >Tr.

This implies that:
. (2) 2 [, (21%) pe () = [ py, (1) Py, (x)dx = [y, (xIZ)N(2]0,1)dx = N(z[0.1)

perfect match!

But when the data lie on a manifold (i.e., r <d ), this no longer
need be the case, i.e., q, (z) = N(z|0,1)

\ \ 2 ~q, (2) z ~N(z]0,1)
XD~ p, (x]29) T X0 p, (x129)

generates training ?
data, but is intractable

But intrinsic VAE properties suggest a practical solution ...



2D Illustration

Optimal VAE encoder
2D observation space, X = {Xl} mapping to 2D latent space
X, A
i |4
. [X(i)’%] R [/Jz [X(),(P*l} 2D VAE latent space, Z = LJ
0
i 00
° ZZ[X(),(P*}—{O J
:
" = D L thirine )
2’ g
o’ ®e o o

‘ \
. W(Z®) o -u[x%]
° e = observation x®

Zy
X

q,.(2) 2[4, (21X)py (x)dx = £, (2]x"
o () =] (21x?)

i=1
aggregated posterior

Aggregated posterior does not lie on a low-dim manifold as with deterministic AE



Comparing Aggregated Posterior Samples
. (2) = J-q%(z|x) Py (X)dx  ~ %i%(“x(i))

Z, Aggregated { (i }m
= Z
2D VAE latent space, Z = |:Z } posterior samples: i
2
°
(0
z Uy, ( z ) o ® .

ledre i ed )t N T
\ .

9, (z1x") e —m[x"0.]

Z1 Z1

Remarks:

o Still no guarantee that the aggregated posterior will be close to N (O, | )
0 But samples will not lie on a low-dimensional manifold

0 The VAE decoder “fills out” unnecessary dimensions with random noise (Part III)

0 This leads to a simple 2-stage VAE enhancement based on Exact Density
Recovery Theorem from earlier ...



Two-Stage VAE Strategy
X = {x(‘)}in:l, x" e <R, r-dimmanifold, r<d

(do not need
exact value)

Solve via SGD: 0,,¢, = arg n;jpn L(G,(I)) |:> first-stage VAE

Choose dim(z)=x sufficiently large, ensure x>r

Form aggregated posterior approximation: 0, Zq (Z | X(i))

Samples from this approximation form new data set:
7 = {Z( J)} Z( 1 Z q (Z | X(i)) } latent codes associated with training

data; no manifold structure

This is regime where Exact Den51ty Recovery Theorem applies

Train a second VAE on data Z with latent code U, and dim (u) =K
— ' second-stage VAE
92*1(p2* arg I(;?,!prz] L(BZ’(pZ) |:> £C age

(much smaller)

By design, this VAE will (asymptotically) learn the exact aggregated

posterior from the first-stage VAE
[Dai & Wipf, 2019]



Two-Stage VAE Visualization

FirSt-Stage VAE (Criteria A) reconstructs
original data

{X(i)}_” ~ Py (X) Encoder llz \ d, (Z) __, Decoder e P \ W
- DINLY \ y / agg*regated DNN )/| / =1

z posterior
Y. (Z) * N (Z 0, I) samples approximate
cr e first-stage aggregated
Second-stage VAE (Criteria B) posterior
{Z(j)}m ~q, (z) — Encoder ~ u\q (u)—» Decoder = ™\ {2(1)}m
j=1 * Pox =
DIV \4 / second-stage DINN | / =
Zu a 7/2
ggregated

posterior
consequence of

o, ( ;qu,z (U|Z(J)) ~ N U|O |:> Exact Density

j=1 Recovery Theorem

Generating new samples is now trivial:

T N(U|0,|), Znew _ pg (Zlunew) X pe* (XlZneW)

2™ ~q, (2) [Dai & Wipf, 2019]



Two-Stage VAE Intuition

2D ambient space

good

high densi
high density

\

0.’..... G = )

[

e = observation x"

First-stage VAE learns manifold model by efficiently
reconstructing samples (analogous to Criteria A).

Second-stage VAE learns distribution within the manifold
(analogous to Criteria B).

Note: Joint training does not work in this context.



Aggregated Posterior Comparisons

First—stage _ (™ (i - L 0
latent codes: £ = {Z | }i=1’ 20~ 0,(2) = %;% (le )
Second-stage Lym . m _
latent codes: U= {U(J)}izl’ ut? ~ q,, (u) = %éq‘f’z (u|z(”)
Singular Value Comparison MMD from ideal N(0,1)

550

_ —— First Stage VAE | | First Stage Second Stage
00 Second Stage VAE /
Standard Canssis MNIST 2.85 0.43
w 450+ anaarc aussian | |
2 Fashion 1.37 0.40
> 400} ﬁ Cifar10 1.08 0.00
350 1 CelabA 7.42 0.29
300, 10 20 30 10 50 60 ﬁ

Singular Value Index .
. low values; close to Gaussian




Two-Stage VAE Results

quantitative measure of perceptual

P quality; lower is better

Averaged [FID|Score Comparisons
Neutral testing conditions from [Lucic et al., 2018]
MNIST Fashion CIFAR-10 CelebA

MM GAN 9.8+ 0.9 206+£1.6 T727L£3.6 65642
NS GAN 6.8+0.5 266+1.6 585+19 550433
optimized, LSGAN 7.8+ 0.6 307122 87.1£475 539+£28
data-dependent WGAN 6.7+04 215+1.6 55.2+23 41.34+20
settings WGAN GP 203+5.0 245421 55,8+ 0.9 30.3+1.0
DRAGAN 7.6+04 27712  698+£20 423+£3.0
BEGAN 13.1+1.0 229409 714+16 389409

Best GAN ~ 10 ~ 32 ~ 70 ~ 49
VAE (cross-entr.) 166 04 4364+0.7 106.0+1.0 53.3+0.6
default VAE (fixed 7v) 52006 846+09 1605+1.1 55906
settings VAE (learned ) 545+ 1.0 6004+1.1 76.7+08 60.54+0.6
VAE + Flow h48+28 62116 81.2+£20 65728
WAE-MMD 115.04+1.1 101.74+0.8 80.9+04 62.9+0.8
2-Stage VAE 126 +1.5  293+10 729409 444+0.7

WAE testing conditions from [Tolstikhin et al., 2018]

similar to GANSs,

VAE WAE-MMD WAE-GAN

CelebA FID | 63

29

42

no tuning
2-Stage VAR improvement
34 over WAE




Robustness to the Latent Space Dimension

i VAE (cross—entr.)
o 140 || =—6— vAE (fixp
E a ==dg==V AE (learnable?y)
= = == WAE
. 2 = 100 _*_Z—Stage‘-‘AE, )
Fashion g § 100
MNIST & :
W %}
= =
2 3 6
=1
0 : : : : : 20 : : : : :
4 8 16 32 64 128 256 4 8 16 32 64 128 256
Latent Dimension Latent Dimension
80
=
= 60 a
8 =
b e
CelebA 2 40 £
- T
17} 5]
= =
g 20 3
=1
0

L L L L L 20 L L L L L
8 16 32 64 128 256 512 8 16 32 64 128 256 512
Latent Dimension Latent Dimension



good \ clear
reconstructions,

bad\blurry
reconstructions,

Comparison of Generated CelebA Samples
Two-Stage VAE

poor new samples

poor new samples

Al

https://github.com/LynnHo/WGAN-GP-
DRAGAN-Celeba-Pytorch



MNIST Example with Corruptions

Note: MNIST data is much simpler than CelebA, but with
corruptions it is challenging to generate new clean samples

Oricinal Enhanced VAE
riginais X, [z,0] arbitrary + recycling (Part I1)

slolH|/[q]2[\[3]1 [#] 2]6]0[s[1]/]|e]8]4]4]
3[3]e[\[7]2]#]6]s) new samples, [([2]7]a]t][a]5]2]9]4]
(07 /[4]2]]3[2]7] casy case /[2]¢lz[s]1]s]2]s] 2]
& BEEAnNENnEn y EHBREEERIANE
AN [ [5]7]7]3[g]8[s5]3] h[c[3[5]4]3]a]5]9]4]
RZJl 2 (0[] 7| #]o[7]4]/] [ [3]2][1]C]z]8]¢
o BEABRrIEAAEE BERRAGEEGER
Al L 7| [¢[3]0]2]/]7]7] HRNGEBENRE
8]g]a]e[7]8[>[g]0]¢] [ 5]l 2] 1] (]3]
Gl~14]6]2]0]7]8]3]/] EAEAnAEnn
alv|e|/|0]9]£] V] 2]2]
il

§e; ienoring noise L
2 gnoring no Zlo[ofc[u]a[2]/]8]3]
a, [9[a]a|2[e]z]3]g]e]v]
2 [9[2]2[z[a]s]z]<]/]€]
= EIIEBIIII
O HRAaRCEaE

/|8
\ J

Y
clean generated samples, even

though training data fully corrupted



Summary

Standard VAE can reconstruct data lying on a low-
dimensional manifold (first-stage VAE).

But generated samples may not resemble training data.

Fortunately, the distribution of the VAE latent codes can be
successfully modeled and sampled from (second-stage VAE).

Combined stages can produce more realistic samples,
comparable to many GANs (w/ same neutral architecture).

But two-stage model retains original VAE advantages (and
additional complexity is minimal, second-stage can be small).

Alternative VAE-inspired approaches like the WAE can also
produce good results (but may be more sensitive to latent
dimensions).



Questions?



Part V:

Practical Usage Issues and Examples

Note: Updated version of slides available at http://www.davidwipf.com/



Outline

o Cases of over- and under-regularization

0 Identifiability of semantically-meaningful latent factors

0 Practical applications via Conditional VAEs



Over-Regularized/Degenerate VAE Local Solutions

VAE Objective:
_ () _ (i)
L(0,9) = Z{ KL[qq, (zIx®)|IN (z|0,1)] Eq¢(z|x(i))[|og po (X |z)} }
N J \ J
LY Y
KL term has trivial minimum, only minimizing data term requires complex
requires parameters of last encoder layer coordination of all parameters in
= 0 2T 0 encoder/decoder networks (hard)
3 [x0,0] <02 [0 ~tog(o[x"¢] )
j=1
o yri [X(i) (p} —> 0 .
trivial |:> 2L7 Potential for convergence to bad,
minimum o [Xa)’(p]_ 51 overregularized (local) solutions
J

Candidate workarounds:

0 KL warm-start [Bowman et al., 2015; Senderby et al., 2016]
0 Skip connections [Cai et al., 2017; Dieng et al., 2018]

0 Ladder networks [Senderby et al., 2016; Maalge et al., 2019]



Under-Regularized VAE Global Optima

In principle, VAE encoder can be arbitrarily complex; this just
tightens the original upper bound

Xlogpy () < X fL[%(zlx‘”)n pe(zlxjﬂ - log py (x") |

— 0w/ complex encoder

Likewise, decoder covariance can be arbitrarily complex to
learn outlier locations (Part III).

But the decoder mean network is more subtle ...

Problem: While the VAE cost does penalize excessive dimensions
of Z (Part III), it cannot prevent overfitting from excessive depth.

Theorem

Even with dim(z) = 1, VAE cost can be globally optimized by solution
that just memorizes the training data if the decoder mean is too complex.

[Dai et al., 2018]
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Interpretability of the VAE Latent Space

If VAE training is successful, then:

9. (2) 2 [0, (21X) P (x)dx = 330, (2]X”) = N(z|0l)

( ) qq)* (Zl) h
9y, (£ .
o % (22) Interpretable
{X(u)} ~p (X) Encoder A e >
in P\ T DNN ' ” latent space?




Independence vs. Semantic Meaning

“Disentangled” representations (ideal): digit label
O1la345789

stroke thickness

) —

Y
semantically meaningful

independent factors of variation

Usetul for numerous computer vision, image processing applications,
e.g., photo editing/manipulation:

test
test Y. (Z | ) Xmodified
Encoder Decoder
— —
~” DAN ﬁ "t baw
1 ~
Ag (2] st . updated image dlsplays

0. \ ©2 isolated change in thickness

perturbation to “thickness” channel [Higgins et al., 2017]



Identifiability Issues
Assume the ground-truth generative process:
2" ~p,(z), xV= fgt(z(”), i=1...,n

arbitrary deterministic decoder

Also assume a disentangled latent density:
semantically

Py (Z) = H Py (Z J- ) |:> meaningful factors
j

of variation

Identifiability Problem: Exact same samples can be generated
using a snn(gle transformed process ... ew latent factorial
2" ~ Py (Z) distribution by design

. i "= p(2)=]]p(z,
z() 2 D2|:R-D1(Z())] |:> ‘ p(Z) ];[mpjx(éffj-grevious

transformation to / ‘t . transformation disentangled factors
arbitrary marginals rotation to N (z |0, I)

Same samples as
(i) 1 RT.P (50 (i) before, no unique
x=f(D[R-DzJ)=fz » 11O U]
A ? ( ) gt( ) disentangled
representation

\\ J

Y
composite decoder inverts
transformation

[Locatello et al., 2019; Dai & Wipf, 2019]



Trivial Discrete Example

Xy XFo Xy

Data set of 4
equiprobable

images:

Two latent attributes: gender {female, male}, age {young,old}

Candidate 2D latent codes

Disentangled Entangled
Representation | Representation
Z, Z, Z) 4,
Xey D01 one 0 Y both
XFO C 0 1 attribute I'1 attributes
XMY 10 changes 01 change
Xmo 11

Py (2)=Pg (2) Pee () P(Z)=P(Z)R(Z)
both latent distributions factorize IZ> not identifiable



Workarounds

0 Constraints on the ground-truth generative process, e.g.,

Py (2) = Hp() + N(zInZ)

pe (X12) = N(x|Wz,y1) mp linearground

VAE model: Use linear decoder mean network and non-
Gaussian (possibly parameterized) prior p,(Z)

. identifiable up
Leads to ICA-like model IZ> to permutation

and scaling [Hyvérinen et al., 2001]

0 Apply some form of weak supervision or semi-supervised learning
to resolve ambiguity, e.g.,

tesﬁ images generated images using same style
A
4|10( R34 567¢89
9|01 234956789
S\0/23¢¥5S €789
410123456789
2|01 234S67¢%9
FdNO0OIRR3 Y S 6789 [Kingma et al., 2014]
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Conditional VAEs

Often want a generative model for data conditioned on
some variable of interest, e.g.,

Py (X1Y) = [Py (X12,y) Py (2)dz
H—l
independent of y

Basic VAE derivations go through as before, with extra
conditioning variable Y.

Many applications, e.g., structured output prediction:

mean has low probability;
bad predictor

Py (X1Y) v’ ﬂ

[Sohn et al., 2015]



Example Applications

0 Forecasting possible motions from static images:

P. (X]y), y = staticimage, x = dense motion trajectory

.. [Walker et al., 2016]
0 Image Captioning:

pgt(X|Y), y = Iimage, X = caption

a woman sitting at a table with a cup of coffee

a person sitting at a table with a cup of coffee

a table with two plates of donuts and a cup of coffee
a woman sitting at a table with a plate of coffee

a man sitting at a table with a plate of food

[Wang et al., 2017]



Final Thoughts

0 The VAE represents a natural extension of many existing signal
processing, dimensionality reduction tools

o This is complementary to its role capability as a generative model

0 Many diverse applications, algorithmic variants, extensions ...




Questions?



