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Abstract 

In the present paper, we studied Ω-monoids. We define and characterize the Ω-semigroups as a 

universal algebra which is a semigroup and in which there is given a system of binary operations Ω 

satisfying the associative condition: ((𝑥, 𝑦), 𝑧)𝛽 = (𝑥, (𝑦, 𝑧)𝛽)𝛼 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆 and for each pair of 

binary operations 𝛼, 𝛽. 
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Introduction 

A monoid has finite derivation type 

(FDT) if the full homotopy relation is generated 

by a finite set called a homotopy base [1]. Squier 

proved that this property is indeed a property of 

finitely presented monoids, that is, it is an 

intrinsic property of a monoid independent of its 

presentation [2]. He established the fact that 

every monoid that can be presented through a 

finite convergent presentation does have FDT. 

Thus, FDT is one of the necessary conditions 

that a finitely presented monoid must satisfy in 

order that it can be presented by some finite 

convergent string-rewriting system. In this paper 

we generalize these results in the case of Ω-

monoids [3].  

We define, first, the Ω- semigroups as a 

universal algebra which is a semigroup and in 

which there is given a system of binary 

operations Ω satisfying the associative condition: 

((𝑥, 𝑦), 𝑧)𝛽 = (𝑥, (𝑦, 𝑧)𝛽)𝛼 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆 and 

for each pair of binary operations 𝛼, 𝛽 [4]. In the 

first sections of the paper we define and give 

some general results related to the Ω-string 

rewriting systems, the properties of confluence, 

Noetherian, Church-Rosser, critical peaks, the 

word problem for the Ω-monoids and so on [5]. 

The last two sections are dedicated to the 

property of finite derivation type (FDT) and the 

related results of [6] generalized in the case of 

Ω- monoids. 

Preliminaries 

 In this section we give some 

preliminaries which are useful in the sequel. We 

begin by the following definition. 

Definition 2.1 

 A binary relation on 𝑋 is a subset 𝑅 ⊆ 𝑋 

× 𝑋. If (𝑥, 𝑦) ∈ 𝑅, then we denote this by 𝑥𝑅𝑦 

and we say that 𝑥 is related to 𝑦 by 𝑅. The 

inverse relation of 𝑅 is the binary relation 𝑅−1 ⊆ 

𝑋 × 𝑋 defined by 𝑦𝑅−1𝑥 ⟺ (𝑥, 𝑦) ∈ 𝑅. The 

relation 𝐼𝑋 = {(𝑥, 𝑥), 𝑥 ∈ 𝑋} is called the identity 

relation. The relation (𝑋)
2
 is called the complete 

relation [7, 8, 9].  

Let 𝑅 ⊆ 𝑋 × 𝑋 and 𝑆 ⊆ 𝑋 × 𝑋 two binary 

relations. The composition of 𝑅 and 𝑆 is a binary 

relation 𝑆 ∘ 𝑅 ⊆ 𝑋 × 𝑋 defined by 𝑥𝑆 ∘ 𝑅𝑧 ⟺ ∃𝑦 

∈ 𝑋 such that 𝑥𝑅𝑦 and 𝑦𝑆𝑧.  

A binary relation 𝑅 on a set 𝑋 is said to be  

i. Reflexive if 𝑥𝑅𝑥 for all 𝑥 ∈ 𝑋;  

ii. Symmetric if 𝑥𝑅𝑦 implies 𝑦𝑅𝑥;  

iii. Transitive if 𝑥𝑅𝑦 and 𝑦𝑅𝑧 imply 𝑥𝑅𝑧;  

4. Antisymmetric if 𝑥𝑅𝑦 and 𝑦𝑅𝑥 imply 𝑥 = 𝑦.  

Let 𝑅 be a relation on a set 𝑋. The reflexive 

closure of 𝑅 is the smallest reflexive relation 𝑅0
 

on 𝑋 that contains 𝑅; that is,  

i. 𝑅 ⊆ 𝑅0
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ii. If 𝑅′ is a reflexive relation on 𝑋 and 𝑅 ⊆ 

𝑅′, then 𝑅0
 ⊆ 𝑅′.  

The symmetric closure of 𝑅 is the smallest 

symmetric relation 𝑅+ on 𝑋 that contains 𝑅; that 

is  

i. 𝑅 ⊆ 𝑅+  

ii. If 𝑅′ is a symmetric relation on 𝑋 and 𝑅 

⊆ 𝑅′ then 𝑅+ ⊆ 𝑅′.  
The transitive closure of 𝑅 is the smallest 

transitive relation 𝑅∗ on 𝑋 that contains 𝑅; that is  

i. 𝑅 ⊆ 𝑅∗  

ii. If 𝑅′ is a transitive relation on 𝑋 and 𝑅 ⊆ 

𝑅′ then 𝑅∗ ⊆ 𝑅′.  
Let 𝑅 be a relation on a set 𝑋. Then  

i. 𝑅0
 = 𝑅 ∪ 𝐼𝑋  

ii. 𝑅+ 
= 𝑅 ∪ 𝑅−1

  

iii. 𝑅∗ = ⋃𝑅𝑘 𝑘=+∞𝑘=1 .  

Let 𝑋 be an alphabet. A semi-Thue system 𝑅 

over 𝑋, for briefly STS, is a finite set 𝑅 ⊆ 𝑋∗ × 

𝑋∗, whose elements are called rules [10]. A rule 

(𝑠, 𝑡) will also be written as 𝑠 → 𝑡. The set (𝑅) of 

all left-hand sides and 𝑟(𝑅) of all right-hand 

sides are defined as follows:  

(𝑅) = {𝑠 ∈ 𝑋∗, ∃𝑡 ∈ 𝑋∗: (𝑠, 𝑡) ∈ 𝑅} and 𝑟(𝑅) = {𝑡 
∈ 𝑋∗, ∃𝑠 ∈ 𝑋∗: (𝑠, 𝑡) ∈ 𝑅}.  

If 𝑅 is finite, then the size of 𝑅 is denoted by ||𝑅|| 

and is defined as ||𝑅|| = Σ (|𝑠| + |𝑡|) (𝑠,)∈𝑅 .  

We define the binary relation →𝑅 as follows, 

where 𝑢, 𝑣 ∈ 𝑋∗:𝑢 →𝑅 𝑣 if there exist 𝑥, 𝑦 ∈ 𝑋∗ 

and (𝑟, 𝑠) ∈ 𝑅 with 𝑢 = 𝑥𝑟𝑦 and 𝑣 = 𝑥𝑠𝑦. We 

write 𝑢 →𝑅 ∗ 𝑣 if there are words 𝑢0, 𝑢1, … , 𝑢𝑛 
∈ 𝑋∗ such that 𝑢0 = 𝑢, 𝑢𝑖 →𝑅 𝑢𝑖+1, ∀0 ≤ 𝑖 ≤ 𝑛 − 

1, 𝑢𝑛 = 𝑣.  If 𝑛 = 0, we have 𝑢 = 𝑣, and if 𝑛 = 1, 

then we have 𝑢 →𝑅 𝑣. Note that →𝑅 ∗ is the 

reflexive transitive closure of → . The Thue 

congruence ↔𝑅 ∗ is the equivalence relation 

generated by → . If 𝑅 is a relation on 𝑋∗ and 𝑅# 

denotes the congruence generated by 𝑅 then the 

relations ↔𝑅 ∗ and 𝑅# coincide. A decision 

problem is a restricted type of an algorithmic 

problem where for each input there are only two 

possible outputs. In other words, a decision 

problem is a function that associates with each 

input instance of the problem a truth value true 

or false.  

Definition 2.2.  

 A graph 𝐺 is a 5-tuple 𝐺 = (𝑉, 𝐸, 𝜍, 𝜏,-1) 

, where 𝑉 is the set of vertices and 𝐸 is the set of 

edges of 𝐺; 𝜍, 𝜏: 𝐸 → 𝑉 are mappings, which 

associate with each edge 𝑒 ∈ 𝐸 its initial vertex 

𝜍(𝑒) and its terminal vertex 𝜏(𝑒), 

respectively.;and e
-1

: 𝐸 → 𝐸 is a mapping 

satisfying the following conditions: 𝑒−1
 ≠ 𝑒, 

(𝑒−1
)
−1

 = 𝑒, 𝜍(𝑒−1
) = 𝜏(𝑒) and 𝜏(𝑒−1

) = 𝜍(𝑒) for all 

𝑒 ∈ 𝐸.  

Definition 2.3 

 Let 𝐺 = (𝑉, 𝐸, 𝜍, 𝜏,-1) be a graph, and let 

𝑛 ∈ ℕ. A path in 𝐺 (of length 𝑛) is a (2𝑛 + 1)-

tuple 𝑝 = (𝑣0, 𝑒1, 𝑣1, … , 𝑣𝑛
−1

, 𝑒𝑛, 𝑣𝑛 ) with 𝑣0, 

𝑣1, … , 𝑣𝑛 ∈ 𝑉 and 𝑒1, 𝑒2, … , 𝑒𝑛 ∈ 𝐸 such that 

𝜍(𝑒𝑖 ) = 𝑣𝑖−1 and 𝜏(𝑒𝑖 ) = 𝑣𝑖 hold for all 𝑖 = 1,2, 

… , 𝑛. In this situation 𝑝 is a path from 𝑣0 to 𝑣𝑛, 
and the mappings 𝜍, 𝜏 can be extended to paths 

by setting (𝑝) = 𝑣0 and (𝑝) = 𝑣𝑛. For 𝑢, 𝑣 ∈ 𝑉, (𝑢, 

𝑣) denotes the set of paths in 𝐺 from 𝑢 to 𝑣. In 

particular, for each 𝑣 ∈ 𝑉, (𝑣, 𝑣) contains the 

empty path (𝑣).  

 Also the mapping -1 can be extended to 

paths. The inverse path 𝑝−1 ∈ (𝑣𝑛, 𝑣0) of 𝑝 is 

the following path 𝑝−1
 = (𝑣𝑛, 𝑒𝑛

−1
, 𝑣𝑛−1, … , 𝑣1, 

𝑒1
−1

, 𝑣0). Finally, if 𝑝 ∈ (𝑢, 𝑣) and 𝑞 ∈ (𝑣, 𝑤), 

then the composite path 𝑝 ∘ 𝑞 ∈ (𝑢, 𝑤) is defined 

in the obvious way.  

 It is clear that, the composition of paths is 

an associative operation, and the empty paths act 

as identities for composition. Next, if 𝑝 ∈ (𝑢, 𝑣), 

then (𝑝−1)−1 = 𝑝, and if 𝑞 ∈ 𝑃(𝑣, 𝑤) then (𝑝 ∘ 
𝑞)−1 = 𝑞−1 ∘ 𝑝−1. Finally, if 𝑝 is an empty path, 

then 𝑝−1 = 𝑝. If 𝐺 is a graph, then 𝑃(𝐺) will 

denote the set of all paths in 𝐺, and 𝑃(2)(𝐺) = 

{(𝑝, 𝑞)|𝑝, 𝑞 ∈ 𝑃(𝐺)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜍(𝑝) = 𝜍(𝑞)𝑎𝑛𝑑 

𝜏(𝑝) = 𝜏(𝑞)} is the set of all pairs of paths that 

have a common initial vertex and a common 

terminal vertex.  

Definition 2.4.  

 Let 𝐺1 = (𝑉1, 𝐸1, 𝜍1, 𝜏1,-1) and 𝐺2 = 

(𝑉2, 𝐸2, 𝜍2, 𝜏2,-1) be graphs. A mapping from 

𝐺1 to 𝐺2 is an ordered pair 𝑓 = (𝑓𝑉,  ) of 

functions, where 𝑓𝑉 : 𝑉1 → 𝑉2 and for each 𝑒 ∈ 

𝐸1, 𝑓𝐸 (𝑒) is a path in 𝐺2 from 𝑓𝑉 (𝜍1(𝑒)) to 𝑓𝑉 

(𝜏1(𝑒)). Further, for each 𝑒 ∈ 𝐸1, 𝑓𝐸 (𝑒−1) = (𝑓𝐸 

(𝑒))−1 . The mapping 𝑓 is called a morphism if 

𝑓𝐸 carries edges to edges.  

 It is clear that a mapping 𝑓: 𝐺1 → 𝐺2 

induces a mapping 𝑓: (𝐺1) → (𝐺2).  

Definition 2.5.  

 Let 𝐺 = (𝑉, 𝐸, 𝜍, 𝜏,-1) be a graph. A 

subgraph 𝐺1 = (𝑉1, 𝐸1, 𝜍1, 𝜏1,-1) of 𝐺 consists 

of a subset 𝑉1 of 𝑉 and a subset 𝐸1 of 𝐸 such 
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that, for all 𝑒 ∈ 𝐸1, 𝜍1(𝑒) = 𝜍(𝑒) ∈ 𝑉1 and 𝜏1(𝑒) 

= 𝜏(𝑒) ∈ 𝑉1. Next, 𝑒−1 ∈ 𝐸1 for all 𝑒 ∈ 𝐸1.  

Definition 2.6. 

 ([6]) A type of universal algebras is an 

ordered pair of a set 𝑇 and a mapping 𝜔 ⟼ 𝑛𝜔 

that assigns to each 𝜔 ∈ 𝑇 a nonnegative integer 

𝑛𝜔, the formal arity of 𝜔. A universal algebra, or 

just algebra of type 𝑇 is an ordered pair of a set 

𝐴 and a mapping, the type – 𝑇 algebra structure 

on, that assigns to each 𝜔 ∈ 𝑇 an operation 𝜔𝐴 

on 𝐴 of arity 𝑛𝜔. 

Results and discussion 

 A semigroup with multiple operators or a 

Ω-semigroup is a universal algebra which is a 

semigroup and in which there is given a system 

of binary operations Ω satisfying the associative 

condition: ((𝑥, 𝑦), 𝑧) = (𝑥, (𝑦, 𝑧)) for all 𝑥, 𝑦, 𝑧 ∈ 

𝑆 and for each pair of binary operations 𝛼, 𝛽. Let 

(𝑆, Ω), (𝑇, Ω) be two Ω-semigroups. Then, 𝑓: 𝑆 

→ 𝑇 is a homomorphism if ((𝑥, 𝑦)) = ((𝑥), (𝑦)), 

𝑥, 𝑦 ∈ 𝑆, ∀𝜔 ∈ Ω. Next, we define the free Ω-

semigroup using the concept of the free word 

algebra of a type 𝑇 with the set 𝑋 as basis, as it is 

described in [ 6 ]. For the case of Ω-semigroups, 

we agree, first, that their type is simply a set of 

binary relations which we denote by Ω. So, we 

construct, inductively, the free Ω-word algebras 

as follows: denote 𝑊0 = 𝑋, then for 𝑘 > 0 denote 

𝑊𝑘 the set of all sequences (𝛾, 𝑤1, 𝑤2) where 

𝑤1, 𝑤2 ∈ 𝑊𝑘−1 and 𝛾 ∈ Ω. For each 𝛼 ∈ Ω, we 

denote by 𝜆𝛼 the empty word related to 𝛼. Now, 

we take 𝑊𝑋 = ⋃𝑊𝑘𝑘≥0. Writing this in letters, 

we will have that 𝑊1 is the set of all sequences 

(𝛾, 𝑥, 𝑦) where 𝛾 ∈ Ω and 𝑥, 𝑦 ∈ 𝑋. It is more 

convenient to denote these sequences in the form 

𝑥𝛾𝑦. The product 𝑥𝛽𝜆𝛽 is defined to be 𝑥, and 

similarly the product of the form 𝜆𝛼𝛼𝑦 is 

defined to be 𝑦, where, 𝜆𝛽 are the empty words 

related to the operators 𝛼, 𝛽, respectively. In the 

next step, 𝑊2 would have as elements the 

sequences (𝛾, 𝑤1, 𝑤2) where 𝑤1, 𝑤2 ∈ 𝑊1 and 

𝛾 ∈ Ω. If 𝑤1 = 𝑥1𝛾1𝑦1 and 𝑤2 = 𝑥2𝛾2𝑦2, then 

(𝛾, 𝑤1, 𝑤2) would be just the sequence 

𝑥1𝛾1𝑦1𝛾𝑥2𝛾2𝑦2, with our new notations. And 

this procedure continues. 

Example 3.1  

 A semigroup is a set with a single binary 

operation. Here Ω consists of a single element 𝜇 

of arity two such that the following associative 

law is satisfied 𝑥𝑦𝜇𝑧𝜇 = 𝑥𝑦𝑧𝜇𝜇 for all 𝑥, 𝑦, 𝑧 ∈ 

𝑆.  

Example 3.2  

 A 𝛤-semigroup is a special case of an Ω-

semigroup. Indeed, we define in 𝑆 binary 

operators 𝛼  : 𝑆 × 𝑆 → 𝑆 such that 𝛼 (𝑥, 𝑦) = 𝑥𝛼𝑦, 

∀𝛼 ∈ 𝛤. Then, (𝑆, 𝛤  ) is a Ω-algebra where 𝛤   = 

{𝛾  : 𝛾 ∈ 𝛤} satisfying the conditions 𝛽 (𝛼  (𝑥, 𝑦), 𝑧) 

= 𝛼  (𝑥, 𝛽  (𝑦, 𝑧)) , ∀𝑥, 𝑦, 𝑧 ∈ 𝑆, 𝛼 , 𝛽   ∈ 𝛤  .  

Example 3.3  

 It is clear that the free Ω-semigroup 

defined as above is a Ω-semigroup. We will 

denote with 𝑀𝑋∗Ω the free Ω-monoid on 𝑋, that 

is the set of finite products 𝑥1𝛾1 … 

𝑥𝑛−1𝛾𝑛−1𝑥𝑛 with 𝑥1, … , 𝑥𝑛 ∈ 𝑋, 𝛾𝑖 ∈ Ω, i = 

1,2, … , n − 1, including the empty product 1.  

It is the smallest Ω-submonoid of 𝑀 containing 

𝑋.  

 If 𝑀𝑋∗Ω = 𝑀, we say that 𝑋 generates 

𝑀, or that 𝑋 is a set of generators for 𝑀. If 𝑋 is 

finite and generates 𝑀, we say that 𝑀 is a 

finitely generated Ω-monoid. If 𝑋 generates 𝑀 

and no strict subset of 𝑋 does, we say that 𝑋 is a 

minimal set of generators for 𝑀.  

Theorem 3.4 

 If 𝑀 is a finitely generated Ω-monoid and 

𝑋 is a set of generators for 𝑀, then there is a 

finite subset of 𝑋 which generates 𝑀. In 

particular, any minimal set of generators for 𝑀 is 

finite.  

Proof:  

 Indeed, for any 𝑦 = 𝑥1𝛾1… 𝑥𝑛−1𝛾𝑛−1𝑥𝑛 

∈ 𝑀 with 𝑥1,…, 𝑥𝑛 ∈ 𝑋, 𝛾 ∈ Ω, we get a finite 

set 𝑋(𝑦) = {𝑥1, … , 𝑥𝑛 } ⊂ 𝑋. If 𝑌 = {𝑦1,…, 

𝑦𝑚} generates 𝑀, so does the finite set 𝑋(𝑌) = 

𝑋(𝑦1) ∪ … ∪ 𝑋(𝑦𝑚) ⊂ 𝑋.  Now, if 𝑀 is a Ω-

monoid, then any map 𝑓: 𝑋 → 𝑀 extends to a 

unique morphism 𝑓   ∶ 𝑀𝑋∗Ω → 𝑀. A 

presentation is a pair (𝑋; 𝑅) where 𝑋 is an 

alphabet and 𝑅 is the following set 𝑅 = {(𝑢, 𝑣)| 

𝑢, 𝑣 ∈ }. The congruence generated by 𝑅 is 

defined as follows:  

i. 𝑢𝛼𝑢′𝛽𝑣 ↔𝑅 𝑢𝛼𝑣′𝛽𝑣 whenever 𝑢, 𝑣 ∈ 𝑀𝑋∗Ω, 
𝛼, 𝛽 ∈ Ω, and 𝑢′𝑅𝑣′  

ii. 𝑥 ↔𝑅 ∗ 𝑦 whenever 𝑥 = 𝑥0 ↔𝑅 𝑥1 ↔𝑅 … 

↔𝑅 𝑥𝑛 = 𝑦.  

We denote by 𝑀𝑅 the quotient 𝑀𝑅 = 𝑀𝑋∗Ω/↔𝑅 

∗ which is a Ω-semigroup.  
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Indeed, it easily verified that the congruence 

generated by 𝑅, as we defined it, is a Ω-

congruence. For this, it’s enough to see that 

𝑢𝛼𝑢′𝛽𝑣 ↔𝑅 𝑢𝛼𝑣′𝛽𝑣 ⟹ 𝑢𝛼𝑢′𝛽𝑣𝛾𝑤 ↔𝑅 

𝑢𝛼𝑣′𝛽𝑣𝛾𝑤 and 𝑢𝛼𝑢′𝛽𝑣 ↔𝑅 𝑢𝛼𝑣′𝛽𝑣 ⟹ 

𝑤𝛾𝑢𝛼𝑢′𝛽𝑣 ↔𝑅 𝑤𝛾𝑢𝛼𝑣′ . Let us denote shortly 

by 𝜌 this congruence. Now, for 𝑢𝜌, 𝑣𝜌 ∈ 𝑀𝑅 

and 𝛾 ∈ Ω, let (𝑢𝜌)(𝑣𝜌) = (𝑢𝛾𝑣)𝜌. This is well-

defined, since for all 𝑢, 𝑣 ∈ 𝑀𝑋∗Ω and 𝛾 ∈ Ω, 

𝑢𝜌 = 𝑢′𝜌 and 𝑣𝜌 = 𝑣′𝜌 ⟹ (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝜌 ⟹ 

(𝑢𝛾𝑣, 𝑢′𝛾𝑣), (𝑢′𝛾𝑣, 𝑢′𝛾𝑣′) ∈ 𝜌 ⟹ (𝑢𝛾𝑣, 𝑢′𝛾𝑣′) ∈ 

𝜌 ⟹ (𝑢𝛾𝑣) = (𝑢′𝛾𝑣′)𝜌. Let 𝑢, 𝑣, 𝑤 ∈ 𝑀𝑋∗Ω and 
𝛾, 𝜇 ∈ Ω. Then, it follows that (𝑢𝜌𝛾𝑣𝜌)𝜇𝑤𝜌 = 

((𝑢𝛾𝑣)𝜌)𝜇𝑤𝜌 = ((𝑢𝛾𝑣)𝜇𝑤)𝜌 = (𝑢𝛾(𝑣𝜇𝑤))𝜌 = 

𝑢𝜌𝛾(𝑣𝜇𝑤)𝜌 = 𝑢𝜌𝛾(𝑣𝜌𝜇𝑤𝜌) and this result 

completes the proof.  

 We have a canonical surjection : 𝑀𝑋∗Ω 
→ 𝑀𝑋∗Ω/↔𝑅 ∗ as well. Moreover, if 𝑓: 𝑋 → 𝑀 

is a map such that (𝑥) = (𝑦) whenever 𝑥𝑅𝑦 and 𝑓   
∶ 𝑀𝑋∗Ω → 𝑀 its extension we obtain a unique 

morphism 𝑓 : 𝑀𝑋∗Ω/↔𝑅 ∗ → 𝑀 such that 𝑓  ∘ 
𝜋𝑅 = 𝑓 . If the map 𝑓   is bijective, we write 𝑀 ≅ 

𝑀𝑋∗Ω/↔𝑅 ∗ and we say that (𝑋; 𝑅) is a 

presentation of the Ω-monoid 𝑀. This means that 

the set (𝑋) generates 𝑀, and that 𝑓  (𝑥) = 𝑓  (𝑦) if 

and only if 𝑥 ↔𝑅 ∗ 𝑦. If the map 𝑓   is bijective 

and both 𝑋 and 𝑅 are finite we say that 𝑀 is a 

finitely presented Ω-monoid. And again, if the 

map 𝑓   is bijective, (𝑋) is a minimal set of 

generators and no strict subset of 𝑅 generates the 

congruence ↔𝑅∗, then we say that (𝑋; 𝑅) is a 

minimal presentation of 𝑀.  

Corollary 3.5 

 For any morphism: 𝑀𝑋∗Ω/↔𝑅 ∗ → 

𝑀𝑌∗Ω/↔𝑆∗, there is a morphism 𝜑: 𝑀𝑋∗Ω → 

𝑀𝑌∗Ω such that 𝜋𝑆 ∘ 𝜑 = 𝑓 ∘ 𝜋𝑅.  

Proof: 𝑀𝑋∗Ω 𝜑→ 𝑀𝑌∗Ω, 𝜋𝑅 ↓ ↓ 𝜋𝑆 and 

𝑀𝑋∗Ω/↔𝑅 ∗ 𝑓 → 𝑀𝑌∗Ω/↔𝑆∗. It is sufficient to 

define (𝑥) for each 𝑥 ∈ 𝑋, and for this we have to 

use the fact that 𝜋𝑆 is surjective.  

As a crucial step, we define the derivations for 

the presentation as follows:  

i) An atomic derivation 𝑟 𝐴→𝑠 is given by a pair 

(𝑟, 𝑠) ∈ 𝑅,  

ii) An elementary derivation 𝑥 𝐸→𝑦 is given by 

two words 𝑢, 𝑣 ∈ 𝑀𝑋∗Ω and an atomic 
derivation 𝑟 𝐴→𝑠 such that 𝑥 = 𝑢𝛼𝑟𝛽𝑣 and 𝑦 = 

𝑢𝛼𝑠𝛽𝑣. If 𝑢 = 𝑣 = 1, we identify 𝐸 with the 

atomic derivation 𝐴,  

iii) A derivation 𝑥 𝐹→𝑦 is given by a sequence 𝑥 

= 𝑥0 𝐸1→𝑥1 𝐸2→… 𝐸𝑛 → 𝑥𝑛 = 𝑦 of 

elementary derivations. If 𝑛 = 1, we identify 𝐹 

with the elementary derivation 𝐸1. If 𝑛 = 0, we 

get the identity derivation.  

Composition of derivations is defined in obvious 

way. Also, if 𝑥, 𝑦 are words and 𝑧 𝐹→𝑧′ is a 
derivation, the derivation 𝑥𝛼𝑧𝛽𝑦 𝑥𝐹𝑦 → 𝑥𝛼𝑧′𝛽𝑦 

is defined in the obvious way.  

Let (𝑋; 𝑅) be a Ω-monoid presentation such that 

the Ω-string-rewriting system 𝑅 is noetherian. 

This means that there is no infinite sequence 𝑥0 

𝐸1→𝑥1 𝐸2→… 𝐸𝑛 → 𝑥𝑛 𝐸𝑛+1 → … of 

elementary derivations. Then for any ∈ 𝑀𝑋∗Ω , 
there is a derivation 𝑥 𝐹→𝑦 where 𝑦 is reduced 

which means that no elementary derivation starts 

from 𝑦. This 𝑦 is called a normal form of 𝑥.  

A peak is an unordered pair of elementary 

derivations 𝑥 𝐸→𝑦 and 𝑥 𝐸′ → 𝑦′ starting from 
the same word 𝑥. Such a peak is called confluent 

if there is a word 𝑧 and two derivations 𝑦 𝐹→𝑧 

and 𝑦′ 𝐹′ → 𝑧. It is called critical if 𝐸 ≠ 𝐸′ and if 
it is of the form 𝑟𝛼𝑣 = 𝑢′𝛼′𝑟′  where, in the first 
case, 𝑢′ is a strict prefix of 𝑟, or equivalently, 𝑣 

is a strict suffix of 𝑟′.  

Theorem 3.6  

 If (𝑋; 𝑅) is a finite convergent 

presentation then ↔𝑅 ∗ is a decidable relation.  

Proof:  

 It would be enough to compare the 

reduced form which, in this case, are obviously 

computable. If ↔𝑅 ∗ is a decidable relation then 

we say that that the Ω-monoid 𝑀 has a decidable 

word problem and this property does not depend 

on the choice of the presentation as long as this 

presentation is finitely generated, i.e. 𝑋 is finite. 

Indeed, assume that (𝑋; 𝑅) and (𝑌; 𝑆) are finitely 

generated presentations of the Ω- monoid 𝑀 

such that 𝑀𝑅 ≅ 𝑀 ≅ 𝑀𝑆. Then for every 𝑎 ∈ 𝑋 

there exists a word 𝑤𝑎 ∈ 𝑀𝑌∗Ω such that 𝑎 and 

𝑤𝑎 represent the same element of 𝑀. If we 

define the homomorphism ℎ: 𝑀𝑋∗Ω → 𝑀𝑌∗Ω 
by ℎ(𝑎) = 𝑤𝑎 then for all 𝑢, 𝑣 ∈ 𝑀𝑋∗Ω we have 
𝑢 ↔𝑅 ∗ 𝑣 if and only if ℎ(𝑢) ↔𝑅 ∗ ℎ(𝑣). Thus 

the word problem for (𝑋; 𝑅) can be reduced to 

the word problem for (𝑌; 𝑆) and vice versa. Thus 

the decidability and complexity of the word 

problem does not depend on the chosen 

presentation. Hence, we may just speak of the 

word problem for the Ω-monoid 𝑀.  
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Theorem 3.7 

 Convergence is a decidable property for 

any finite noetherian presentation.  

Proof:  

   It follows from the facts that there are 

finitely many critical peaks in this case and is 

easily seen that they are computable.  

Conclusions 

In the present paper we have shown that if (𝑋; 𝑅) 

is a presentation of a Ω-monoid, each 𝜌 = (𝑥, 𝑦) 

∈ 𝑅 can be seen as a rewrite rule 𝑥 𝜌→𝑦, with 

source 𝑥 and target 𝑦. An elementary reduction 

is of the form 𝑢𝛼𝑥𝛽𝑣 𝑢𝜌𝑣 → 𝑢𝛼𝑦𝛽𝑣 where 𝑢, 𝑣 

are words and 𝑥 𝜌→𝑦 is a rule (as we define it) . 

A reduction is a finite sequence 𝑥 = 𝑥0 𝑟1→𝑥1 

𝑟2→𝑥2 … 𝑥𝑛−1 𝑟𝑛 →𝑥𝑛 = 𝑦 of elementary 

reductions. Each rule is considered as an 

elementary reduction, and any elementary 

reduction is considered as a reduction of length 

1. If 𝑥 𝑟→𝑦 and 𝑦 𝑠→𝑧 are reductions, we write 

𝑟 ∗ 𝑠 for the composed reduction 𝑥 𝑟→𝑦 𝑠→𝑧. 

Furthermore, there is an empty reduction   →𝑥 

for any word 𝑥 ∈ 𝑀𝑋∗Ω. So we obtain a 

category of reductions (𝑋; 𝑅). We call 𝑅 a Ω- 

string rewriting system. 
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