100X, 100L, 100T

GaN Controller Module

General Description

The 100 Series GaN Controller is capable of operating and protecting all depletion-mode transistors. The noninverting analog input accepts negative voltage to produce buffered negative gate bias. It allows 360° board placement with little or no line crossovers in the main board. A single power supply is enough for the 100 to provide dynamic control. Little or no filtering is needed in heavy RF environments. The 100 works seamlessly with 300 and 400 Series MOS switches that have compact footprints for locating near the transistor drain choke. It comes in evaluation boards that are ideal for fast prototyping.

Features

- Protects GaN devices from any power sequence of voltage supplies.
- Internal Negative voltage with 30 mA OR external supply for 100 mA boost.
- Bias Voltage has Fixed Gate OR Pulsed Gate configuration.
- Simultaneous Gate-Drain sequencing OR Independent Gate/Drain control.
- TTL OR Open Drain (<300mA) output drive for MOSFET switches.
- Temp compensation from local OR remote temp sensor feedback.
- $>25 \mathrm{~dB}$ EMI/RFI Rejection at all I/O ports except from auxiliary taps.
- <500 nsec total delay from V_Logic to V_Drain with applicable switch.
- RoHS* Compliant

Typical Connection Diagram

100X, Standard

I00L, Low Profile

Specification Snapshot

Parameter	Min	Max
Supply (+) Voltage	+20 V	+65 V
Supply (-) Voltage, Optional	-6 V	0 V
TTL Voltage Logic High	+3.6 V	+5.0 V
TTL Voltage Logic Low	0 V	+1.4 V
Internal (-) Supply V, Gate Pinchoff	-4.3 V	
Internal (-) Supply I	-30 mA	
Gate Bias Voltage Range	-4.3 V	-0.5 V
Out Switch Drive, Open Drain (V)	0 V	+60 V
Out Switch Drive, Open Drain (I)		300 mA
Output ON Prop Delay (T_Delay 1)		120 ns
Output ON Fall Time (T_Fall 1)		120 ns
Output OFF Prop Delay (T_Delay 5)		80 ns
Output OFF Rise Time (T_Rise 3)		80 ns
Gate ON Prop Delay (T_Delay 3)		160 ns
Gate ON Rise Time (T_Rise 2)		60 ns
Gate OFF Prop Delay (T_Delay 4)		160 ns
Gate OFF Fall Time (T_Fall 2)		60 ns
Soldering Temp (10 sec)		$+260^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$
Pra		

Propagation Delay is measured from 90% of TTL to 10\% of Open Drain Output with pull-up resistor. Rise/ Fall Times are measured at 10% and 90% of signal. Both measurements are summed for total time.

Ordering Information

Model ${ }^{\wedge}$	UNIVERSAL GaN CONTROLLER:
100_02R6	NEGATIVE ANALOG INPUT, SIN-
100_02RO	GLE DC SUPPLY, VGS SHUTDOWN
100_01R4	AT -2.6V THRU -0.8V**. INDEPENDENT OR SEQUENTIAL
100_00R8	SWITCHING OF DRAIN AND GATE
120_02R6	DRAIN CONTROLLER:
120_02RO	100_ WITH NO GATE SWITCHING
120_01R4	CAPABILITY
120_00R8	
124_02R6	BASIC SEQUENCER:
124_02R0	100_WITH NO GATE SWITCH-
124_01R4	ING, NO INTERNAL NEGATIVE
124_00R8	AND LOGIC (+5V) SUPPLIES

\wedge Select type X, L, or T
** All models have provisions for adjusting Vgs shutdown threshold to desired level.

Outline \& Land Pattern

TOLERANCE IS $+/-.005^{\prime \prime}$ [. 13 mm] UNLESS OTHERWISE SPECIFIED

TOLERANCE IS $+/-.005^{\prime \prime}$ [. 13 mm] UNLESS OTHERWISE SPECIFIED

Controller I/O Pin Descriptions

WARNING
-Do not connect Outputs together unless specified to do so.
-Do not ground unused Outputs. Leave open.
-Familiarize with the maximum rated voltages and currents.
NTP has -4.3 V output from a voltage inverter. Tap with $>10 \mathrm{~K} \Omega$ trim-pot to establish (-) input to POT pin of the 100 Series only. Otherwise, leave open.
VN6 input is connected to an optional negative supply of $>-6 \mathrm{~V}$ if gate current boost of 100 mA is needed for saturated GaN. Internally, there's 30 mA . Leave open otherwise.
POT input receives negative voltage for 100 Series or positive voltage for 200 Series. This unity gain buffer provides negative bias to the transistor gate. Temperature-compensation voltage is added here as well.
PGA output produces a square-wave triggered by TTL to pin GTL. It provides gate bias to GaN at a level set from POT pin and down to V_pinchoff established from either the voltage inverter (-4.3 V) or from pin VN6.
FGA output has a fixed gate bias voltage typically used by models with NO gate switching capability. May also be used as auxiliary bias for GaN drivers. PTP has +5.0 V output from a voltage regulator. Tap with $>10 \mathrm{~K} \Omega$ trim-pot to establish (+) input to POT pin of the 200 Series only. Otherwise, leave open. GTL input takes active-low, TTL signal ($\langle 4.7 \mathrm{~V}$) to control gate switching of the device. It is tied to DTL pin to sequence the gate and drain voltage. This is not used for sub-models. Disconnect from DTL for independent control.
DTL input controls the drain switching end of the transistor. When tied with GTL, the active-low TTL enable switches drain voltage ON and would remain there until gate voltage undergoes a full ON/OFF cycle. Oscillations are mitigated when device is in pinch-off during ramping Vdd up \& down.
VP4 input is connected to an optional supply of $\leq+5 \mathrm{~V}$. Leave open unless required by sub-models.
OTL output is an active-low TTL drive signal reserved for 300 Series Power CMOS switches. Leave pin open otherwise.
DFB input monitors the presence of drain voltage when the MOS switch is ON. Use if gate switching is desired; otherwise, leave open for sub-models. DRV output connects to the gate input of MOSFET switch module. Connect to multiple switches with up to 300 mA total loads.
VDS input receives up to +80 V from the same supply that powers the GaN. REG is an auxiliary port of +5.7 V from a voltage regulator.
SHD is an auxiliary port for adjusting the gate voltage shutdown threshold. From this node, connect $100 \mathrm{~K} \Omega-1 \mathrm{M} \Omega$ resistor to REG (or PTP) ports for increasing the threshold level, or to GND for decreasing said level.

Typical Timing Diagrams

