
1

CAP 4630

Artificial Intelligence

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu



2

• http://www.ultimateaiclass.com/

• https://moodle.cis.fiu.edu/

• HW1 was due on Tuesday 10/3 

– Remember that you have up to 4 late days to use throughout 

the semester.

• HW2 out today, due 10/17

• Midterm on 10/19

– Review during half of class on 10/17

http://www.ultimateaiclass.com/


3

Kuka



4

Kuka

• The clash, which looks to have been subject to 

extensive editing and probably wouldn't stand up to 

ITTF rules, saw Kuka steam ahead only for Boll to 

fight back to an 11-9 wine once he realised the robot 

couldn't cope with net calls, awkward bounces and 

other ping pong quirks.



5

Robot-soccer



6

Upcoming lectures

• 10/5 (today): Finish CSP, start logic (propositional 

logic)

• 10/10: Wrap up logic (first-order logic, logical 

inference), start optimization (integer optimization)

• 10/12: Continue optimization (integer, linear 

optimization)

• 10/17: Wrap up optimization (nonlinear optimization), 

midterm review 

• 10/19: Midterm

• Planning lecture will be after midterm on 10/26.



7

HW2

• Out today due 10/17

• Several exercises from textbook

• Logic puzzles that you must formulate models for as 

search/optimization problems using two different 

approaches (e.g., could be CSP, logical inference, 

integer programming). You can solve them using built-

in Python solver libraries (e.g., for CSP and ILP) or 

build your own solver (possibly for extra credit). Open-

ended question and many possible correct answers and 

approaches. 



8

Quizzle



9

Example problem: Sudoku



10

CSP applications

• Examples of simple problems that can be modeled as a 

constraint satisfaction problem include:

– Eight queens puzzle

– Map coloring problem 

– Sudoku, Crosswords, Futoshiki, Kakuro (Cross Sums), Numbrix, Hidato 

and many other logic puzzles

• These are often provided with tutorials of ASP, Boolean SAT 

and SMT solvers. In the general case, constraint problems can 

be much harder, and may not be expressible in some of these 

simpler systems.

• "Real life" examples include automated planning and resource 

allocation. An example for puzzle solution is using a constraint 

model as a Sudoku solving algorithm.



11

Variations on the CSP formalism

• Standard variant: discrete, finite domains

– E.g., map coloring and job-shop coloring

– The 8-queens problem can also be viewed as a finite-domain 

CSP, where the variables Q1-Q8 are the positions of each 

queen in columns 1-8 and each variable has the domain 

Di={1,…,8}

• Discrete domain can be infinite, such as the set of 

integers or strings

– Can no longer enumerate all combinations of values.

– Instead use constraint language that can understand 

constraints such as T1 + d1 <= T2 directly, without 

enumerating the set of pairs of allowable values for (T1,T2)



12

Variations on the CSP formulation

• Special solution algorithms (which we will see shortly) 

exist for linear constraints on integer variables—that 

is, constraints such as the one just given, in which each 

variable appears only in linear form. It can be shown 

that no algorithm exists for solving general nonlinear 

constraints on integer variables.



13

Variations on the CSP formulation

• Constraint satisfaction problems with continuous domains are 

common in the real world and are widely studied in the field of 

operations research. For example, the scheduling of experiments 

on the Hubble Space Telescope requires very precise timing of 

observations; the start and finish of each observation and 

maneuver are continuous-valued variables that must obey a 

variety of astronomical, precedence, and power constraints. The 

best-known category of continuous-domain CSPs is that of 

linear programming problems, where constraints must be 

linear equalities or inequalities. Linear programming problems 

can be solved in time polynomial in the number of variables. 

Problems with different types of constraints and objective 

functions have also been studied—quadratic programming, 

second-order conic programming, and so on.



14

CSP variations

• The simplest type of constraint is a unary constraint, which 

restricts the value of a single variable. For example, in the map-

coloring problem it could be the case that South Australians 

won’t tolerate the color green; we can express that with the 

unary constraint <(SA), SA != green>

• A binary constraint relates two variables. For example, SA != 

NSW is a binary constraint. A binary CSP is one with only 

binary constraints; it can be represented as a constraint graph

• We can also describe higher-order constraints, such as asserting 

that the value of Y is between X and Z, with the ternary 

constraint Between(X,Y,Z)



15

Constraint graph



16

CSP variations

• A constraint involving an arbitrary number of variables is called 

a global constraint (The name is traditional but confusing 

because it need not involve all the variables in a problem). One 

of the most common global constraints is Alldiff, which says that 

all of the variables involved in the constraint must have different 

values. In Sudoku problems, all variables in a row or column 

must satisfy an Alldiff constraint. Another example is provided 

by cryptarithmetic puzzles. Each letter represents a different 

digit. For the example problem this would be represented as the 

global constraint Alldiff(F,T,U,W,R,O). 



17

Cryptarithmetic problem



18

Cryptarithmetic problem

• The addition constraints on the four columns of the puzzle can 

be written as the following n-ary constraints:

– …



19

Cryptarithmetic problem

• The addition constraints on the four columns of the puzzle can 

be written as the following n-ary constraints:

– O + O = R + 10 * C10

– C10 + W + W = U + 10*C100

– C100 + T + T = O + 10 * C1000

– C1000 = F

• Where C10, C100, and C1000 are auxiliary variables 

representing the digit carried over into the tens, hundreds, or 

thousands column. These constraints can be represented in a 

constraint hypergraph. A hypergraph consists of ordinary 

nodes (the circles in the figure) and hypernodes (the squares) 

which represent n-ary constraints.



20

CSP variations

• Alternatively, homework exercise asks you to prove every 

finite-domain constraint can be reduced to a set of binary 

constraints if enough auxiliary variables are introduced, so we 

could transform any CSP into one with only binary constraints; 

this makes the algorithms simpler. 

• There are however two reasons why we might prefer a global 

constraint such as Alldiff rather than a set of binary constraints. 

First, it is easier and less error-prone to write the problem 

description using Alldiff. Second, it is possible to design special-

purpose inference algorithms for global constraints that are not 

available for a set of more primitive constraints, which we will 

describe. 



21

CSP variations

• The constraints we have described so far have all been absolute 

constraints, violation of which rules out a potential solution. 

Many real-world CSPs include preference constraints

indicating which solutions are preferred. For example, in a 

university class-scheduling problem there are absolute constraints 

that no professor can teach two classes at the same time. But we 

also may allow preference constraints: Prof. R might prefer 

teaching in the morning, whereas Prof. N prefers teaching in the 

afternoon. A schedule that has Prof. R teaching at 2 p.m. would 

still be an allowable solution (unless Prof. R happens to be the 

department chair) but would not be an optimal one. 



22

CSP variations

• Preference constraints can often be encoded as costs on 

individual variable assignments—for example, 

assigning an afternoon slot for Prof. R costs 2 points 

against the overall objective function, whereas a 

morning slot costs 1. With this formulation, CSPs with 

preferences can be solved with optimization search 

methods, either path-based or local. We call such a 

problem a constraint optimization problem, or COP. 

Linear/integer/nonlinear programming problems do 

this kind of optimization.



23

Inference in CSPs

• In regular state-space search, an algorithm can only do 

one thing: search. In CSPs there is a choice: an 

algorithm can search (choose a new variable 

assignment from several possibilities) or do a specific 

type of inference called constraint propagation: 

using the constraints to reduce the number of legal 

values for a variable, which in turn can reduce the legal 

values for another variable, and so on. Constraint 

propagation may be intertwined with search, or it may 

be done as a preprocessing step, before search starts. 

Sometimes this preprocessing can solve the whole 

problem, so no search is required at all.



24

CSP inference

• The key idea is local consistency. If we treat 

each variable as a node in a graph (like for the 

Australia constraint graph) and each binary 

constraint as an arc (edge), then the process of 

enforcing local consistency in each part of the 

graph causes inconsistent values to be 

eliminated throughout the graph. There are 

several different types of local consistency: 

node consistency, arc consistency, path 

consistency, k-consistency.



25

Arc consistency

• A variable in a CSP is arc-consistent if every value in its 

domain satisfies the variable’s binary constraints. For formally, 

Xi is arc-consistent with respect to another variable Xj if for 

every value in the current domain Di there is some value in the 

domain Dj that satisfies the binary constraint on the arc (Xi,Xj). 

A network is arc-consistent if every variable is arc-consistent 

with every other variable. 

• For example, consider the constraint Y = X^2 where the domain 

of both X and Y is the set of digits. We can write this explicitly 

as …



26

Arc consistency

• A variable in a CSP is arc-consistent if every value in its 

domain satisfies the variable’s binary constraints. For formally, 

Xi is arc-consistent with respect to another variable Xj if for 

every value in the current domain Di there is some value in the 

domain Dj that satisfies the binary constraint on the arc (Xi,Xj). 

A network is arc-consistent if every variable is arc-consistent 

with every other variable. 

• For example, consider the constraint Y = X^2 where the domain 

of both X and Y is the set of digits. We can write this explicitly 

as … <(X,Y),{(0,0),(1,1),(2,4),(3,9)}>. To make X arc-

consistent with respect to Y, we reduce X’s domain to {0,1,2,3}. 

If we also make Y arc-consistent with respect to X, then Y’s 

domain becomes {0,1,4,9} and the whole CSP is arc-consistent.



27

Arc consistency

• How about for the Australia map-coloring problem?



28

Arc consistency

• On the other hand, arc consistency can do nothing for the 

Australia map-coloring problem. Consider the following 

inequality constraint on (SA,WA): 

– {(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}

• No matter what value you choose for SA (or for WA), there is a 

value value for the other variable. So applying arc consistency 

has no effect on the domains of either variable.



29

Arc consistency

• The most popular algorithm for arc consistency is called AC-3. 

To make every variable arc-consistent, the AC-3 algorithm 

maintains a queue of arcs to consider (Actually the order of 

consideration is not important, so the data structure is really a 

set, but tradition calls it a queue). Initially the queue contains all 

the arcs in the CSP. (Each binary constraint becomes two arcs, 

one in each direction.) AC-3 then pops off an arbitrary arc 

(Xi,Xj) from the queue and makes Xi arc-consistent with respect 

to Xj. If this leaves Di unchanged, the algorithm just moves to 

the next arc. But if this revises Di (makes the domain smaller), 

then we add to the queue all arcs (Xk,Xi) where Xk is a 

neighbor of Xi. We need to do that because the change in Di 

might enable further reductions in the domains of Dk, even if we 

have previously considered Xk.



30

Arc consistency

• If Di is revised down to nothing, then we know the 

whole CSP has no consistent solution, and AC-3 can 

immediately return failure. Otherwise, we keep 

checking, trying to remove values from the domains of 

variables until no more arcs are in the queue. At that 

point, we are left with a CSP that is equivalent to the 

original CSP—they both have the same solutions—but 

the arc-consistent CSP will in most cases be faster to 

search because its variables have smaller domains.



31

Arc consistency



32

• The complexity of AC-3 can be analyzed as follows. 

Assume a CSP with n variables, each with domain size 

at most d, and with c binary constraints (arcs). Each arc 

(Xk,Xi) can be inserted in the queue only d times 

because Xi has at most d values to delete. Checking 

consistency of an arc can be done in O(d^2) time, so 

we get O(cd^3) total worst-case time.

– Note that the newer “AC-4” algorithm runs in O(cd^2) 

worst-case time but can be slower than AC-3 on average 

cases.



33

Arc consistency

• It is possible to extend the notion of arc consistency to handle n-

ary rather than just binary constraints; this is called generalized 

arc consistency or sometimes hyperarc consistency. A variable 

Xi is generalized arc consistent with respond to an n-ary 

constraint if for every value v in the domain of Xi there exists a 

tuple of values that is a member of the constraint, has all its 

values taken from the domains of the corresponding variables, 

and has its Xi component equal to v. For example, if all 

variables have the domain {0,1,2,3}, then to make the variable 

X consistent with the constraint X < Y < Z, we would have to 

eliminate 2 and 3 from the domain of X because the constraint 

cannot be satisfied when X is 2 or 3.



34

Path consistency

• Arc consistency can go a long way toward reducing the domains 

of variables, sometimes finding a solution (by reducing every 

domain to size 1) and sometimes finding that the CSP cannot be 

solved (by reducing some domain to size 0). But for other 

networks, arc consistency fails to make enough inferences. 

Consider the map-coloring problem on Australia, but with only 

two colors allowed, red and blue. Arc consistency can do 

nothing because every variable is already arc consistent: each 

can be red with blue at the other end of the arc (or vice versa). 

But clearly there is no solution to the problem: because WA, NT 

and SA all touch each other, we need at least three colors for 

them alone.



35

Path consistency

• Arc consistency tightens down the domains (unary constraints) 

using the arcs (binary constraints). To make progress on 

problems like map coloring, we need a stronger notion of 

consistency. Path consistency tightens the binary constraints by 

using implicit constraints that are inferred by looking at triples 

of variables. 

• A two-variable set {Xi,Xj} is path-consistent with respect to a 

third variable Xm if, for every assignment {Xi=a,Xj=b} 

consistent with the constraints on {Xi,Xj}, there is an 

assignment to Xm that satisfies the constraints on {Xi,Xm} and 

{Xm,Xj}. This is called path consistency because one can think 

of it as looking at a path from Xi to Xj with Xm in the middle.



36

Path consistency

• Let’s see how path consistency fares in coloring the Australia 

map with two colors. We will make the set {WA,SA} path 

consistent with respect to NT. We start by enumerating the 

consistent assignments to the set. In this case, there are only 

two: {WA=red, SA=blue} and {WA=blue,SA=red}. We can see 

that with both of these assignments NT can be neither red nor 

blue (because it would conflict with either WA or SA). Because 

there is no valid choice for NT, we eliminate both assignments, 

and we end up with no valid assignments for {WA,SA}. 

Therefore, we know that there can be no solution to this 

problem. The PC-2 algorithm achieves path consistency in much 

the same way that AC-3 achieves arc consistency.



37

Path consistency



38

K-consistency

• Stronger forms of propagation can be defined with the 

notion of k-consistency. A CSP is k-consistent if, for 

any set of k-1 variables and for any consistent 

assignment to those variables, a consistent value can 

always be assigned to any kth variable. 1-consistency 

says that, given the empty set, we can make any set of 

one variable consistent: this is what we called node 

consistency. 2-consistency is the same as arc 

consistency. For binary constraint networks, 3-

consistency is the same as path consistency.



39

Global constraints

• Remember that a global constraint is one involving an 

arbitrary number of variables (but not necessarily all 

variables). Global constraints occur frequently in real 

problems and can be handled by special-purpose 

algorithms that are more efficient than the general-

purpose methods described so far. For example, the 

Alldiff constraints work as follows: if m variables are 

involved in the constraint, and if they have n possible 

distinct values altogether, and m > n, then the 

constraint cannot be satisfied.



40

Global constraints

• This leads to the following simple algorithm: First, 

remove any variable in the constraint that has a 

singleton domain, and delete that variable’s value from 

the domains of the remaining variables. Repeat as long 

as there are singleton variables. If at any point an 

empty domain is produced or there are more variables 

than domain values left, then an inconsistency has been 

detected.



41

Global constraints

• This method can detect the inconsistency in the assignment 

{WA=red, NSW = red}. Notice that the variables SA, NT, and 

Q are effectively connected by an Alldiff constraint because each 

pair must have two different colors. After applying AC-3 with 

the partial assignment, the domain of each variable is reduced to 

{green,blue}. That is, we have three variables and only two 

colors, so the Alldiff constraint is violated. Thus, a simple 

consistency procedure for a higher-order constraint is sometimes 

more effective than applying arc consistency to an equivalent set 

of binary constraints. There are more complex inference 

algorithms for Alldiff that propagate more constraints but are 

more computationally expensive to run.



42

Global constraints

• Another important higher-order constraint is the resource 

constraint, sometimes called the atmost constraint. For 

example, in a scheduling problem, let P1,…,P4 denote the 

number of personnel assigned to each of four tasks. The 

constraint that no more than 10 personnel are assigned in total is 

written as Atmost(10,P1,P2,P3,P4). We can detect an 

inconsistency simply by checking the sum of the minimum 

values of the current domains; for example, fi each variable has 

the domain {3,4,5,6}, the Atmost constraint cannot be satisfied. 

We can also enforce consistency by deleting the maximum value 

of any domain if it is not consistent with the minimum values of 

the other domains. Thus, if each variable in one example has the 

domain {2,3,4,5,6}, the values 5 and 6 can be deleted from each 

domain.



43

Global constraints

• For large resource-limited problems with integer values—such 

as logistical problems involving moving thousands of people in 

hundreds of vehicles—it is usually not possible to represent the 

domain of each variable as a large set of integers and gradually 

reduce that set by consistency-checking methods. Instead, 

domains are represented by upper and lower bounds and ar 

emanaged by bounds propagation. For example, in an airline-

scheduling problem, let’s suppose there are two flights, F1 and 

F2, for which the planes have capacities 165 and 385, 

respectively. The initial domains for the number of passengers 

on each flight are then D1 = [0,165] and D2 = [0,385]. Now 

suppose we have the additional constraint that two flights must 

carry 420 people: F1 + F2 = 420. Propagating bound constraints, 

we reduce the domains to: D1=[35,165] and D2=[255,385].



44

Global constraints

• We say that a CSP is bound consistent if for 

every variable X, and for both the lower-bound 

and upper-bound values of X, there exists some 

value of Y that satisfies the constraint between 

X and Y for every variable Y. This kind of 

bounds propagation is widely used in practical 

constraint problems.



45

Sudoku example

• The popular Sudoku puzzle has introduced 

millions of people to constraint satisfaction 

problems, although they may not recognize it. A 

Sudoku board consists of 81squares, some of 

which are initially filled with digits from 1 to 9. 

The puzzle is to fill in all the remaining squares 

such that no digit appears twice in any row, 

column, or 3x3 box. A row, column, or box is 

called a unit.



46



47

Sudoku example

• The Sudoku puzzles that are printed in newspapers and puzzle 

books have the property that there is exactly one solution. 

Although some can be tricky to solve by hand, taking tens of 

minutes, even the hardest Sudoku problems yield to a CSP 

solver in less than 0.1 second.

• A Sudoku puzzle can be considered a CSP with 81 variables, 

one for each square. We use the variable names A1 through A9 

for the top row (left or right), down to I1 through I9 for the 

bottom row. The empty squares have the domain 

{1,2,3,4,5,6,7,8,9} and the prefilled squares have a domain 

consisting of a single value. In addition, there are 27 different 

Alldiff constraints: one for each row, column, and box of 9 

squares.



48

Sudoku example

• Alldiff(A1,A2,A3,A4,A5,A6,A7,A8,A9)

• Alldiff(B1,B2,B3,B4,B5,B6,B7,B8,B9)

• …

• Alldiff(A1,B1,C1,D1,E1,F1,G1,H1,I1)

• Alldiff(A2,B2,C2,D2,E2,F2,G2,H2,I2)

• …

• Alldiff(A4,A5,A6,B4,B5,B6,C4,C5,C6)

• Alldiff(A4,A5,A6,B4,B5,B6,C4,C5,C6)

• …



49

Sudoku example
• Let us see how far arc consistency can take us. Assume that the 

Alldiff constraints have been expanded into binary constraints 

(such as A1 != A2) so that we can apply the AC-3 algorithm 

directly. Consider the variable E6—the empty square between the 

2 and the 8 in the middle box. From the constraints in the box, we 

can remove not only 2 and 8 but also 1 and 7 from E6’s domain. 

From the constraints in its column, we can eliminate 5, 6, 2, 8, 9, 

and 3. This leaves E6 with a domain of {4}; in other words, we 

know the answer for E6. Now consider I6. Applying arc 

consistency in its column, we eliminate 5, 6, 2, 4 (since we now 

know E6 must be 4), 8, 9, and 3. We eliminate 1 by arc 

consistency with I5, and we are left with only the value 7 in the 

domain of I6. Now there are 8 known values in column 6, so arc 

consistency can infer that A6 must be 1. Inference continues along 

these lines, and eventually, AC-3 can solve the entire puzzle.



50

Sudoku example

• Of course, Sudoku would soon lose its appeal of every puzzle 

could be solved by a mechanical application of AC-3, and 

indeed AC-3 works only for the easiest Sudoku puzzles. Slightly 

harder ones can be solved by PC-2, but at a greater 

computational cost: there are 255,960 different path constraints 

to consider in a Sudoku puzzle. To solve the hardest puzzles and 

to make efficient progress, we will have to be more clever. 



51

Sudoku example

• Indeed, the appeal of Sudoku puzzles for the human solver is the 

need to be resourceful in applying more complex inference 

strategies. Aficionados give them colorful names, such as 

“naked triples.” That strategy works as follows: in any unit 

(row, column, or box), find three squares that each have a 

domain that contains the same three numbers or a subset of 

those numbers. For example, the three domains might be {1,8}, 

{3,8}, and {1,3,8}. From that we don’t know which square 

contains 1, 3, or 8, but we do know that the three numbers must 

be distributed among the three squares. Therefore we can 

remove 1, 3, and 8 from the domains of every other square in 

the unit.



52

Sudoku example

• It is interesting to note how far we can go without saying much 

that is specific to Sudoku. We do of course have to say that there 

are 81 variables, that their domains are the digits 1 to 9, and that 

there are 27 Alldiff constraints. But beyond that, all the 

strategies—arc consistency, path consistency, etc.—apply 

generally to all CSPs, not just to Sudoku problems. Even naked 

triples is really a strategy for enforcing consistency of Alldiff

constraints and has nothing to do with Sudoku per se. This is the 

power of the CSP formalism: for each new problem area, we 

only need to define the problem in terms of constraints; then the 

general constraint-solving mechanisms can take over.



53

Backtracking search for CSPs

• Sudoku problems are designed to be solved by 

inference over constraints. But many other CSPs 

cannot be solved by inference alone; there comes a 

time when we must search for a solution. In this 

section we look at backtracking search algorithms that 

work on partial assignments; next we will look at local 

search algorithms over complete assignments.



54

Backtracking search for CSPs

• We could apply standard depth-limited search. A state 

would be a partial assignment, and an action would be 

adding var = value to the assignment. But for a CSP 

with n variables of domain size d, we quickly notice 

something terrible: the branching factor at the top level 

is nd because any of d values can be assigned to any of 

n variables. At the next level, the branching factor is 

(n-1)d, and so on for n levels. We generate a tree with 

n!*d^n leaves, even though there are only d^n possible 

complete assignments!



55

Backtracking search for CSPs

• Our seemingly reasonable but naïve formulation ignores crucial 

property common to all CSPs: commutativity. A problem is 

commutative if the order of application of any given set of 

actions has no effect on the outcome. CSPs are commutative 

because when assigning values to variables, we reach the same 

partial assignment regardless of order. Therefore, we need only 

consider a single variable at each node in the search tree. For 

example, at the root node of a search tree for coloring the map of 

Australia, we might make a choice between SA=red, SA=green, 

SA=blue, but we would never choose between SA=red and 

WA=blue. With this restriction, the number of leaves is d^n, as 

we would hope.



56

Backtracking search for CSPs

• The term backtracking search is used for a depth-first search 

that chooses values for one variable at a time and backtracks 

when a variable has no legal values left to assign. The algorithm 

repeatedly chooses an unassigned variable, and then tries all 

values in the domain of that variable in turn, trying to find a 

solution. If an inconsistency is detected, then BACKTRACK 

returns failure, causing the previous call to try another value. 

Part of the search tree for the Australia problem is shown, where 

we have assigned variables in the order WA, NT, Q,… Because 

the representation of CSPs is standardized, there is no need to 

supply BACKTRACKING-SEARCH with a domain-specific 

initial state, action function, transition model, or goal test.



57

Backtracking search for CSPs



58

Backtracking search for CSPs



59

Backtracking search for CSPs

• Previously we improved poor performance of uninformed search 

algorithms by supplying them with domain-specific heuristic 

functions, derived from our knowledge of the problem. It turns 

out that we can solve CSPs efficiently without such domain-

specific knowledge. Instead, we can add some sophistication to 

the unspecified functions, using them to answer the following 

questions:

1. Which variable should be assigned next (SELECT-UNASSIGNED-

VARIABLE), and in what order should its values be tried (ORDER-

DOMAIN-VALUES)?

2. What inferences should be performed at each step in the search 

(INFERENCE)?

3. When the search arrives at an assignment that violates a constraint, can 

the search avoid repeating this failure?



60

Variable and value ordering

• The backtracking algorithm contains the line:

– Var  SELECT-UNASSIGNED-VARIABLE(csp, assignment)

• The simplest strategy is to choose the next unassigned variable 

in order, {X1,X2,…}. This static variable ordering seldom 

results in the most efficient search. For example, after the 

assignments for WA=red and NT =green, there is only one 

possible value for SA, so it makes sense to assign SA=blue next 

rather than assigning Q. In fact, after SA is assigned, the choices 

for Q, NSW, and V are all forced. This intuitive idea—choosing 

the variable with fewest “legal” values—is called the minimum-

remaining-values (MRV) heuristic. It also has been called the 

“most constrained variable” or “fail-first” heuristic, the latter 

because it picks a variable that is most likely to cause a failure 

soon, thereby pruning the search tree.



61

Variable and value ordering

• If some variable X has no legal values left, the MRV 

heuristic will select X and failure will be detected 

immediately—avoiding pointless searches through 

other variables. The MRV heuristic usually performs 

better than a random or static ordering, sometimes by a 

factor of 1,000 or more, although the results vary 

widely depending on the problem.



62

Local search for CSPs

• Local search algorithms turn out to be effective in solving many 

CSPs. They use a complete-state formulation: the initial state 

assigns a value to every variable, and the search changes the 

value of one variable at a time. For example, in the 8-queens 

problem, the initial state might be a random configuration of 8 

queens in 8 columns, and each step moves a single queen to a 

new position in its column. Typically, the initial guess violates 

several constraints. The point of local search is to eliminate the 

violated constraints.



63

Local search – min conflicts



64

Local search – min conflicts



65

CSP summary

• Constraint satisfaction problems represent a state with a set of variable-

value pairs and represent the conditions for a solution by a set of constraints 

on the variables. Many real-world problems can be described as CSPs. 

• A number of inference techniques use the constraints to infer which 

variable/value pairs are consistent and which are not. These include node, 

arc, path, and k-consistency.

• Backtracking search, a form of depth-first search, is commonly used for 

solving CSPs. Inference can be interwoven with search.

• The minimum-remaining values and degree heuristics are domain-

independent methods for deciding which variable to choose next in a 

backtracking search. The least-constraining value heuristic helps in 

deciding which value to try first for a given variable. Backtracking occurs 

when no legal assignment can be found for a variable. Conflict-directed 

backjumping backtracks directly to the source of the problem.

• Local search using the min-conflicts heuristic has also been applied to 

constraint satisfaction problems with great success.



66

Propositional logic



67

Wumpus world



68

Wumpus world



69

Wumpus world



70

Homework for next class

• Chapters 9-10 from Jensen textbook.

• HW1: out 9/5 was due on 10/3

• HW2: out today due 10/17


