
IJRECE VOL. 7 ISSUE 4 OCT.-DEC 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 113 | P a g e

Mutation Analysis Technique for Fault Detection in

Software Engineering
Adya Sharma, Anita Chandel

M. tech Scholar, Assistant Professor

Engineering college Bikaner

Abstract- Software engineering is a branch of engineering.

This branch is related to the development of software product

with the help of distinct scientific principles, techniques and

processes. The result of software engineering is an effectual

and trustworthy software product. A significant software

engineering application is known as testing. In testing, the test

cases are implemented for detecting faults within the software.

The unwanted outcomes can be generated due to the faults

within software. A prediction model should be constructed

with predictors for the prediction of faulty files. These

predictors can be attained either within the project or from

other projects. Not only was this anomaly in the design, but

the code was actually implemented with the same key

alternating between HELP and DELETE functions based on

which application was in use. Nowadays, the faults may also

occur in the test cases. The test cases are generally utilized to

detect faults. In order to detect faults within the software, the

mutation algorithm has been implemented in this study. Back

propagation algorithm has been implemented for improving

the performance of mutation algorithm in terms of fault

discovery rate. This algorithm learns from the past experience

and determines novel values. Total 10 test cases are used for

software testing. The simulation is executed in MATLAB

software. The outcomes of simulation depict improved fault

detection rate and decreased execution time.

I. INTRODUCTION

Test case prioritization is the approach that is required to

arrange a test case in such an order that the effectiveness is

increased. The fault detection rate can be measured using this

approach. The test cases are ranked and programmed

appropriately with the help of test case prioritization. The

higher priority test cases are run initially followed by running

the lower priority test cases. This result in lessening the time,

hard work and cost required in the software testing phase. The

speed at which the fault is detected in software through testing

approach is an important step. The software can be corrected

by removing the identified fault based on the feedback given

by the previous step [7].

Regression testing is defined as retesting the software. It is an

important application of prioritization technique. This testing

method ensures that any new modifications made in the

previously tested software does not result in causing new

errors. Thus, the modified software is retested here. The cost

required to perform regression testing is very high. The test

cases are prioritized in the regression testing process to ensure

that the vital test cases can be executed initially. The

information that is collected from previously executed test

cases can prove to be very beneficial for arranging the test

cases as per their priority. A clustering method is used to

perform test case prioritization in regression testing. The test

cases with general assets and parallel capability to detect

faults are grouped jointly. For executing the test cases of

higher priority, the software testing process that provides

minimal cost, effort and time is designed.

Genetic algorithms (GAs) are search techniques. These

techniques depend on laws of natural selection and genetics.

The decision variables of a search issue are encoded into fixed

length alphabets strings of definite cardinality by Genetic

algorithms. Chromosomes are the strings. These strings are

candidate solutions to the search issue. The alphabets are

known as genes. The values of genes are known as alleles. As

an instance, a route is represented by a chromosome and a city

may be represented by a gene. GAs performs with coding of

parameters instead of the parameters themselves unlike

conventional optimization methodologies. A measure is

required to make difference amid good and bad solutions for

developing good solutions and implementing natural

selection. It is possible for measure to be an objective

function. This is a statistical model or a computer simulation.

It can also be a subjective function. In this function, the better

solutions are selected by human beings over bad solutions.

The virtual fitness of a candidate solution must be determined

by the fitness measure in real time. Afterward, genetic

algorithm will use this fitness to direct the development of

high-quality solutions.

The concept of population is one more significant theory of

genetic algorithms. Genetic algorithms are based on the

population of candidate solutions in contrast to conventional

search techniques. The population size is generally a client-

specified parameter. This is a one important factor that affects

the scalability and functioning of genetic algorithms. As an

instance, small population dimensions may cause early

convergence. This results in substandard solutions. However,

big population dimensions can cause redundant costs of

precious computation time. The development of solutions can

IJRECE VOL. 7 ISSUE 4 OCT.-DEC 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 114 | P a g e

be started for problem searching after encoding the issue in a

chromosomal way. A fitness measure is selected to distinguish

good solutions from bad solutions. In this process, following

steps are applied:

i. Initialization: In general, the preliminary population of

candidate solutions is generated randomly crosswise the

search space. On the other hand, it is easy to include the

domain-specified information or other information.

ii. Evaluation: The fitness values of the candidate solutions

are assessed after population initialization [10].

iii. Selection: Additional facsimiles of those solutions are

distributed by selection with better fitness values. Therefore,

the survival-of-the-fittest method is applied on the candidate

solutions. The major thought of selection is to choose higher

solutions over the bad solutions. A lot of selection

methodologies have been resented to achieve this aim. These

methods include roulette-wheel selection, stochastic universal

selection, ranking selection and tournament selection etc.

iv. Recombination: The components of two or more than two

parental solutions are combined by this approach for creating

novel, perhaps the improved solutions. This aim can be

fulfilled by different methods. The performance is based on an

appropriately designed recombination method. The offspring

in recombination will not be same as some specified parent. It

will rather merge parental features in a new way.

v. Mutation: A solution is modified by mutation locally but in

random manner unlike the recombination that works on two or

more than two parental chromosomes. Also, the mutation is of

different types. However, it generally includes one or

additional variations. These variations are being made to an

individual’s feature or features. Hence, a random walk near a

candidate solution is performed by the mutation.

vi. Replacement: The original parental population is replaced

by the offspring population. This population is developed by

selection, recombination, and mutation techniques. In genetic

algorithms, various replacement methodologies like elitist

replacement, generation-wise replacement and steady-state

replacement methods are utilized.

vii. Repeat steps 2–6 until a terminating condition is met.

1.1. Mutation Testing
The procedure of adding little faults into programs and

determining the efficiency of test case for fault detection is

called Mutation testing. In the past few years, several

mutation operators were designed. These operators defined the

change within the program. Every change generates a novel

program. This new program is known as mutant. This

program is slightly different from the original one.

Mutagenesis is a process that creates a mutant from the real

program. The potential to identify mutants is a measure of the

efficiency of test case. The mutants which are not identified

by the test case are known as living mutants.

The proportion of killed mutants to the total amount of

mutants is called mutation score. This is a measure of

mutation’s effectiveness. Choosy mutation can considerably

decrease the outlay of mutation scrutiny.

II. LITERATURE SUVERY

Xiaoxing Yang et.al (2015) explained previous work of the

construction and also whether the measure of performance

model was beneficial software defect prediction model

construction an idea of direct optimization. For software defect

prediction one is a new learning-to-rank approach to practical

data sets and for predicting the order software modules based on

the predicted number of defects as compared to the learning-to-

rank technique alongside algorithms are the two aspects

included in this work. For the ranking task the experimental

studies demonstrates the efficiency of straightly improving the

functioning of the model measuring for the learning-to-rank

technique for building fault prediction systems [11]

Shaik Nafeez Umar et.al (2013) explained a new statistical

model. In this work, the efficiency of proposed model for

predicting the faults of future software products was discussed.

This study utilized 20 earlier launched data points of software

project and five parameters. These data points and parameters

were used to construct the proposed model. Descriptive

statistics, correlation and multiple linear regression models with

95% confidence intervals (CI) were applied to construct this

model [12]. The R-square value of 0.91 and its Standard Error of

5.90% were obtained in the constructed statistical model. The

Software testing fault prediction model was utilized for fault

prediction at a variety of testing projects and functional

deliveries. The accuracy between original and forecasted faults

was 90.76% as per the analysis.

Muhammad Dhiauddin et.al (2012) explained the preliminary

endeavor to construct a defect prediction model. This model was

constructed to detect faults in system testing. A self-determining

testing team performed the task of system testing. The main

motive behind the construction of defect prediction model was

to provide an early quality sign of the software incoming system

testing [13]. This model was also constructed to help the testing

team for managing and controlling the behavior of test

implementation. The possible predictors in model construction

were determined by identifying and analyzing the metrics

gathered from earlier stages of system testing. Afterward, in

order to produce some numerical equations, the chosen metrics

were applied in regression analysis. Numerical equation having

p-value below 0.05 with Rsquared and above 90% with R-

IJRECE VOL. 7 ISSUE 4 OCT.-DEC 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 115 | P a g e

squared (adjusted) was chosen as the preferred forecasting

model for system analyzing faults. Novel projects were utilized

to validate proposed model. The obtain results confirmed that

the proposed model was appropriate for real time execution.

Mrinal Singh Rawat, Sanjay Kumar Dubey (2012) proposed the

underlying cause of failure by the software faults. The faults

within software could degrade the quality of software product.

In this scenario of cut-throat rivalry, it was required to attempt

continuously for controlling and minimizing the faults in

software engineering. Money, time and resources are used in

these efforts. Improve software quality and productivity

contributing aspects suggesting measures are identified by this

paper. This work also demonstrated the way to implement the

several defect prediction models to reduce the size of faults.

[14].

Christopher Henard, (2013) explained large number of

customization and big economics pushed developers to design

software product line in this paper. On addition of more features

it reuses its assets. The feature model and allow tailored

software products represents many constraints. Thousands and

billions of software products are contained in it. Because of

large size of products, product line is challenging as a result.

Limited product suites are selected based on the feature model

existed by this technique. These types of faults are detected

using test cases. Specifically, two mutation operators were

presented in this work. The main aim of these operators was to

obtain mutants from a real feature model. These operators also

evaluated the potential of the produced real test case for killing

the erroneous feature model. Hence, validation of the

significance of same-driven product line test are based on the

experimental results demonstration that is not same test cases

with improved mutant discovery potential as compared to

identical ones [15].

Jan Peleska, (2013) explained one of the leading technologies is

based on the model testing. In this work, the important aspects

for efficient manufacturing application of MBT were explained.

Both technical and a decision-making prospective were

considered for this purpose. The methodologies for automatic

test suites, test data and test process production for real-time

reactive concurrent systems were also explained in this work

with former view. In MBT for testing teams their knowledge

initiated MBT schemes. For an improvement of the acceptance

and effectiveness of MBT many specific problems arise [16].

III. RESEARCH METHODOLOGY

Complex and faulty test information is generated using

mutation analysis model such that automated testing can be

performed. In the presence of faulty data, performing efficient

testing and analyzing the robustness of system becomes

difficult. In this research, the Boltzmann learning algorithm is

used to detect the faults existing in the generated test cases.

Once the faults are removed, the testing efficiency of the

system is increased.

The visible units are held to the values given by the teacher in

the initial layer. The pair-wise potentials are used in the

second layer to forward the underlying components to the

hidden layer. The stochastic recurrent neural networks are the

two layers in which binary neurons are arranged. Every

neuron present in the visible layer is linked to all the hidden

neurons so that the neurons can be visible. There is a link

between each neuron present in the hidden layer. A binary

column vector is denoted by ‘v’ and it contains the states of

visible neurons. It is possible to denote hj similar to the vector

‘h’ of a hidden state. The systems of symmetrically connected

units are known as Boltzmann machines which can settle the

on or off conditions of stochastic decisions. For discovering

the complex distributions, a simple learning algorithm is

applied on the observed information. It is imperative to

perform learning in Boltzmann machines for performing

different scientific tasks. The weights on connections and

thresholds to represent are settled to represent the cost of

functions. Also, the inference related issues can be handled

through this process. Inference is a tool that is commonly used

to improve the issues in which the combinatorial issues arising

in NP finish or hard issue classes of Boltzmann machines can

be handled. The expectations of one unit as well as

correlations are needed in between the two units that are

performing learning in Boltzmann machines.

Fault prediction is the technique that is used to predict the

percentage of faults in test cubes. The faults can be detected

from text cases using the learn-to-rank algorithm. This

algorithm is based on three important steps. In the initial step,

the population is selected. The next step is to calculate the

mutation value. In the final step, the fitness value is

calculated. The fitness value is calculated based on the

randomly chosen final population value. The system performs

learning with the help of values and derivations of new values

back propagation technique. The selection of population value

is not random. Based on few system conditions, the back

propagation algorithm is applied here.

Steps of Proposed Algorithm

Following are the various steps of the proposed algorithm for

software fault detection :-

1. The software is taken as input from which faults needs to be

detection. In the software various software modules are taken

as input like signup, login etc.

2. Input the test case of each module for the fault detection

from the input software.

3. The test case number and test case range will be the input to

the Boltzmann learning for the software defect prediction.

IJRECE VOL. 7 ISSUE 4 OCT.-DEC 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 116 | P a g e

4. Apply formula Error =Desired- Actual errors for calculating

error in each module.

5. The step 4 will be repeated until all the defects from the

software will be detected.

6. Display defects predicted in every iteration from the

software.

IV. RESULT AND DISCUSSION

Matrix laboratory is MATLAB: tool. Providing numerical

computation and visualization data is an interactive program.

It is a very powerful tool. This tool is extremely helpful for all

disciplines of science and engineering with the help of its

programming capabilities. With the feature of graphical user

interface MATLAB helps developing applications.

Fig.1: Mutation testing interface

As shown in figure 1, the mutation testing is the type of

testing. In this testing, test cases are generated which test the

software. The test cases which are generated have the faults

which reduce efficiency of fault prediction

Fig.2: Selection of test cases

Figure 2 shows the implementation of proposed algorithm.

Boltzmann learning algorithm is used for mutation analysis.

The Boltzmann learning algorithm will learn from the past

knowledge and determine novel values

Fig.3: Defect Prediction Analysis

Figure 3 shows the comparison of Mutation and E-Mutation

values to analyze their performances. The E-Mutation

approach has high defect prediction value as compared

Mutation algorithm

Fig.4: Time Analysis

Figure 4 shows the comparison of Mutation and E-Mutation

values to analyze their performances. The E-Mutation

algorithm has low execution value than Mutation approach

Fig.5: Fault Negative Rate Analysis

IJRECE VOL. 7 ISSUE 4 OCT.-DEC 2019 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 117 | P a g e

Figure 5 shows the comparison of Mutation and E-Mutation

values to analyze their performances. The E-Mutation

algorithm has high fault negative rate as compared Mutation

algorithm

Fig.6: Fault Rate Analysis

Figure 6 shows the comparison of Mutation and E-Mutation

values to analyze their performances. The E-Mutation

algorithm shows high rate than Mutation algorithm

V. CONCLUSION

A testing method called fault detection is implemented for

detecting faults within the software or within the input test

cases. For the faults in the software the mutation is known as

the algorithm. Reduction in the fault detection rate is the

algorithm that chose the population randomly. From the

previous experience and driving new values, back propagation

algorithm is implemented from where the system learns in this

work. For testing the procedure a test case is a set of

procedure. The software delivery also gets affected by this.

Improvement in the defect detection rate and reduction in the

execution time are lead by this. O the basis of the bio-inspired

techniques for the fault detection rate, technique will be

proposed in future. This algorithm learns from the past

experience and determines novel values. Total 10 test cases

are used for software testing. The simulation is implemented

in MATLAB software. The outcomes of simulation depict

improved fault detection rate and decreased execution time.

VI. REFERENCES
[1]. Gaurav, Kestina Rai “Software Testing Techniques for Test

Case Generation” International journal of Advanced Research in

Computer Science and Software Engineering 2013 pp 261-265.

[2]. John E. Bentley, Wachovia Bank, Charlotte NC, “Software

Testing Fundamentals—Concepts, Roles, and Terminology”,

2009

[3]. Chandana Bharati1, Shradha Verma, “Analysis of Different

Regression Testing Approaches”, International Journal of

Advanced Research in Computer and Communication

Engineering Vol. 2, Issue 5, May 2013

[4]. Gaurav, Kestina Rai “Software Testing Techniques for Test

Case Generation” International journal of Advanced Research in

Computer Science and Software Engineering 2013 pp 261-265.

[5]. K. Pohl, G. B¨ockle, and F. J. van der Linden, “Software

Product Line Engineering: Foundations, Principles and

Techniques”, Secaucus, NJ, USA: Springer-Verlag New York,

Inc., 2005.

[6]. P. Clements and L. Northrop, “Software Product Lines:

Practices and Patterns”, Addison Wesley, Reading, MA, USA,

2001.

[7]. M. Mendonca, A. Wasowski, and K. Czarnecki, “Sat-based

analysis of feature models is easy” in Proceedings of the 13th

International Software Product Line Conference, ser. SPLC ’09.

Pittsburgh, PA, USA: Carnegie Mellon University, 2009, pp.

231–240.

[8]. G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon,

“Automated and scalable t wise test case generation strategies

for software product line” in ICST. IEEE Computer Society,

2010, pp. 459–468.

[9]. Mangal, B. S, “Analyzing Test Case Selection using Proposed

Hybrid Technique based on BCO and Genetic Algorithm and a

Comparison with ACO”, IJCA, 2012.

[10]. Suman and Seema, “A Genetic Algorithm for Regression Test

Sequence Optimization”, International Journal of Advanced

Research in Computer and Communication Engineering Vol. 1,

Issue 7, September 2012

[11]. Xiaoxing Yang, Ke Tang, Senior Member, IEEE, and Xin Yao,

“A Learning-to-Rank Approach to Software Defect Prediction”,

IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1,

MARCH 2015

[12]. Shaik Nafeez Umar, “Software Testing Defect Prediction

Model- A Practical Approach”, IJRET: International Journal of

Research in Engineering and Technology, Volume: 02 Issue: 05

| May-2013

[13]. Muhammad Dhiauddin, Mohamed Suffian, Suhaimi Ibrahim,

“A Prediction Model for System Testing Defects using

Regression Analysis”, International Journal of Soft Computing

And Software Engineering (JSCSE) e-ISSN: 2251-7545

Vol.2,o.7, 2012

[14]. Mrinal Singh Rawat, Sanjay Kumar Dubey , “Software Defect

Prediction Models for Quality Improvement: A Literature

Study”, IJCSI International Journal of Computer Science Issues,

Vol. 9, Issue 5, No 2, September 2012 ISSN (Online): 1694-

0814

[15]. Christopher Henard, Mike Papadakis∗, Gilles Perrouin, Jacques

Klein, and Yves Le Traon “Assessing Software Product Line

Testing via Model-based Mutation: An Application to Similarity

Testing”, 2013

[16]. Jan Peleska, “Industrial-Strength Model-Based Testing - State

of the Art and Current Challenges”, 2013

