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Abstract—Neural network reliability is susceptible to perturba-
tions in both inputs and model weights. While formal verification
of neural network robustness against input perturbations is a hot
topic, robustness analysis against weight perturbations remains
an emergent area of research. Neural network weights are subject
to hardware vulnerabilities and environmental changes, posing
significant risks to system reliability in safety-critical applications
such as autonomous driving and medical diagnostics. To address
this issue, we introduce ‘ModelStar,’ a novel framework that
utilizes reachability analysis to evaluate the robustness of deep
neural networks (DNNs) against weight perturbations. ModelStar
employs a linear set propagation technique to analyze the impact
of an infinite family of parameter variations on DNN outputs. Our
results demonstrate that ModelStar surpasses existing methods in
analysing the impact of perturbations, verifying DNN robustness
on up to 60% more samples in image classification tasks. Besides
providing tighter robustness bounds than existing methods,
ModelStar allows formal robustness verification against weight
perturbations in any linear layer, a capability not supported
by prior work, to our knowledge. This advancement marks a
significant step towards the reliable use of DNN accelerators in
safety-critical applications.

Index Terms—Formal verification, neural networks, weight
perturbation, reachability analysis.

I. INTRODUCTION

NEURAL networks have become prevalent as the state-
of-the-art in machine learning tasks over the past decade

and are increasingly being utilized across a wide spectrum
of areas [1]. These include safety-critical systems [2], such
as autonomous driving [3] and aircraft collision avoidance
systems [4]. Fatal accidents involving autonomous vehicles
have already occurred [5], [6], underscoring the importance
of rigorously analyzing the robustness of neural networks.
Extensive research has been conducted on exposing the vul-
nerabilities of neural networks [7]–[9], as well as developing
defenses against them [10]–[12]. To facilitate the use of neural
networks in safety-critical systems, the safety verification of
neural networks i.e., determining whether a neural network
produces desirable results despite perturbations, has garnered
increased attention in recent years [13]–[15]. However, most
of these works focus on robustness verification against input
perturbations, despite findings that neural networks are also
vulnerable to weight perturbations, i.e., variations in the model
parameters of DNNs [16]–[19].

Recently, there has been an increased interest in providing
guaranteed lower bounds on the robustness of a neural network

against weight perturbations, such as bounds on pair-wise class
margins [20]. Another work has extended linear bounds on the
outputs of neural networks–that previously accounted for input
perturbations [21]–to handle weight perturbations [22]. How-
ever, there is still room for improvement. Our work improves
this bound by extending reachability analysis–a technique used
for robustness verification against input perturbations [23] –to
handle weight perturbations. Previously, reachability analysis
has been employed to construct a set representing all possible
states resulting from input perturbations and propagate this set
through the neural network layers. We extend this technique to
account for weight perturbations by augmenting the states in
the set as it passes through each layer containing perturbed
weights. This adaptation is crucial because it propagates a
larger amount of information through the layers of a neural
network as compared to previous approaches [20], [22]. This
enables ModelStar to provide tighter robustness guarantees,
thereby providing higher confidence in the reliability of neural
networks in practical applications. We utilize the ImageStar
reachability analysis framework [23] due to its extensive sup-
port for propagating reachable sets through a variety of neural
network layers. We refer to our extension, which integrates
model perturbations into star reachable sets, as ModelStar.

The main contributions of our work include the following:

• We introduce ModelStar, a novel framework that incor-
porates weight perturbations of neural networks into
reachable sets–specifically star sets–through the use of
linearity as well as perturbation matrices, referred to as
perturbation maps.

• Perturbation maps allow ModelStar to handle bounded
perturbations affecting arbitrarily specific subsets of
weights in any linear layers, for the purpose of analyzing
the impact of these perturbations on the reliability of the
neural network.

• We present complexity bounds on the size of the aug-
mented reachable set, achieving exact representation of
the outputs of a single perturbed layer, and an over-
approximate representation of the outputs of multiple
perturbed layers.

• Through rigorous numerical evaluation, we demonstrate
that ModelStar is less conservative than state-of-the-art
approaches [20], [22] in determining the safety of a
neural network against weight perturbations. It verifies
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Fig. 1. Model perturbations in neural networks may lead to fatal accidents in safety-critical systems. For example, an autonomous vehicle may accelerate
instead of decelerating when it encounters a construction sign. Here, ∆model represents the weight perturbation matrix, and the terms ‘Conv’ and ‘FC’ stand
for convolutional layer and fully-connected layer, respectively.

the robustness of neural networks against perturbations
in fully-connected layers for up to 60% more samples in
image classification tasks.

The rest of this paper is organized as follows: Section II re-
views related work on the significance of weight perturbations
in neural networks and existing approaches to obtain robust-
ness bounds against these perturbations. Section III outlines
the problem setup. Section IV introduces the formulation of
ModelStar. Section V presents numerical experiments compar-
ing ModelStar with state-of-the-art approaches for verifying
the robustness of fully connected neural networks against
weight perturbations. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Impact of Weight Perturbations on NN Performance

Numerous studies in the literature have highlighted the
sensitivity of neural networks to weight perturbations.

The authors of [24] investigate the sensitivity of the output
of a convolutional neural network (CNN) to weight perturba-
tions, across all possible inputs. The study in [25] employs a
gradient-based estimation over the loss function to identify
the weight perturbations that cause the worst loss change.
This work demonstrates that perturbations in even a few
parameters can lead to a substantial decrease in prediction
accuracy. The authors of [16] concentrate on the perturbations
caused by device variations in Computing-in-Memory (CiM)
Deep Neural Network (DNN) accelerator architectures. They
demonstrate that even minor device variations can lead to large
performance drops in the worst-case scenario.

The work in [17] highlights the potential for modifying
neural network operation for target samples with specific bit-
flips, while preserving the performance of the neural network
for the rest of the input space. The authors of [18] introduce
another attack technique to decrease the classification accuracy
for only a target cluster in the input data by altering the neural
network weights. The authors of [19] prove the existence of
such weight perturbations and present algorithms to determine
them.

B. Robustness Bounds against Weight Perturbations

Recent research has sought to quantify the effects of norm-
bounded perturbations in weights of neural networks.

The study in [22] focuses on the maximum possible norm
bounded perturbation in the weights of a neural network such
that the classification output remains correct i.e., the output
for the correct class remains higher than the output for any
other class. Since this is an NP-hard problem, they derive a
lower bound on this perturbation, by utilizing linear upper
and lower bound functions of the neural network function.
They consider norm bounds on perturbations in one row of
the weight matrix. The authors of [20] also consider norm-
bounded weight perturbations and present a bound on the pair-
wise class margin in their presence. They consider ∞-norm
bounds on perturbations in entire matrices. To summarize, [22]
presents a bound on the disturbance being applied, whereas
[20] presents bounds on the neural network output as a result
of the disturbances. We utilize the bounds presented in [22]
and [20] for comparison with ModelStar in our numerical
evaluation.

III. PRELIMINARIES AND PROBLEM SETUP

We define a feed-forward neural network N as a sequence
of layers N = {Li}, i = 1, 2, . . . , n, with activation layers
indexed distinctly.

A. Reachable Sets

Our approach involves computing sets that encapsulate all
possible outputs of a layer resulting from perturbations. These
sets are then propagated through the remaining layers of the
neural network, with safety decisions based on the final output
set. The central component of this approach is the concept of
reachable set, defined as follows:

Definition 1 (Reachable Set): Given a set I as an input
to the network, the output reachable set Ri of the i-th layer
is obtained by applying the layer’s operation Li to the output
reachable set of the preceding layer [23].

Ri = {y | y = Li(x), x ∈ Ri−1}



The input set to the first layer, R0, is the input I to the
neural network, and the output set of the last layer, Rn, is
the reachable set of the neural network.

A graphical illustration of the reachability analysis process
is presented in Fig. 2. Next, we present the set structure used
for reachability analysis in this paper, called the star set.

B. Star Sets

In order to expand the scope of our theorems, we present a
broader definition of star sets than previous work [23]:

Definition 2 (Star Set): A star set I is a linear set defined
by a central point c, and m basis tensorsvj , j = 1, . . . ,m that
span a space around the origin c. The star set is represented
by the tuple ⟨c, V, P ⟩ where V is the set of m basis tensors
{v1, v2, . . . , vm}, and P is a set of predicates, limited to linear
constraints. The set is mathematically defined as follows:

I = {x | x = c+

m∑
j=1

αjvj , Cα ≤ d} (1)

where x, c, vj ∈ Rn1×n2×···×nk , j = 1, . . . ,m, and α is a
vector of m predicate variables [α1, α2, . . . , αm]. If P (α) ≜
Cα ≤ d contains p linear constraints, then C ∈ Rp×m and
d ∈ Rp×1. Each pair (αj , vj) is referred to as a generator.
Hence, the set in Equation 1 comprises m generators.

The authors of [23] discuss the propagation of star
sets through various neural network layers, including fully-
connected, convolutional, ReLU, batch normalization, average
pooling and max pooling layers.

C. Safety Verification

To evaluate the robustness of a neural network, we examine
the intersection of its reachable set, Rn, with a predefined set
of unsafe outputs. If this intersection is empty, the neural net-
work is considered robust. Conversely, a non-empty intersec-
tion indicates non-robustness. These scenarios are illustrated
in Fig. 2. In verifying the robustness of a classification neural
network, the correct class for an input is known. Therefore,
for each incorrect class, we can define a half-plane using the
inequality where the output corresponding to this incorrect
class equals or exceeds the output for the correct class. The
union of all such half-planes constitutes the unsafe set for the
classification problem. In regression problems, the unsafe set
includes all outputs that fall outside a specified radius around
the correct output.

In this paper, we evaluate the performance of our robustness
verification approach through an image classification task. To
enable ModelStar to scale effectively to layers with a large
number of parameters, we employ over-approximate reachable
sets. Consequently, if the neural network’s output reachable
set, derived using ModelStar, intersects with the unsafe set, we
declare the robustness of the neural network in that scenario
as “unknown.” This situation arises when ModelStar cannot
conclusively determine the robustness of the neural network
against specified perturbations.

IV. MODELSTAR: REACHABILITY ANALYSIS FRAMEWORK
FOR MODEL PERTURBATIONS

In the current section, after presenting our perturbation
model, we discuss how weight perturbations in a linear layer
of a neural network are translated to the generators in the star
reachable set when there are no existing perturbations. Fol-
lowing that, we discuss the general case where perturbations
already exist in the star set input to the perturbed linear layer.

A. Perturbed Linear Layers
In a neural network, perturbations in the i-th layer can

change the output states of that layer, forming a reachable
set defined as:

R′
i = {y | y = L′

i(x), x ∈ Ri−1}

Here, L′
i(x) denotes the perturbed function of the i-th

layer, and R′
i is the resulting reachable set (see Definition 1).

While non-linear layers can experience perturbations, our work
focuses on perturbations in the parameters of linear layers:

Definition 3 (Linear Layer): Let the i-th layer of a neural
network have two parameter tensors: a weight tensor Wi and
a bias tensor bi. Let the operation of this layer on an input
tensor x be defined as:

Li(x) = Wi ⊙ x+ bi (2)

where ⊙ is any linear operation. Then, we refer to this layer
as a linear layer. The input x, the weight W , the bias b and the
output L(x) can be tensors with any dimensions that conform
to the operation defined in Equation 2.

Definition 3 encompasses a variety of linear layers. When
the layer under consideration is a fully-connected layer, ⊙
represents matrix product. When the convolutional layer is
concerned, ⊙ represents matrix convolution. Our approach is
applicable to other affine transformations, including those in
image input and batch normalization layers [23]. However,
these extensions are straightforward and not the focus of this
paper.

The weights range of a linear layer is defined as the
difference between the maximum and minimum scalar weights
in the layer’s weight tensor. The perturbations considered in
our paper are scalar, bounded perturbations. For example, there
may be m perturbations {α1, α2, . . . , αm}, each with its own
lower and upper bound, affecting the parameters of a linear
layer. A single perturbation may affect multiple parameters of
a linear layer. To describe the affected parameters’ locations,
we associate with the perturbation a perturbation map:

Definition 4 (Perturbation Map): Let the i-th layer of a
neural network be a linear layer with weight and bias tensors
Wi and bi. Consider a single perturbation αj affecting Wi and
bi. The weight perturbation map of αj , denoted by MWj , is
defined as a tensor with the same dimensions as Wi, where
each entry is non-zero if the corresponding weight is affected
by αj , and zero otherwise. Similarly, the bias perturbation
map of αj , denoted by Mbj , is defined as a tensor with the
same dimensions as bi, where each entry is non-zero if the
corresponding bias is affected by αj , and zero otherwise.
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Fig. 2. Illustration of reachable set propagation through the neural network shown in Fig. 1. The terms ‘Conv’ and ‘FC’ stand for convolutional layer and
fully-connected layer, respectively. Initially, the input to the neural network is a set containing a single element, and this remains true for the reachable sets
up to the perturbed fully-connected layer. The perturbation expands the reachable set, which then propagates through the subsequent layers. The reachable set
of the output layer is used for safety verification. If its intersection with the set of unsafe outputs is non-empty, the neural network is not robust to the given
perturbations. If the intersection is empty, the neural network is robust. The figure shows both cases. Propagation through the softmax layer is unnecessary
for safety verification against incorrect classification due to the monotonicity of the softmax layer.

Fig. 3 shows a 2 × 2 weight matrix subject to two pertur-
bations α1 and α2. The perturbation map MW2 represents the
effect of the perturbation α2 on two weights simultaneously.
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Fig. 3. A 2 × 2 weight matrix W is subject to two bounded perturbations
α1 and α2 resulting in the perturbed weight matrix W ′ = W +α1MW1 +
α2MW2. α1 affects the weight at location (2, 2), and α2 affects the weights
at locations (2, 1) and (2, 2); the corresponding locations are shaded in red.
MW1 and MW2 are example weight perturbation maps corresponding to
perturbations α1 and α2, respectively.

B. Reachable Set for First Perturbed Layer

The following remark discusses the reachable set for the
linear layer whose input is a set containing a single element.
This scenario occurs when there are no perturbations in any
prior layer and the input to the neural network is also a set
containing a single element.

Remark 1: Let the i-th layer of a neural network be a
linear layer (Definition 3) with unperturbed layer operation
Li(x) = Wi ⊙ x + bi, and let the input to the layer be
the singleton {x}. If there are a total of m independent
perturbations {α1, α2, . . . , αm} affecting the tensors Wi and
bi, the output reachable set of this layer is represented exactly
by the star set ⟨c, V, P ⟩ comprising m generators (Definition
2). Here, c = Wi ⊙ x + bi, V is the set of m basis tensors
{v1, v2, . . . , vm} with vj = MWj ⊙ x + Mbj (Definition 4),
and P (α) = αl < α < αu where the perturbation vector
α = [α1, α2, . . . , αm] is bounded by the vectors αl and αu.

Essentially, given a perturbation αj and the locations of the
weights and biases affected by αj , Remark 1 encompasses

the effect of the perturbation αj on the output neurons of
the linear layer by using the basis tensor vj . In doing so,
Remark 1 provides information about the exact structure of
the output reachable set that results from the perturbations in
the first perturbed linear layer. The structure of the star set
allows for the representation of this reachable set without any
conservativeness, leading to tighter bounds on the robustness
of the neural network as demonstrated in Section V.

C. Reachable Set for the General Case

In general, the input to a linear layer is a star set (Definition
2). This scenario occurs if there are perturbations in a previous
layer or in the input to the neural network. In this case, the
predicate variables corresponding to the new perturbations in
the current linear layer’s weights multiply with the existing
predicate variables in the input star set, leading to non-linear
behavior. One way to deal with this is to employ a nonlinear
structure, but this approach drastically increases complexity
and does not allow for the use of elegant linear reachable set
propagation techniques. The other approach, that we adopt in
ModelStar, is over-approximation. This preserves the linearity
of the reachable set at the cost of increased conservativeness.
We present bounds on the size of the resulting reachable star
set in the following remark:

Remark 2: Let the i-th layer of a neural network be a
linear layer with unperturbed layer operation Li(x) = Wi ⊙
x+ bi (Definition 3). Let there be q independent perturbations
affecting Wi and bi. If the input to the layer is a star set I with
m generators (Definition 2) and the layer has n neurons, then
the output reachable set of this layer is over-approximated by
a star set comprising m+ n+ q generators.

Owing to space limitations, we postpone the derivations of
Remarks 1 and 2 to future work.



V. EXPERIMENTAL EVALUATION AND DISCUSSION

In this section, we evaluate the verification capability of
ModelStar over an MLP (Multi-Layer Perceptron) trained
on the MNIST dataset1. We introduce varying amounts of
perturbation in the weights of the fully-connected layers of
the neural network. We present the magnitude of perturbation
affecting a layer relative to the weights range of the layer. This
is motivated by the fact that such a relation between the pertur-
bation magnitude and the range of weights translates directly
to finding the minimum tolerance threshold for programming
weights to memristors in CiM devices using write-verify [16].
Unlike ModelStar, the weight-perturbation models in state-of-
the-art approaches do not allow the analysis of the impact
of perturbations on individual weights [20], [22]. Thus, for
fair comparison with state-of-the-art, we perturb all weights
in a layer of a neural network at a time, one perturbation
affecting each weight. However, the ModelStar framework is
capable of analysing perturbations based on any perturbation
map that conforms to Definition 4. The experiment has been
conducted in MATLAB running on a 64-core Ubuntu machine
with 512GB RAM.

A. Verification of MNIST Multi-Layer Perceptron (MLP)
Against Weight Perturbations

MNIST is a dataset containing 28 × 28 images of hand-
written digits. It has 10 classes-one for each digit from 0 to 9.
We consider a set of input images that are correctly classified
by the neural network in the absence of perturbations. Thus,
the safety of the neural network trained on MNIST is verified
by counting the number of images safely classified by the
neural network despite the presence of weight perturbations
within certain thresholds.

The MLP has 5 hidden fully connected layers with 1024
and 512 neurons in the first two layers respectively, and 256
neurons in each of the remaining three. The MLP has been
trained on the MNIST dataset with an accuracy of 99.72%.
Each fully-connected hidden layer is followed by a ReLU
layer. We attempt to verify the robustness of the neural network
for 200 input images, 20 per class of the MNIST dataset.

Fig. 4 shows the verification results when a single layer of
the MLP is perturbed at a time. The percentage of images
verified by our approach, ModelStar, is equal to or greater
than that verified by other approaches, Certificated-Robust
[22] and Formal-Robust [20]. For example, ModelStar has
determined that 189 out of the 200 images under test would be
correctly classified by the MLP even when the entire weight
matrix of the first hidden fully connected layer is perturbed
by 0.03%, whereas Certificated-Robust [22] was able to verify
the correct classification of only 52 out of the 200 images (a
difference of 68.5%). The cost of the improved robustness
verification is paid in execution time: Though the execution
times of ModelStar appear to be better or similar to those of
Certificated-Robust for the earlier layers, Certificated-Robust
is much faster than ModelStar for the latter layers.

1The code is available here: https://drive.google.com/drive/folders/
1GtnlItJoZHLuQDolvWi9s1VnnKWGHTB-?usp=sharing

B. Limitations and Discussion
ModelStar vastly outperforms existing approaches [20], [22]

due to its ability to account for individual weight perturba-
tions, as well as the use of the tightest known convex over-
approximation of the ReLU layer [23]. Despite this improve-
ment in the state-of-the-art, ModelStar has some limitations.
Firstly, the robustness of the neural network, as verified by
ModelStar, is a lower bound, and ModelStar does not provide
a closed form expression of the effects of the perturbations on
the outputs of the neural network, whereas other approaches
[20], [22] provide closed form results. The lack of a closed
form is a price to be paid for verification with increased
granularity i.e., ModelStar’s ability to take individual weights’
perturbations into account. Secondly, like existing approaches
[20], [22], reachability analysis is currently limited to verifi-
cation of the perturbed neural network for a single input at a
time. Thirdly, as Fig. 4 indicates, ModelStar’s execution time
increases with increase in the number of perturbations. How-
ever, research in the reduction of the size and non-linearity
of neural networks [26]–[28] will improve the scalability of
ModelStar.

VI. CONCLUSION

In this paper, we have introduced ModelStar, a reachability-
based method for verifying the robustness of neural networks
against weight perturbations. To this end, ModelStar employs
a novel approach through the use of perturbation maps and
the linearity of parameterized layers. While exact robust-
ness verification remains challenging for large perturbation
spaces, our experiment demonstrates that ModelStar’s over-
approximate verification approach significantly outperforms
existing methods by providing a tighter bound. However, the
improved bound is still limited to a binary answer per input.
Future work will quantify neural network robustness over the
perturbation space to provide a more comprehensive measure
of robustness. We also plan to explore the impact of weight
perturbations in convolutional layers.
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