
IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 628 | P a g e

Optimized Load Balancing Algorithm for

heterogeneous Cloud Environment
Priya Gupta1, Er. Simarjit Virk2

1Department of Computer Science

Bhai Gurdas Institute of Engineering and Technology

Sangrur, India
2Department of Computer Science

Bhai Gurdas Institute of Engineering and Technology

Sangrur, India

 (E-mail: angel.priyagupta@gmail.com, er.simar0126@gmail.com)

Abstract— In cloud computing, the load balancing and

scheduling is used to balance the tasks execution and to utilize

the available resources in an effective manner. In order to

perform load balancing and tasks scheduling in cloud
computing an endless algorithm and schemes are available. In

traditional load balancing machines the distribution of the

jobs to the Virtual Machines (VMs) were not done in an

effective manner as the VM with the highest capability has the

highest chances of task allocation. Due to which the overall

task migration and task completion get effected. This study

develops a novel approach for load balancing in cloud

computing. The task allocation to the VM is done as per the

size of the task and VM collaboratively i.e. the most heaviest

task is allocated to the highly capable VM and the light weight

task is allocated to the small sized VM. For the simulation

purpose, 50 cloudlets and 10 VMs are considered. The results
are evaluated in the form of number of task migration and

time taken for task completion. The evaluated results delineate

that the proposed load balancing algorithm outperforms the

Static round robin, weighted round robin and length based

weighted round robin algorithms.

Keywords— Cloud Computing, Load Balancing,

Resource Utilization, Round Robin Algorithm.

I. INTRODUCTION

In a cloud computing network load balancing is achieved
through reallocation of net load of the entire system among

distinct nodes for achieving enhanced response time along

with efficient resource utilization [1]. The load refers to

network load, CPU load and the memory capacity of each

server. This load is managed by using the different load

balancing mechanisms [2]. The load balancing process aims at

obtaining a situation in network at each point of time under

which each node is neither exhausted with overload nor

remains under overloaded [3-5]. The load balancing

algorithms are required to assure that each and every node of

the cloud is busy in processing a sort of operations [6].These

load balancing techniques work as a load balancer which
balances the load by distributing it to other nodes depending

upon how much busy the server or node is [7]. Only the

current state of the system irrespective of its previous state is

taken into account by load balancing algorithms that are of

dynamic in nature. Few parameters like load estimation, load
comparison, stability of various systems, communication

among nodes etc. are considered while choosing an

appropriate algorithm [8].

II. WHY LOAD BALANCING?

The most crucial part of any network system is its load

balancing capacity as it highly degrades operational capability

and efficiency levels of the entire system [9].Through the use
of cloud resource can be utilized in more efficient and

controlled manner reducing cost to minimum level. The equal

load distribution among nodes is performed. Considering the

loads of 80%, 60%, 40% and 20% over four servers involved

namely A, B, C, and D respectively. Through proper load

distribution each server will be allocated with 50% of the total

load over the entire network. The entire system can offer

higher scalability to enhance the efficiency of whole

distributed system by employing LB middleware [8].Despite

the availability of several load balancing techniques the issue

of distributing load is taken seriously due to the problem of

elasticity involved in it. Different organizations offer different
number of resources for the purpose of provisioning. This

number of resources involved may vary company to company

based over the requirement and their marketing strategies. The

load balancer is responsible for optimizing the response rate

for a particular request as it selects a single server which can

process the request faster with greater efficiency profits

among all the available servers [10].

III. BACKGROUND

Load balancing is referred as an important feature of task

scheduling in clouds where tasks has allotted to the number of

virtual machines. There is possibility of occurrence of a

condition when Virtual Machines are overloaded, their load
must be transferred to the other machines who are under

loaded in order to accomplish the proper utilization of

resources available with least computation time. This task has

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 629 | P a g e

done through several existing load balancing algorithms such

as Round Robin, Size based round robin and improved round

robin. These algorithms provide balancing of loads to the

other virtual machines in an ineffective manner.

The main problem in the existing system was that all the

algorithms perform load balancing with high computation
time. Thus, their computation cost can be reduced further with

the introduction of a novel approach. The FCFS algorithm has

done load balancing in the form of queue regardless of the

load on the virtual machine. Thus, it does not consider the

priority, size of the tasks and resource capability which leads

to the higher response time. Moreover, low virtual machine

has been allotted with a maximum load task which resultant

into high load on the corresponding virtual machine. Now

consider the size based round robin algorithm where the larger

numbers of tasks are allotted to the weightiest Virtual machine

and then others machines with lowest loads sets as free.

Furthermore, the proper utilization of resources is not
achieved. Lastly, consider improved round robin machine

where the problem exists in selecting best virtual machine for

each packet and consequently each number of time the best

machine i.e. similar virtual machine has chosen for each

packet. In addition to this, load lay on a single machine always

and reduces the optimality of the system. Following is the

traditional load balancing algorithm.

Traditional Load Balancing Algorithm

1. Identify the number of executing/pending tasks in each VM and
arrange it in increasing order on a Queue.

(a) Set 𝑛𝑢𝑚𝑇𝑎𝑠𝑘𝐼𝑛𝑄𝑢𝑒𝑢𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔/
𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑎𝑠𝑘𝑠 in each VM and arrange it in

increasing order
2. If the number of tasks in the first item of the queue is greater

than or equal to “1”, then terminate the Load Balancing logic
execution else proceed to the 3rd step.

(a) 𝐼𝑓 (𝑛𝑢𝑚𝑇𝑎𝑠𝑘𝐼𝑛𝑄𝑢𝑒𝑢𝑒. 𝑓𝑖𝑟𝑠𝑡() ≥ 1) 𝑡ℎ𝑒𝑛

Return;
3. If the number of tasks in the last item of the queue is less than or

equal to “1”, then terminate the Load Balancing logic execution
else proceed to the 4th step.

(a) 𝐼𝑓 (𝑛𝑢𝑚𝑇𝑎𝑠𝑘𝐼𝑛𝑄𝑢𝑒𝑢𝑒. 𝑙𝑎𝑠𝑡() ≤ 1) 𝑡ℎ𝑒𝑛

 Return;
4. Identify the Pending Execution Time in each of the VMs by

adding the Pending Execution length from executing, waiting &
paused list and then divided the value by the processing capacity
of the VM.

(a)𝑆𝑒𝑡 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐽𝑜𝑏𝑠𝑇𝑜𝑡𝐿𝑒𝑛 =
 𝐽𝑜𝑏𝑠𝑅𝑒𝑚𝐿𝑒𝑛𝐼𝑛𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡 + 𝐽𝑜𝑏𝑠𝑅𝑒𝑚𝐿𝑒𝑛𝐼𝑛𝑊𝑎𝑖𝑡𝐿𝑖𝑠𝑡 +
𝐽𝑜𝑏𝑠𝑅𝑒𝑚𝐿𝑒𝑛𝐼𝑛𝑃𝑎𝑢𝑠𝑒𝐿𝑖𝑠𝑡
(b)S𝑒𝑡 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 =

 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐽𝑜𝑏𝑠𝑇𝑜𝑡𝐿𝑒𝑛𝑡ℎ/𝐶𝑉𝑚

5. Arrange the VMs based on the least pending time to the highest

pending time and group it, in case two VMs fall in the same
pending time.

(a) Sort the 𝑉𝑀𝑀𝑎𝑝 by the Pending Execution time of

each VM
6. Remove a task from the higher pending time VM, which

contains more than one task and assign this task to the lower
pending time VM, which has no task to process.

(a)While (true)
𝑆𝑒𝑡 𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀 = 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑉𝑀𝑀𝑎𝑝. 𝑠𝑖𝑧𝑒())

𝑆𝑒𝑡 𝐿𝑜𝑤𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀 = 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(0)
𝑉𝑎𝑟𝑙𝑜𝑤𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1;
𝑉𝑎𝑟𝑢𝑝𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1;

(b)While (true)
𝐼𝑓 (𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒()

> 1 &&𝐿𝑜𝑤𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒() < 1)
Break;

𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒() > 1)
𝐿𝑜𝑤𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀 = 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑙𝑜𝑤𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

Lowerposition++
𝐸𝑙𝑠𝑒 𝑖𝑓 (𝐿𝑜𝑤𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒() < 1)

𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀 = 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑉𝑀𝑀𝑎𝑝. 𝑠𝑖𝑧𝑒()
− 𝑢𝑝𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

Upperposition++
Else

𝐵𝑟𝑒𝑎𝑘𝑇ℎ𝑒 𝑂𝑢𝑡𝑒𝑟𝑊ℎ𝑖𝑙𝑒 𝐿𝑜𝑜𝑝
(c) EndWhile

𝑆𝑒𝑡 𝑚𝑖𝑔𝑟𝑎𝑡𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘 = 𝑂𝑣𝑒𝑟𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀. 𝑔𝑒𝑡𝑀𝑖𝑔𝑟𝑎𝑡𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘()
𝐿𝑜𝑤𝐿𝑜𝑎𝑑𝑒𝑑𝑉𝑀. 𝑎𝑠𝑠𝑖𝑔𝑛(𝑚𝑖𝑔𝑟𝑎𝑡𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘)

Break
(d) End While

7. Re execute from the step 1.

8. Then the steps 2 and 3 will decide the load balancing further.
9. This load balancing will be called after every task completion

irrespective of any VMs.

In above defined load balancing algorithm it has been seen

that the task allocation is done on the basis of the load

handling capacity of the machine i.e. the VM with high

capability has the highest chances for large number of task

allocation and other VMs with lowest capability will remain
empty or free. Thus in this manner this strategy of load

balancing leads to the increment in the overheads and cost as

well as it leads to the less efficiency in task completion by the

VMs as a single VM has to handle a large number of tasks due

to which its caliber to perform processing of tasks also

reduces.

IV. PROPOSED WORK

From the literature survey, it has computed that conventional

load balancing algorithms have the capability in balancing

load among different virtual machines but these techniques

are not capable enough in reducing the computation cost with

sharing of loads. Thus, considering this fact, a new technique

has to be proposed which can divide up the load among other

virtual machines in an effective and efficient manner and
capable of producing optimal results.

The existing techniques have been facing the issue of finding

a virtual machine for their task, so a new solution has

proposed. In this new proposed technique two solutions have

been carried out: according to the virtual machine load will be

distributed i.e. higher load will not be assigned to the lowest

machine and vice versa. Moreover, equal load has been

shared among different virtual machines i.e. a problem of

starvation for any VM will not be occurred.

Proposed Load Balancing Algorithm

1. Identify the number of under processing tasks in each VM
and arrange it in order.

(a) 𝑆𝑒𝑡 𝐶𝑜𝑢𝑛𝑡𝑇𝑎𝑠𝑘 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑎𝑠𝑘𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑉𝑀

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 630 | P a g e

2. If the number of tasks in the first and last item of the queue is
greater than or equal to “1”, then terminate the Load Balancing
logic execution else proceed to the 3rd step.

(a)𝐼𝑓 (𝐶𝑜𝑢𝑛𝑡𝑇𝑎𝑠𝑘. 𝑓𝑖𝑟𝑠𝑡() ≥
1) 𝑜𝑟 (𝐶𝑜𝑢𝑛𝑡𝑇𝑎𝑠𝑘. 𝑙𝑎𝑠𝑡() ≥ 1) 𝑡ℎ𝑒𝑛

Return;
3. Calculate the pending time available in each of the VMs , later

also check the length of the cloudlets available to be executed,
and then divided the value by the processing capacity of the
VM.

(a)𝑆𝑒𝑡 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 =
 𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑀𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 −
𝑇𝑖𝑚𝑒𝐶𝑜𝑚𝑐𝑠𝑢𝑚𝑒𝑑 𝑓𝑜𝑟 𝐶𝑜𝑢𝑛𝑡𝑇𝑎𝑠𝑘𝑠;
(b)𝑆𝑒𝑡 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘𝑇𝑜𝑃𝑒𝑟𝑓𝑜𝑟𝑚 =
𝑠𝑢𝑚(𝑇𝑖𝑚𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑇𝑎𝑠𝑘)

(c) 𝑆𝑒𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝑇𝑖𝑚𝑒𝑆𝑙𝑜𝑡 =
 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘𝑇𝑜𝑃𝑒𝑟𝑓𝑜𝑟𝑚 /
 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒;

4. Arrange the VMs based on the maximum time availability to
the minimum time availability and group it, in case two VMs
fall in the same pending time. Sort the VMMap by the same
order as they are in original VMmap.

5. Assign the cloudlet of high execution time to the higher
availability time VM, and assign the low execution task to the
lower available time VM, which has no task to process, or less
available time.

(a)While (true)
𝑆𝑒𝑡 𝑀𝑎𝑥𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀 = 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑉𝑀𝑀𝑎𝑝. 𝑠𝑖𝑧𝑒())

𝑆𝑒𝑡 𝑀𝑖𝑛𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀 = 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(0)

𝑉𝑎𝑟𝑙𝑜𝑤𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1;
𝑉𝑎𝑟𝑢𝑝𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 1;

(b)While (true)
𝐼𝑓 (𝑀𝑎𝑥𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒()
> 𝐴𝑣𝑎𝑖𝑙𝑡𝑖𝑚𝑒 && 𝑀𝑖𝑛𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒() < 𝐴𝑣𝑎𝑖𝑙𝑡𝑖𝑚𝑒)

Break;
𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑀𝑎𝑥𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒() >
 𝐴𝑣𝑎𝑖𝑙𝑡𝑖𝑚𝑒)

𝑀𝑖𝑛𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀
= 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑙𝑜𝑤𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

Lowerposition++
𝐸𝑙𝑠𝑒 𝑖𝑓 (𝑀𝑖𝑛𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑡𝑎𝑠𝑘𝑆𝑖𝑧𝑒()

< 𝐴𝑣𝑎𝑖𝑙𝑡𝑖𝑚𝑒)
𝑀𝑎𝑥𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀
= 𝑉𝑀𝑀𝑎𝑝. 𝑔𝑒𝑡(𝑉𝑀𝑀𝑎𝑝. 𝑠𝑖𝑧𝑒()
− 𝑢𝑝𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

Upperposition++
Else

𝐵𝑟𝑒𝑎𝑘𝑇ℎ𝑒 𝑂𝑢𝑡𝑒𝑟𝑊ℎ𝑖𝑙𝑒 𝐿𝑜𝑜𝑝
(c) EndWhile

𝑆𝑒𝑡 𝑚𝑖𝑔𝑟𝑎𝑡𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘
= 𝑀𝑎𝑥𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑔𝑒𝑡𝑀𝑖𝑔𝑟𝑎𝑡𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘()
𝑀𝑖𝑛𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑎𝑠𝑠𝑖𝑔𝑛(𝑚𝑖𝑔𝑟𝑎𝑡𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘)

Break
(d) End While

6. 𝐹𝑖𝑛𝑎𝑙𝐴𝑠𝑠𝑖𝑔𝑛𝐴𝑟𝑟𝑎𝑦 =
[𝑀𝑎𝑥𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑎𝑠𝑠𝑖𝑔𝑛 𝑀𝑖𝑛𝐴𝑣𝑎𝑖𝑙𝑇𝑖𝑚𝑒𝑉𝑀. 𝑎𝑠𝑠𝑖𝑔𝑛]

7. This load balancing will be called after every task completion
irrespective of any VMs

The following figure depicts the framework for the proposed

load balancing algorithm in cloud computing. The process is

started with the user. The user interacts with the interface and

then interface sets the job queue according to the incoming

tasks. After this the tasks are divided into two queues one for

dependency task queue and another for independent tasks.

After this scheduler coordinates with the resource manager for

resource allocation to the tasks. The resource manager looks

for the available resources and then the proposed load

balancing scheme is applied to manage resource allocation
efficiently. On the basis of the proposed load balancing

algorithm the heavy task is assigned to the heavy virtual

machine and the small task is assigned to the small virtual

machines. In this manner the load balancing is done and the

tasks execution runs smoothly.

Figure 1 Proposed Load Balancing Framework

V. RESULTS ANALYSIS

This work implements the load balancing algorithm for 50

cloud lets. Total 10 virtual machines are considered for the

purpose of implementation and to share the load of cloud lets.

The load balancing is done on the basis of the size of the

virtual machine and jobs or cloud lets. The heavy job is

assigned to the most suitable and highly capable virtual

machine. Java programming platform is used for the purpose

of simulation.

For the purpose of easy access, a user interface is created. In

proposed work, a comparison analysis is done among static

round robin load balancing algorithm, weighted round robin
algorithm; Length based weighted round robin algorithm and

proposed load balancing algorithm. The performance of

proposed work is evaluated in the terms of space shared and

time shared. In space shared the jobs are executed in a

sequence order. As per the space shared mechanism the CPU

executes the single job at the given time of interval and for the

timing the rest of the allotted jobs have to wait for their turn of

execution. A queue is maintained for the jobs that are waiting

for their turn for execution. Thus in this manner the task

User

Interface

Task Manager Scheduler

Proposed Load

balancer
Resource Manager

Resources

 Dependency task queue

 Independent task queue

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 631 | P a g e

migration becomes easier as the task can directly switch from

queue to available virtual machine.

The graph in figure 2 shows the comparison of this

mechanism in the terms of number of task migrations by using

the space shared mechanism. The number of task migration in

static round robin technique is higher in comparison to the
other techniques. Whereas the number of task migration in

proposed mechanism lower and effective.

Figure 2 Comparison Analysis of Task Migration (Space shared)

The graph in figure 3 depicts the comparison of task

migration with respect to the time shared mechanism for

static round robin, weighted round robin, and length based
weighted round robin and proposed work. Initially the

number of task migration in all of the considered

mechanism is lower but with the increment in the number

of virtual machines, the number of task migration for

static round robin and weighted round robin also gets

higher. In this case the number of task migration is

evaluated to be higher for weighted round robin algorithm

but the proposed approach and length based round robin

has lower task migration rate.

Figure 3 Comparison Analysis of Task Migration (Time shared)

The graph in figure 4 and 5 depicts the comparison of

traditional round robin based load balancing mechanisms

and proposed load balancing algorithm. The comparison

analysis is done on the basis of the rate of task overall

completion time. The comparison on figure 5.1 is

analyzed on the basis of the space shared task migration

technique and in figure 5the comparison is done on the

basis of the time shared task migration mechanism. In
both cases, on the basis of the observations, it is

concluded that the overall task completion time for

proposed work is lower in contrast to the rest of the

techniques.

Figure 4 Overall Time taken for task completion (Space Shared)

Figure 5 Overall Time taken for task completion (Space Shared)

The table 1 calibrates the facts and figures that are

observed from the comparison graph of the figure 5.9.

The table depicts the number of migrated tasks by the

virtual machines while applying the various load

balancing algorithms. The static round robin technique is

found to have higher number of task migrations by

different virtual machines. Whereas the proposed work

and length based weighted round robin algorithm the

number of task migration is observed to be 0 during

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 632 | P a g e

various virtual achiness. Similarly the table 2 calibrates

the number task migrating performed during various load

balancing techniques under time shared mechanism. In

this case the proposed work is found to be effective in all

cases i.e. for different virtual machines.
Table 1 Number of Task Migration (Space Shared)

Number Of

Virtual

Machines

Proposed

Approach

Static

round

robin

Weighted

round robin

Length

based

weighted

round

robin

10 0 6 1 0

20 0 9 1 0

30 0 6 1 0

40 0 14 1 0

50 0 4 1 0

60 0 2 0 0

70 0 0 0 0

80 0 0 0 0

90 0 0 0 0

100 0 0 0 0

Table 2 Number of Task Migration (Time Shared)

Number Of

Virtual

Machines

Proposed

Approach

Static

round

robin

Weighted

round robin

Length

based

weighted

round

robin

10 0 10 2 0

20 0 11 7 0

30 0 6 10 0

40 0 10 40 0

50 0 1 0 0

60 0 0 0 0

70 0 0 0 0

80 0 0 0 0

90 0 0 0 0

100 0 0 0 0

Table 3 and 4 depicts the facts and figures that are observed after analyzing

the overall time taken to complete the task by various load balancing

algorithms. The overall completion time should be low for an ideal load

balancing algorithm. Thus the tables conclude that the time taken by proposed

work in both cases i.e. time shared and space shared is lower in comparison to

the rest of the techniques.

Table 3 Task Overall Completion time (Space Shared)

Number Of

Virtual

Machines

Proposed

Approach

Static

round

robin

Weighted

round

robin

Length

based

weighted

round

robin

10 131761.61 150000 150000 140000

20 71196.78 110000 100000 80000

30 55192.43 100000 100000 60000

40 47745.832 80000 70000 55000

50 36215.22 70000 90000 50000

60 33919.56 70000 70000 50000

70 30544.49 70000 70000 49000

80 29995.77 60000 60000 40000

90 27369.452 70000 70000 45000

100 27000 80000 90000 45000

Table 4 Task Overall Completion time (Time Shared)

Number Of

Virtual

Machines

Proposed

Approach

Static

round

robin

Weighted

round robin

Length

based

weighted

round

robin

10 131761.61 180000 150000 140000

20 71196.78 100000 130000 90000

30 55192.43 100000 80000 60000

40 47745.832 70000 80000 50000

50 36215.22 80000 90000 50000

60 33919.56 70000 70000 50000

70 30544.49 80000 80000 48000

80 29995.77 70000 70000 45000

90 27369.452 80000 80000 45000

100 27000 80000 90000 45000

VI. CONCLUSION

The cloud computing comes to the existence to secure the
storage spaces and various other computing resources. It is a

technology that serves as a blessing to present generation of

computerization. In cloud computing the user is facilitated

with software, platform, and infrastructure as a service via a

service provider. The cloud computing has become most

trending field for research work due its popularity and

increased use. The cloud is made up of various components or

resources that are unalike to each other. The cost incurred to

execute the operations or jobs in a cloud also varies and

indirectly it relies on utilization of the resources. Therefore to

maintain the cost and utilization of resources in the cloud, the
load balancing and scheduling is mandatory.

To sum up, this study develops a load balancing scheme in

which the load of job is distributed among the virtual

machines on the basis of the capability of the machines. For

the purpose of implementation, JAVA programming platform

is used. For the purpose of implementation, total 50 cloudlets

and 10 virtual machines are considered. The results are

evaluated in the form of task completion time and task

migration rate. Th comparison analysis of proposed work is

done with static round robin, weighted round robin and length

based weighted round robin algorithm for load balancing. On

the basis of the results, it is observed that the proposed work

IJRECE VOL. 6 ISSUE 3 (JULY - SEPTEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 633 | P a g e

has less migrated task and high task completion time in

contrast to traditional load balancing algorithms.

In future more enhancements in the present work can be

introduced by using the swarm based intelligent optimization

techniques for scheduling the resources and balancing and

allocating the tasks to the VMs. In this way the performance
of the cloud system would also get more optimized and

efficient.

REFERENCES

[1]. D. Chitra Devi et al, “Load Balancing in Cloud Computing

Environment Using Improved Weighted Round Robin
Algorithm for Nonpreemptive Dependent Tasks”, Hindawi,
Vol. 2016, Pp. 1-14, 2016

[2]. Einollah Jafarnejad Ghomi et al, “Load-balancing
algorithms in cloud computing: A survey”, Journal of
Network and Computer Applications, Vol. 88, Pp. 50-71,
June 2017

[3]. Lipika Datta, “Efficient Round Robin Scheduling
Algorithm with Dynamic Time Slice”, I.J. Education and
Management Engineering, Vol. 2, Pp. 10-19, 2015

[4]. Saraswathi Seemakuthi et al, “A Review on Various
Scheduling Algorithms”, International Journal of Scientific

& Engineering Research, Vol. 6, No. 12, Pp. 769-779,
December 2015

[5]. Shalini Joshi et al, “Load balancing in cloud computing:
Challenges & issues”, Contemporary Computing and
Informatics (IC3I), 2016 2nd International Conference on,
May 2017

[6]. Ojasvee Kaneria et al, “Analysis and improvement of load
balancing in Cloud Computing”, ICT in Business Industry

& Government (ICTBIG), International Conference on,
April 2017

[7]. Monjur Ahmed et al, “Cloud Computing And Security
Issues in The Cloud”, IJNSA, Vol 6, Issue 1, Pp 25-36,
2014

[8]. Michael armbrust,”A view on Cloud computing”,
communication of the ACM, vol 53(4), 2009

[9]. Ling Qian,”Cloud computing-An overview”, springer, Pp

626-631, 2009
[10]. Matthias Sommer et al, “Predictive Load Balancing in

Cloud Computing Environments Based on Ensemble
Forecasting”, Autonomic Computing (ICAC), 2016 IEEE
International Conference on, September 2016

[11]. Aarti Vig et al, “An Efficient Distributed Approach for
Load Balancing in Cloud Computing”, Computational
Intelligence and Communication Networks (CICN), 2015

International Conference on, August 2016
[12]. Sidra Aslam et al, “Load balancing algorithms in cloud

computing: A survey of modern techniques”, Software
Engineering Conference (NSEC), 2015 National, February
2016

[13]. Reena Panwar et al, “Load balancing in cloud computing
using dynamic load management algorithm”, Green
Computing and Internet of Things (ICGCIoT), 2015
International Conference on, January 2016

[14]. Agraj Sharma et al, “Response time based load balancing in
cloud computing”, Control, Instrumentation,

Communication and Computational Technologies
(ICCICCT), 2014 International Conference on, December
2014

[15]. Velagapudi Sreenivas et al, “Load balancing techniques:
Major challenge in Cloud Computing - a systematic

review”, Electronics and Communication Systems
(ICECS), 2014 International Conference on, September
2014

[16]. Vishnu Kumar Dhakad et al, “Performance Analysis Of
Round Robin Scheduling Using Adaptive Approach Based
On Smart Time Slice And Comparison With SRR”,
International Journal of Advances in Engineering &
Technology, Vol. 3, No. 2, Pp. 333-339, May 2012.

[17]. Mohammad Shoaib et al, “A Comparative Review of CPU
Scheduling Algorithms”, Proceedings of National
Conference on Recent Trends in Parallel Computing,
November 2014

[18]. Maniyar Bhumi J et al, “Review On Round Robin
Algorithm For Task Scheduling In Cloud Computing”,
International Journal of Emerging Technologies and
Innovative Research, Vol. 2, No. 3, Pp. 788-793, March

2015
[19]. D. Saranya et al, “Load Balancing Algorithms in Cloud

Computing: A Review”, International Journal of Advanced
Research in Computer Science and Software Engineering,
vol. 5, No. 7, Pp. 1107-1111, July 2015

[20]. Dharmesh Kashyap et al, “A Survey of Various Load
Balancing Algorithms in Cloud Computing”, International
Journal Of Scientific & Technology Research, Vol. 3, No.

11, November 2014
[21]. Mayanka Katyal et al, “A Comparative Study of Load

Balancing Algorithms in Cloud Computing Environment”,
International Journal of Distributed and Cloud Computing
Vol. 1, No. 2, Pp. 5-14, December 2013

[22]. Sushil Kumar et al, “Various Dynamic Load Balancing
Algorithms in Cloud Environment: A Survey” ,
International Journal of Computer Applications, Vol. 129,
No. 6, Pp. 14-19, November 2015

[23]. Komal Purba et al, “A Review on Load Balancing
Algorithm in Cloud Computing”, SSRG International
Journal of Computer Science and Engineering, Vol. 1, No.
10, Pp. 19-23, December 2014

[24]. Alireza Sadeghi Milani et al, “Load balancing mechanisms
and techniques in the cloud environments: Systematic
literature review and future trends”, Journal of Network
and Computer Applications, Vol. 71, Pp. 86-98, August

2016

[25]. P.P. Geethu Gopinath et al, “An In-depth Analysis and
Study of Load Balancing Techniques in the Cloud
Computing Environment”, Procedia Computer Science,
Vol. 50, Pp. 427-432, 2015

