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Abstract: The main purpose of the present study is to investigate the ways students’ instrumentation of Computer Algebra 

System (CAS) can help promote their algebraic reasoning while solving polynomial inequalities. In addition, the relation 

between students’ CAS techniques and paper-and-pencil (P&P) techniques are explored, together with the difficulties that 

students may face as they apply these techniques. Research participants are 33 tenth graders at a private mixed gender school 

in Mount-Lebanon, distributed among nine homogenous groups, five of which are selected as focus groups. The study is 

qualitative in nature. Data is collected from pretests, students’ written solutions of four instructional activities, laptop screen 

recordings, video recordings of whole-class discussions, and audio recorded interviews with students in the focus groups. 

The findings of the study show that students’ lack of prerequisite knowledge of the topic of functions and their low level of 

familiarity with GeoGebra software are determinant factors that hinder these students’ instrumentation of CAS and hence 

their reasoning processes as well as their implementation of the solving techniques. High and middle-achieving students’ 

solving techniques acquired little epistemic and some pragmatic values, whereas low achieving students’ solving techniques 

acquired heuristic values. 
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1. Introduction: 

‘Inequalities’, in general, and polynomial 

inequalities in particular, are important topics that 

interweave with most mathematical topics.  According to 

Tanner (1962), they are “the most important tool in the 

workshop of the mathematician and the most responsible 

for shaping mathematics as we now know it” (p. 161); 

further, Alsina and Nelsen (2009) contend that inequalities 

have had a long distinguished role in the evolution of 

mathematics. However, in order to appreciate the value of 

the aforementioned, it is necessary to perform certain 

operational manipulations and consequently establish 

meaning and relationships. This leads to another function 

that is inherent in such a development or the reasoning 

ability. According to Yackel and Hanna (2003), reasoning 

can have many functions including verification, 

explanation, systematization, discovery, communication, 

construction of theory, and exploration.  

Reasoning as a “foundation of mathematics” 

(Stacey & Vincent, 2009, p. 271) had been used by Jones 

(2000) to mean “making reasonably precise statements and 

deductions about properties and relationships” (p. 69). As 

for algebraic reasoning, Kaput  and Blanton (2005) indicate  

 

 

that it includes students’ ability to “generalize 

mathematical ideas from a set of particular instances, 

establish those generalizations through the discourse of 

argumentation” (p. 99).  

The authors have noticed that when solving linear, 

quadratic inequalities, and some kinds of higher order 

factorable polynomial inequalities, in a paper-and-pencil 

environment, students seemingly engage in calculations 

without resorting to reason to find solutions. They tend to 

believe that reasoning is, most of the time, related to 

geometry, consequently, no reasoning is needed when 

working with algebraic activities. 

 

1.1. Problem definition: 

The Lebanese curricula do not stipulate that linear, 

quadratic and some higher order factorable polynomial 

inequalities be full-fledged topics, but are taught as minor 

topics or as prerequisites for other topics. Moreover, 

polynomial inequalities are treated as purely algebraic and 

abstract topics. At the secondary level, textbooks required 

for Lebanese public schools and used by most teachers, 

introduce the said topics to students before the latter are 
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familiar with graphing functions. Here, graphs are used as 

tertiary aids or as aims for their own sake but not to add 

much to students’ conceptual understanding; most of these 

exercises require drill work with lengthy and tedious 

algebraic calculations and construction of sign tables. This 

inconsistency leads students to lose interest and to find it 

difficult to understand the topic of polynomial inequalities.  

Yet, Hussain, Buus, Kiros, Wichmann, Selvarajah, and 

Ahmad (2007) contend that Computer Algebra System 

(CAS) applications are useful to support students’ learning 

ability. CAS are “mathematical applications developed 

with the purpose of solving mathematical problems which 

are too difficult or even impossible to solve by hand. 

Modern versions of CAS applications are known for their 

rather large set of features such as support for graphical 

representations of results, symbolic manipulation, big-

integer calculations, and complex-number arithmetic” (p. 

45).  

Hence, it is conjectured that the Computer Algebra 

System (CAS), as a tool package with different views and 

mathematical environments, can offer a suitable medium 

for solving polynomial inequalities as it can free students 

from drill work.  According to Ruthven (2002), CAS 

allows “instrumenting graphic and symbolic reasoning … 

and influences the range and form of the tasks and 

techniques experienced by students” (p. 275). As a result 

of working with a series of similar tasks, students develop 

a “structured set of the generalizable characteristics of 

artifact utilization activities”. This set which forms a 

“stable basis” for students’ activity was defined by Verillon 

and Rabardel (1995) as utilization schemes. The process of 

developing instrumented techniques and utilization 

schemes is defined as instrumentation or instrumental 

genesis (Drijvers, 2003).  

At this point, some definitions are necessary to add 

clarity to the aforementioned statement. Exhibit 1 depicts 

the necessary definitions to clarify what CAS allows. 

 

Exhibit 1. Supporting definitions 

A technique: It is defined as “a manner of solving a 

task” (Artigue, 2002, p. 248) which, according to 

Lagrange (2005), when “related to the tool that makes 

them possible” becomes an “instrumented technique” 

(p.132). Techniques can be elementary, such as the 

direct application of one single command or a gesture or, 

according to Drijvers (2003), can be composed of a set 

of gestures.  

Gestures: They are taken to mean the “idiosyncratic 

spontaneous movements of the hands and arms 

accompanying speech” (Neill, 1992, p. 37). Trouche 

(2003) posits the use of gestures with the operative 

invariants that guide their form, or the “instrumented 

action schemes” (p. 7).  

Operative invariants: They are defined as the “implicit 

knowledge contained in the schemes” (Trouche, 2004, p. 

286).  

Schemes: According to Vergnaud, schemes are “the 

invariant organization of the behavior” (as cited in Guin 

& Trouche, 2002, p. 205). Consequently, gestures, 

according to Trouche (2005a), form the “observable part 

of an instrumented action scheme” (p.151).  

 

Limitations of CAS have led to the demand for a 

strict syntax when using the software commands. If 

students fail to adapt CAS’s conventions/notations and 

techniques to their existing schemes, difficulties will 

hinder the emergence of students’ instrumentation 

schemes. The aforementioned difficulties or obstacles are 

“technical and/or conceptual barriers encountered in the 

CAS environment that prevent students from carrying out 

the instrumentation scheme they had in mind” (Drijvers, 

2000, p. 195). Therefore, instructors have to pay attention 

to the fact that students need to be well aware of CAS 

potential and the specific conventions/notations to 

integrate such software in their learning in the classroom. 

Consequently, taking the aforementioned into 

consideration, the next section delineates the rationale of 

this study and the particular technical details needed for the 

experiments on hand. 

 

1.2.The rationale for the study: 

This research aims to explore the development of 

grade 10 students’ thinking and solving techniques in a 

CAS environment while learning “even-powered and odd-

powered” polynomial inequalities. From the historical 

point of view, since inequalities are associated with the 

order, they arose as soon as people started using numbers, 

making measurements, and later, finding approximations 

and bounds. Students, according to Sangwin (2015), at the 

International Baccalaureate Higher Level (HL) 

Mathematics, are assumed to be able to express the solution 

set of a linear inequality on the number line and in set 

notation and are also expected to know the properties of 

order relations.   

The importance of inequalities in the classroom 

arises as soon as the ordering of numbers (in the primary 

grades) and solving linear inequalities by algebraic and 

graphical methods (in middle grades) is considered. In-

plane and solid geometry, inequalities appear naturally 

when comparing measures (lengths, areas, volumes, 

etc…), in determining the existence or non-existence of 

particular figures, and solving optimization problems.  

More specifically, this study seeks to inspect how 

the instrumentation of CAS can help students promote their 

algebraic reasoning while solving polynomial inequalities. 

The study also investigates the mutual effect of P&P 

(paper-and-pencil) techniques and CAS techniques and the 

possibility of transfer of techniques between the two 

environments.  From one side, students can try to apply the 

P&P techniques while working with CAS or try to adapt 

the CAS techniques while working in a P&P environment. 



The Journal of Middle East and North Africa Sciences 2018; 4(02)            http://www.jomenas.org 

 

   
3 

The technical (or conceptual) difficulties that students 

encounter are also investigated.  

This research highlights the issues of CAS 

integration in the Lebanese curriculum and how could it 

contribute to filling the gap in the Lebanese research 

structure or even in the research structure at the regional 

level. Moreover, the study highlights the matter of 

sequencing of the topics within the Lebanese mathematics 

curriculum, taking the topics of polynomial inequalities 

and functions as an example. 

 

2. Literature Review: 

Earlier studies pointed to the influence of CAS use 

on building students’ mathematical knowledge (Guin & 

Trouche, 2002) and thinking (Drijvers & Graveneijer, 

2005). Additional studies explored the difficulties that 

students face when working in CAS environments 

(Drijvers, 2000, 2003), while other studies investigated 

how working with CAS affects students’ mathematical 

reasoning (Kramarski & Hirsch, 2003) and the techniques 

that they use (Kieran & Drijvers, 2006).  

 

2.1. Knowledge and technology:   

Teachers’ knowledge, according to Shulman (1986), 

was defined and tested, as in California Teachers 

Examination, in terms of subject matter, pedagogical skill, 

some aspects of physiology, knowledge of theories and 

methods of teaching. A research-based view emerged in the 

1980s, where knowledge of subject matter was nearly 

substituted by knowledge of organization and management 

of classrooms as a necessary asset and skill for an expert 

pedagogue (Berliner, 1986). 

At the time of Shulman, technology’s relationship to 

pedagogy and content had not yet been discussed. After the 

1980s, technologies, mainly referring to digital computers 

and computer software, came to the forefront of 

educational discourse. The view of ‘knowledge of 

technology’ as being isolated from knowledge of pedagogy 

and content became inappropriate (Mishra & Koehler, 

2006).  

Today with the widespread use of modern 

technology, it became inevitable that most students have to 

deal with this technology. Moreover, according to Hughes 

(2005), teachers learning about technology from a content 

perspective are more prone to use it to support content 

learning. New technologies can offer opportunities for 

widening the scope of mathematical concepts that students 

are able to discover (Dana-Picard, 2005). New 

technologies can, according to Roe, Pratt, and Jones 

(2003), foster the “genesis of connections with complex 

scientific ideas” (p. 1099).  

 

2.2 GeoGebra (GG) and Computer Algebra Systems 

(CAS): 

This research concentrates on the instrumentation of 

CAS implemented by the tenth graders while solving 

polynomial inequalities. The CAS, used in this study, is a 

part of GeoGebra that was invented in the early 2000s. 

GeoGebra is a community-supported open-source 

mathematics learning environment that integrates multiple 

dynamic representations, various domains of mathematics 

and a rich variety of computational utilities for modeling 

and simulations. It is a new, cost-free and very innovative 

technology that can be used to support the progressive 

development of mental models appropriate for solving 

complex problems involving mathematical relationships. 

The software originated in the Master’s Thesis Project of 

Markus Hohenwarter, at the University of Salzburg, in 

2002.  

It was designed to combine features of dynamic 

geometry software and computer algebra systems in a 

single, integrated and easy-to-use system for teaching and 

learning mathematics (Hohenwarter & Preiner; cited in 

Hohenwarter & Lavicza, 2011). The GeoGebra project 

represents a form of “synergy or concerted effort between 

technology and theory, individual inventions and collective 

participation, local experiments and global applications” 

(Bu & Schoen, 2011). As indicated by Lingguo Bu, Spector 

and Haciomeroglu (2011), a synthesis of the theoretical 

frameworks including Realistic Mathematics Education 

(RME), Model-Facilitated Learning (MFL), and 

Instrumental Genesis (IG) can be used when teaching and 

learning mathematics in a GeoGebra environment.  

The Lebanese curriculum considers the “calculator 

with memory” as a tool for performing calculations in 

primary classes, and hints at “the possibility of using the 

computer” as “technological novelties which will have 

benefits on the formation” (CERD, 2007). Within the 

statement of the objectives of this curriculum, only a shy 

indication of technology use was made without specifying 

clear methods and plans for integrating this technology.  

Technology integration into teaching and learning is 

not based, most of the time, on awareness and preparation, 

but on teachers’ personal perceptions and views. New 

technologies offer the possibility of approaching problem-

solving in novel ways that depend on visualization. In 

teaching mathematics, visualization is essential to develop 

intuition and to clarify concepts. It is believed that 

visualization can be a powerful tool for better 

understanding of some basic mathematical facts as is the 

case of drawing pictures/figures to solve the problem. 

Drawing figures and visualization open new avenues to 

creative ways of thinking and teaching. Thus, GeoGebra is 

believed to be a tool package, including CAS, that can 

furnish a suitable environment where visualization and 

graphs are devised to solve polynomial inequalities.  

 

2.3 Inequalities: 

Inequalities, associated with the order, “arose as 

soon as people started using numbers, making 

measurements, and later, finding approximations and 

bounds” (Alsina & Nelsen, 2009, p. xvi). The Hindu and 
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the Chinese knew some kinds of inequalities as geometric 

facts (Fink, 2000). After that, nothing much happened until 

Newton and Cauchy, a century later. Algebraic processes 

have not been expressed by symbols for a long time and a 

mathematical expression was initially oral. Ancient 

inequalities, too, were expressed by verbal registers 

(Bagni, 2005).  

In this respect, Lakoff and Núñez note that: “It may 

be hard to believe, but for two millennia, up to the 16th 

century, mathematicians got by without a symbol for 

equality” (Lakoff & Núñez; cited in Bagni, 2005). This 

agrees with Tanner (1962) when he says: “It is fascinating 

to observe how the Greeks, without any symbolism to help 

them, were able to grasp so thoroughly the implication and 

power of inequalities” (p. 161). To express that one area is 

larger than another, Euclid, for example, used the words: 

“falls short of” or “is in excess of” but no arithmetic of 

inequalities for numbers is indicated by any of the ancient 

traditions (Fink, 2000, p. 120). Also, Alsina and Nelsen 

indicate that: 

“The symbol (=) for equality appears to have 

been introduced by Robert Record (c. 1510–1558) in his 

book The Whetstone of Witte, published in 1557. This 

symbol did not appear in print again until 1618, but soon 

thereafter replaced words commonly used to express 

equality, such as aequales (often abbreviated aeq), esgale, 

faciunt, ghelijck, and gleich. The symbols > and < to 

denote strict inequality appeared a few years later, in The 

Analytical Arts by Thomas Harriot (1560–1621), published 

in 1631. (…) Harriot states the meaning for > and < quite 

clearly: Signum majoritatus ut a > b significet a majorem 

quam b, and Signum minoritatus ut a < b significet a 

minorem quam b (a > b means “a” is larger than “b”, and 

a < b means “a” is smaller than “b”). (…) Nevertheless, 

1631 is the birth date for > and <. Pierre Bouguer (1698–

1758) used ≧ and ≦ in 1734, while John Wallis (1616–

1703) used similar notation but with the bars above the 

inequality symbols” (Alsina & Nelsen, 2009, p. xviii). 

 

Today, inequalities are present in nearly every 

branch of mathematics, and the study of inequalities has 

become a field by itself. They interweave on various 

mathematical topics including algebra, trigonometry, linear 

programming and the investigation of functions. 

Inequalities, according to Tsamir, Almog, and Tirosh 

(1998), also provide a complementary perspective to 

equations. Solving inequalities, according to Bagni (2005), 

used to be achieved by solving an equation that practically 

replaces the assigned inequality. Then the binding 

conditions that govern the accepted solutions of the 

considered equations were expressed by inequalities. Yet 

techniques for equation solving, when applied to 

inequalities, have led sometimes to wrong final solutions. 

However, inequalities can be solved using different 

strategies, including numerical and algebraic 

manipulations, drawing graphs, and using the number-line.  

Despite recommendations by the National Council 

of Teachers of Mathematics (NCTM) to teach inequalities 

at all grade levels, these recommendations have received 

relatively little attention and are (especially, polynomial 

inequalities) usually discussed in the upper grades of the 

secondary school. The Lebanese curriculum tackles the 

topic of ‘inequalities’ in a fragmented and inconsistent way 

across grade levels, even, without offering an explicit 

method for approaching the topic. To illustrate, inequalities 

are tackled explicitly in the eighth grade with a focus on 

linear inequalities. Later on, in the second year of the 

secondary education, the curriculum addresses the topic of 

“studying the sign of quadratic trinomials and some kinds 

of higher order factorable polynomial inequalities”.  

Curricular approach to teaching the topic of 

inequalities is, most of the time, procedural and theoretical. 

Besides, when teaching inequalities, teachers incorporate 

artifacts without enough lesson planning and adequate 

preparation of the aforementioned lesson, which creates 

difficulties for students.  Difficulties, according to Tsamir, 

Almog and Tirosh (1998), include: incorrectly deducing 

signs of factors from sign of product / quotient, solving an 

equation instead of an inequality, multiplying / dividing by 

factors that are not necessarily positive, forming 

meaningless connections with quadratic roots, and solving 

the square of the given inequality.  

 

2.4. Reasoning: 

Though the term ‘reasoning’, as indicated by Yackel 

and Hanna (2003), is mostly used among mathematics 

educators without defining it, yet some mathematicians use 

the term in different contexts. Jones (2000), for example, 

identifies mathematical reasoning as “making reasonably 

precise statements and deductions about properties and 

relationships” (p. 69). Reasoning, according to Walle, 

Karp, and Bay-Williams (2013), can also be taken to mean 

“the logical thinking that helps us decide if and why our 

answers make sense” (p. 4). This is in line with Lithner 

(2008) who considers reasoning as “the line of thought 

adopted to produce assertions and reach conclusions in task 

solving” (p. 257). Mathematical reasoning can be 

communicated through drawing, writing, talking, and also 

by mixing natural language and algebraic expressions.  

According to Greenes and Findell (1999), 

mathematical reasoning develops when students become 

able to interpret algebraic equations using pictorial, 

graphics, and symbolic representations. Algebraic 

reasoning - a particular form of mathematical reasoning - 

is the “process in which students generalize mathematical 

ideas from a set of particular instances, establish those 

generalizations through the discourse of argumentation, 

and express them in increasingly formal and age-

appropriate ways” (Kaput & Blanton, 2005, p. 99). The 

algebraic reasoning is important because it drives students’ 

understanding of mathematics beyond the result of specific 

calculations and the procedural application of formulas. 
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Algebraic reasoning can have many functions in 

mathematics, including verification, explanation, 

systematization, discovery, communication, construction 

of theory, and exploration (Yackel & Hanna, 2003).  

This research explores how working in a CAS 

environment can contribute to the promotion of students’ 

algebraic reasoning when solving polynomial inequalities. 

It is conjectured that working in CAS environment makes 

it easier for students to understand tasks than when working 

in a traditional, purely verbal, and algebraic context found 

in textbooks. CAS offers a potential for students to search 

for invariants and to propose corresponding conjectures. 

But many studies (for example, Drijvers, 2000) indicate 

also that students may encounter obstacles when working 

in such an environment.   

 

2.5. Difficulties:  

Obstacles encountered in a CAS environment are 

interpreted by Drijvers (2002) as an “unbalance of the 

conceptual and technical aspects of an instrumentation 

scheme” (p. 221). They may result from the black box 

character of the CAS (as it does not show the methods or 

techniques by which it obtains its solutions) or from the 

lack of congruence between the notations, language, and 

techniques in CAS and paper-and-pencil environments 

(Drijvers, 2003). Obstacles may be indicators of the 

difficulties that students encounter while developing 

conceptual understanding. Conceptual difficulties, 

according to Heck (2001), resulting from the differences 

between the algebraic representations found in the 

computer algebra environment and those encountered in 

traditional mathematics. While to Lagrange (2005), these 

difficulties may result from the difference between the 

techniques that students use within the computer algebra 

environment and those used in the traditional paper-and-

pencil environment; a view shared by Drijvers and 

Gravemeijer (2005). To illustrate some of the difficulties 

while working with CAS, Drijvers (2000) enumerates the 

following ones:  

• The difference between the algebraic representations 

provided by the CAS and those that students expect and 

conceive as ‘simple’. 

• The difference between numerical and algebraic 

calculations and the implicit way that this difference is 

dealt with CAS. 

• The limitations of the CAS and the difficulty in 

providing algebraic strategies to help the students 

overcome these limitations. 

• The inability to decide when and how computer algebra 

can be useful. 

• The flexible conception of variables and parameters 

when implementing CAS.  

 

2.6 Theoretical Framework (Theory of Instrumentation):  

Vygotsky (1934) contends that “psychological tools 

master natural forms of individual behavior and cognition” 

(p. xxv). Before Vygotsky, the emphasis was on cognitive 

development resulting from interaction with material 

artifacts. In the year 1930, in addition to those of Vygotsky, 

attempts began to describe the psychological processes 

through which such a development could be envisaged. 

Based on Vygotsky’s hypothesis which states that 

“artificial systems can extend man’s cognitive capacities” 

(cited in Guin & Trouche, 1999), Verillon and Rabardel 

(1995) indicate that instruments bring about changes, “both 

structural and functional, in the subject's cognition” (p. 6). 

Artifacts, according to Verillon and Rabardel (1995), refer 

to all “objects of material culture to which an infant has 

access during his/her development” (p. 5).  

Artifacts, regardless of their level of sophistication, 

have been a part of the human existence and activity and 

will continue to be so for centuries to come. Humans used 

available artifacts, elaborated and created others in a 

continuous process of use and invention, such as the ruler 

and the compass, artifacts from Euclid’s era, formed the 

basis of the human mathematical activity and were at the 

roots of elementary geometry. Whichever is the artifact, the 

aim is not (only) the technical, but also the mathematical 

processes that evoke the properties of objects. The subject 

can use the artifact to carry out concrete actions; on the 

other hand, the artifact allows the formation of the subject’s 

level of consciousness and cognition. 

Trouche (2004) indicates that when specifying the 

artifact’s “user and uses”, the term ‘tool’ substitutes the 

term ‘artifact’ (p. 282). Tools are important for 

“sustaining” and “conditioning human activity” and even, 

according to Noss and Hoyles, “shape” the environment 

(cited in Trouche, 2004, p. 282). They can be used for 

modeling real-world problems, providing visualizations 

with interactive illustrations, and improving student’s 

motivation and cognitive development. Tools, according to 

Doorman, Drijvers, Dekker, Van Den Heuvel-Panhuizen, 

De Lange, and Wijers (2007), “create new possibilities for 

problem solving in mathematics” (p. 415), and, according 

to Barzell, Drijvers, Maschietto and Trouche (2005), guide 

the choice of the solving strategies. 

 What is important about tools is the operating 

method which they impose on the user. The user, in turn, 

can “appropriate the tool for him/herself” (Verillon & 

Rabardel, 1995, p. 8) and “integrate it with his/her activity” 

through the process of “instrumental genesis” (Guin & 

Trouche, 2002, p. 205). The significance then is not the tool 

per se, nor the interaction of student and tool, but is the 

aims for which a tool is used and the schemes of its use. 

This evokes the distinction between the artifact and the 

instrument. The instrument is made up of the artifact and 

it's utilization schemes which are continuously updated and 

elaborated through the use of the artifact to accomplish 

certain tasks. Utilization schemes are defined by Verillon 

and Rabardel (1995) as “the generalizable characteristics 

of artifact utilization activities” (p. 12). As an intermediate 

universe (solution space) between the subject and object, 
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the instrument will then be formed from the artifact, “either 

material or symbolic”, and from “one or more associated 

utilization schemes” (Verillon & Rabardel, 1995, p. 13). 

The elaboration and evolution of instruments is a long and 

complex process that Rabardel names ‘instrumental 

genesis’ (Verillon & Rabardel, 1995). 

Instrumental genesis, according to Artigue (2002), 

is directed “towards the artifact” and “towards the subject” 

and concerns the “emergence and evolution of utilization 

schemes, in which technical and conceptual elements co-

evolve” (p. 250).  

The two-dimensional relation between technical and 

conceptual aspects of a tool is reflected in the difference 

between instrumentation and instrumentalization (Drijvers 

& Gravemeijer, 2005); in other words, the effect is a two 

way coordinated process, including Instrumentation and 

Instrumentalization, which according to Trouche (2004) 

are identified as:  

- Instrumentalization process: directed toward the artifact. 

- Instrumentation process: directed toward the subject.  

The instrumentalization process involves the 

emergence and development of the students’ utilization 

schemes when performing a certain task. Performing a 

given task may take place at two levels. At the first level, 

students may give a technical solution of the task by using 

the artifact mechanically, i.e., repeating, in an automatized 

way, a set of instructions, without wondering why their 

solutions work. At this level, the justification of the 

correctness may not be at stake. At the second level, the 

solution becomes “meaningful” when it is justified and 

commented with reference to the properties and theorems 

in action.   

According to a framework proposed by Pierce and 

Stacey (2004) for planning to teach and monitoring the 

progress of students using CAS for mathematics, the 

knowledge and skills for using CAS can be thought of 

“along with a continuum”. At one extreme of the 

continuum, comes the “knowledge that relates only to the 

machine” involving “the technical aspect of the effective 

use of CAS”, and at the other extreme comes the 

“mathematical knowledge”. The technical aspect relates to 

students’ ability to access the capabilities of CAS to 

achieve mathematical goals (Pierce and Stacey, 2004, p. 4). 

In between, however, there is a substantial body of 

knowledge that involves both mathematics and the 

machine.  

The instrumentation process takes place through 

developing instrumented techniques and utilization 

schemes (Drijvers, 2003). A technique, according to 

Artigue (2002), is “a manner of solving a task” which is 

evaluated in terms of its pragmatic value by focusing on the 

“productive potential (efficiency, cost, field of validity)”, 

and in terms of  its epistemic value as it contributes to the 

“understanding of the objects” (p. 248). Moreover, 

according to Artigue (2002), a technique has a “heuristic 

role when it refers to the anticipations allowing to plan 

actions” (p. 259). This view, to the value of techniques, is 

shared by Lagrange (2005) who states that a technique 

plays a “pragmatic role when the important thing is to 

complete the task or when the task is a routine part of 

another task” or an “epistemic role by contributing to an 

understanding of the objects it handles” (p. 271). A 

technique, according to Lagrange (2005), becomes an 

instrumented technique when it is related to “the tool (…), 

to the mathematical domain and to the user’s 

representations of both” (p. 132). 

 

3. Methodology: 

3.1.Research Questions : 

This paper seeks to answer the following questions: 

1. How can the instrumentation process of CAS promote 

students’ algebraic reasoning while solving polynomial 

inequalities?  

2. What is the relation between students’ CAS techniques 

and paper-and-pencil (P&P) techniques when solving 

polynomial inequalities? What are the transfer and 

adaptation techniques between CAS environment and 

paper-and-pencil (P&P) environment when solving 

polynomial inequalities? 

3. What difficulties (technical or conceptual) do students 

experience when using CAS (in the GeoGebra 

environment) to solve polynomial inequalities? 

 

In fact, the study seeks to inspect how the 

instrumentation of CAS helps students to promote their 

algebraic reasoning. The study also investigates the mutual 

effect of P&P technique and CAS techniques and the 

possibility of transfer of techniques between the two 

environments. From one side, students will try to apply the 

P&P technique while working with CAS and from the other 

side they will try to adapt the CAS techniques while 

working in a P&P environment. 

 

3.2. Participants, pretest and class sessions: 

This research involves 33 tenth grade students, 14 to 

16 years old, in a private, mixed-gender Lebanese school 

located in Mount-Lebanon. The students are distributed 

among nine homogeneous groups classified according to 

their achievement levels and teacher’s recommendation 

during the previous and current years. High, middle and 

low achievers are referred to by the letters HA, MA and LA 

(representing the first letters of each of the two words) 

respectively. The symbol (G#) is used to indicate the group 

number, and the symbol (G#.#) is used to indicate the 

number of a particular student within that group. One group 

of high achievers (HAG), two groups of middle achievers 

(MAG1 and MAG2), and two groups of low achievers 

(LAG1 and LAG2) are chosen as focus groups and are 

indicated by the letter F.   

Students were introduced to the general aims of the 

study, the content of the six class sessions (Exhibits 2a, 2b, 

3a, 3b, 4a, 4b, 5a, and 5b), and the general guidelines for 
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working in each session. The design principle ‘structured 

problem solving’, by Stigler and Hiebert (1999), is 

followed in the design of the sessions of this study. Each 

student also received a ‘Parental Consent Form’ and an 

‘Assent Form’ that were signed by the students and their 

guardians and collected by the teacher on the next day. 

Students were also told that they had to sit for a pretest 

(Exhibit 1) and that their solutions to the test and the four 

activities will be kept confidential, and that their solutions 

of the instructional activities will not be included in the 

calculation of their marks. Each group had a laptop 

equipped with GeoGebra (GG) and DVC.  

In the first session (S1), the teacher, using a screen 

projector, introduced the Algebra View (AV), Graphics 

View (GV) and the Input Bar, from CAS. In the second 

session (S2), the teacher introduced Debut Video Capture 

(DVC) software. Four other sessions (S3, S4, S5 and S6) 

were each dedicated to implementing one of the 

instructional activities related to linear inequalities, even-

powered polynomial inequalities, odd-powered 

polynomial inequalities and solving polynomial 

inequalities. After each session, students of the focus 

groups were interviewed so that they could reflect on their 

thinking and solution strategies, conjecturing, and 

reasoning. Students also reflected on the difficulties that 

they faced during the teaching sessions. The teacher 

distributed worksheets, managed time, and guided the 

whole class discussion; he/she then put together the results 

students found out at the end of the session. The teacher 

then collected students’ written work and saved the 

computer files.  

 

3.3. Data Analysis: 

The data collected from pretests assisted in 

classifying students according to their achievement levels. 

Other forms of data included students’ written solutions to 

four activities (Exhibits 2a,b; 3a,b; 4a,b; and 5a,b), DVC 

files, and audio recorded interviews. While analyzing data, 

the researchers looked for patterns and episodes of 

students’ solutions that involved technical and conceptual 

elements. After that, it became feasible to deduce whether 

these elements are intertwined, and develop interactively 

and consequently would lead students to build utilization 

schemes (usage schemes and instrumented action 

schemes).  

Moreover, students’ solution strategies with the 

language, notations, symbols, and representations when 

implementing these strategies are explained and 

commented upon; this has helped to answer the first 

research question. In addition, the techniques that students 

used in their solutions of the different activities and the 

possible transfer of techniques from one environment to 

another (CAS and P&P) are highlighted.  During the 

analysis of students’ written work, the value of students’ 

techniques (heuristic, pragmatic or epistemic) and their 

contribution to the process of instrumentation are 

indicated. The results of analyzing students’ techniques, in 

this way, has helped answer the first research question 

about the instrumentation of CAS and also the second 

research question about the relation between CAS 

techniques and P&P techniques.  

Moreover, saved screen recordings that included 

snapshots of laptop screens, accompanied by audio 

recordings of group’s discussions (from DVC), have 

helped to determine the environments in which students 

worked, the tools and commands that they used to solve 

which parts of an activity, and for which purposes. This 

helped researchers to draw conclusions about how the 

instrumentation of CAS allowed students to promote (or 

not) their algebraic reasoning; these conclusions 

contributed to the answer of the first research question. The 

analysis also revealed information about the possible 

difficulties that students encountered when using CAS; this 

contributed to the answer of the third research question.  

During the description phase of students’ work, it 

was noticed that the work of the group MAG1 is similar, in 

most aspects, to the work of group MAG2; the same 

applied to the work of the groups LAG1 and LAG2. 

Consequently, it was decided that the description and 

analysis be limited to one middle-achiever group (MAG2) 

and one group (LAG2) of low achievers. The work of each 

of these groups is described and then analyzed in terms of 

the utilization schemes, of the value of their solving 

techniques, and the reasoning process that students went 

through while using the different tools to perform each 

category of tasks. Then, the possibility of transfer of 

techniques between the two environments is considered. 

Finally, the difficulties that students encountered during 

their work with the activities are described.  

Here, and for the rest of the analysis, an elementary 

technique is taken, according to Drijvers (2003), to mean 

the “direct application of one single command” or 

“gesture” while a composed technique is taken to mean “a 

set of such gestures” (p.100).  

To facilitate the reporting of the analysis of the 

results, each activity of the instructional unit is subdivided 

into minor tasks. A minor task is coded with a pair of 

numbers. To illustrate, the third minor task of the fourth 

activity is referred to as minor task 4.3. The first number 

(4) refers to the number of the activity, and the second 

number (3) refers to the part of that activity. Then, minor 

tasks of the same nature are classified into four categories: 

i. The first category involves the investigation of the way 

the sign of a linear function varies. 

ii. The second category involves the investigation of the 

graph behavior of polynomial functions. 

iii. The third category involves the investigation of the way 

the sign of polynomial functions varies.   

iv. The fourth category involves the solution of polynomial 

inequalities. 
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4. Results: 

4.1. Addressing the research questions: 

4.1.1.First research question:  

How can the instrumentation process of CAS promote 

students’ algebraic reasoning while solving polynomial 

inequalities?  

The instrumentation theory focuses on the mediating 

role of tools (Artigue, 2002; Trouche, 2004); Lagrange 

(1999) defines mediation as “the use of properties of a 

given object to act on another” (p. 56). This research 

identifies two main types of mediation between the tools 

and the students, namely, the epistemic mediation and the 

pragmatic mediation. According to Rabardel and 

Bourmaud (2003), “An epistemic mediation contributes to 

understanding of the object involved, ‘its properties, its 

evolutions in line with the subject’s actions’ (p. 668), 

whereas a pragmatic mediation concerns actions on the 

object, ‘transformation, regulation management’” (p. 669).  

Results reveal that, on three occasions, CAS played 

an epistemic mediation role and could help students to 

build elementary usage schemes. 

On the first occasion, students (HAG) made a 

conjecture about the graph behavior of the function 

“g�x� � x� 	 1,” depending on visual perception of what 

they saw on the GV screen. Then, they used the Zoom tool 

(several times) to evaluate the reasonableness of their 

perception. The same procedure was repeated with another 

function “h�x� � x� 	 2x�” whose graph was apparently 

confounded with that of the x-axis near x � 0.  

Students were alternatively using the Zoom tool, 

group discussion and making new conjectures, at the same 

time discovering new mathematical knowledge; for 

example, the compact nature of the coordinate axes as sets 

of real numbers. It can be inferred that this tool played an 

epistemic mediation role and helped students to build an 

elementary usage scheme oriented at investigating the 

graph behavior of a polynomial function at a particular 

point (minimum) of the graph. This elementary usage 

scheme involves technical aspects (using the Zoom tool by 

scrolling the wheel of the mouse inside the GV screen) and 

conceptual aspects (recognizing the compact nature of the 

coordinate axes as sets of real numbers).  

On a second occasion, students (group HAG) used 

the Zoom tool to determine x-intercepts (which were not 

whole integers) while solving polynomial inequalities by 

the graphical method. They zoomed (several times), on the 

point where the graph cuts the x-axis so that the x-intercept 

appeared. This was similar to what is done when finding a 

reasonable approximate value of a zero of a function: 

performing several table iterations.  

Again, the Zoom tool played an epistemic mediation 

role between the students and the task at hand and helped 

students to build another elementary usage scheme, 

oriented at determining the x-intercepts of a graph by using 

this tool. This scheme involves technical aspects (scrolling 

the wheel of the mouse inside the GV screen) and 

conceptual aspects (knowing that x-intercepts are points on 

the graph whose ordinates are zeros). Conceptual aspects 

(also involved calculating zeros of a function by 

performing several iterations to determine the solution of 

an equation). 

On the third occasion, after describing the graph 

behavior of a number of odd-powered polynomial 

functions, students (group MAG2) were able to relate the 

form of the algebraic representation to the form of the 

graph to describe the graph behavior of a new function 

without using CAS to graph this function.  

 

4.1.1.1. Instrumentation of CAS:  

CAS tools allow students to move from descriptions 

(of graph behaviors) that depend on the visual perception 

of what appeared on the GV screen, to descriptions that 

depend on mental conceptions which are developed as a 

result of plotting several functions of the same type (odd-

powered polynomial functions). For students, the algebraic 

representation became, according to Mariotti (2000), “a 

sign referring to a meaning” (p.36). Here, students shifted 

from a “perceptual to a conceptual model of understanding, 

that is, from being able to recognize, classify, and describe 

shapes of graphs to being able to define and deduce 

attributes and relationships among them” (Rivera, 2007, 

p.285). It can be concluded that CAS has played an 

epistemic mediation role, as the different CAS tools used 

helped the students to promote their conceptual 

understanding of the nature of the mathematical objects 

(polynomial functions) and to use this understanding to 

make new conjectures.  

Accordingly, at the conclusion of the afore-stated 

three occasions, it can be inferred that the Zoom tool has 

played an epistemic mediation role and helped students to 

build usage schemes. Yet, each of these elementary usage 

schemes, could not be developed into instrumented action 

schemes because, according to (Drijvers, 2002), students 

were not able to perform the mental conceptions and 

technical actions “several times in similar situations, so that 

it becomes part of the ‘repertoire’ of the student” (p. 223).  

 

4.1.1.2. Reasoning: 

The available data reveals that students’ reasoning 

is grounded on the connecting solutions that have shown 

consistency across different methods (for example, 

graphical and numerical). However, students’ command 

process remained weak, with an avoidance of mathematical 

references. On the other hand, the primacy of numerical 

reasoning, in the P&P, did not prevent students from 

showing a preference for graphs. This may be because 

alternating between algebraic and graphical representations 

(in CAS) requires only one keystroke, rather than complex 

technical and conceptual capabilities that students do not 

possess.  

It is also possible that the students’ behavior within 

the institutional culture is biased towards a particular 
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method in teaching mathematics, in general, and 

inequalities in particular. At the same time, students have 

prioritized the combined use of symbolic, verbal, numeric, 

but not pictorial representations while reasoning. 

The study’s findings suggest that an increased 

understanding of the solution of the polynomial 

inequalities by the graphical method has been reached, but 

that the integration of simple or elementary schemes into 

more comprehensive schemes or instrumented action 

schemes requires a high level of mastery of the component 

schemes, and that the instrumentation of CAS is a difficult 

process.  

It was generally expected that students would 

instrument CAS to promote their reasoning and hence their 

understanding of the topic of polynomial inequalities, as a 

result of their interaction with CAS. Yet, students’ work 

still showed weaknesses both in the use of the tools, their 

reasoning process and also in the understanding of 

polynomial inequalities.  

 

4.1.2.Second research question:  

What is the relation between students’ CAS techniques and 

paper-and-pencil techniques when solving polynomial 

inequalities? What are the transfer and adaptation 

techniques between CAS environment and paper-and-

pencil environment when solving polynomial inequalities? 

 

In the P&P environment, students implemented 

numerical calculation techniques, while, in the CAS 

environment they implemented a number of elementary 

usage techniques including the graphing technique, a 

technique for determining x-intercepts and a technique for 

determining the coordinates of the extremum points. Later, 

students integrated some of these elementary techniques 

into composed or complex techniques; for example, the 

composed technique for investigating the graph behavior 

of polynomial functions, the composed technique for 

investigating the way the sign of polynomial functions 

varies (in the GV), and the complex technique for solving 

polynomial inequalities (in the GV).  

On some occasions, the implementation of 

techniques acquired a heuristic value, as this was 

dependent on experience and routinization, while the 

techniques’ epistemic values remained limited. This can be 

inferred because the output from the CAS did not elicit a 

need, among students, for the epistemic value to be derived 

from P&P techniques.  

 Moreover, it can be inferred that the use of CAS 

created the possibility of checking students’ P&P solutions 

and clarified the methods in the two environments namely, 

the P&P and the CAS environments. For example, students 

used the graphical method to check the numerical 

calculations method while, on other occasions, they used 

the numerical calculations method and the table-of-signs 

method to check the solutions obtained by the graphical 

method. In rare cases, a transfer of techniques (from P&P 

to CAS) was identified, such as when students (groups 

HAG and MAG2) investigated, in the GV, the way the sign 

of the given functions varied or when they solved 

polynomial inequalities by graphical methods.   

The study’s findings suggest that the P&P and the 

CAS methods complement each other and improve the 

students’ understanding of the topic. Yet, the easiness of 

implementing CAS techniques overshadowed the P&P 

techniques till the end of the instructional activities, except 

for some numerical calculation techniques (in P&P) that 

students implemented as their way for checking the validity 

of CAS solutions.  

 

4.1.3. Third research question:  

What difficulties (technical or conceptual) do students 

experience when using CAS (in the GeoGebra 

environment) to solve polynomial inequalities?       

 

4.1.3.1. Difficulties: 

The difficulties that students encountered are 

delineated herein: 

 

4.1.3.1.1. Achievement level : 

The available data suggests that low achieving 

students (group LAG2) acquired some technical 

knowledge related to the machine (CAS) and hence 

remained at the first extreme of Pierce and Stacey’s 

continuum (2004). Other students (group HAG and 

MAG2) occupied an intermediary position of the 

continuum where “there is a substantial body of knowledge 

involving both mathematics and the machine” (Pierce & 

Stacey, 2004, p. 4).  

  Moreover, in this study, students’ work method is 

identified as “a calculator-restricted work method”. This, 

according to Guin and Trouche (2002), is characterized by 

“information sources more or less restricted to calculator 

investigations and simple manipulations” (p. 207).  

 

4.1.3.1.2. Familiarity with CAS: 

Students had no previous experience (before the unit 

about quadratic functions) with CAS, and using this type 

of technology was new to them. In addition, the 

experimental period was relatively short, which may have 

been a factor that resulted in a lack of overview about CAS 

and in hindering the mastering of the techniques involved. 

Students did not know about the availability of some of the 

tools that were necessary to solve the tasks at hand, and 

hence much of the instrumentation process of CAS 

remained unveiled. For example, to determine the 

coordinates of the extremum point of graphs, students did 

not know about the availability of the Minimum tool and 

Maximum tool (from the Input Bar); however, they were 

able to overcome this difficulty by using other tools to 

determine these coordinates. For example, they used the 

New Point tool (from the Construction menu).  
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4.1.3.1.3. Language:  

Students (groups HAG, MAG2 and LAG2) 

struggled with sorting out the meaning of words such as 

explain, describe, deduce, pattern, graph behavior, sense of 

variations, and so on; therefore, impeding algebraic 

formalism. Language deficiency complicated students’ 

description of the different solutions.  

 

5. Discussion: 

The study reveals that computer algebra does indeed 

offer opportunities for students to promote their 

understanding, to a limited extent, about methods for 

solving polynomial inequalities by graphical methods. 

Students mostly used the CAS for exploration and for 

implementing previously acquired solution strategies and 

expressed solutions of the different activities by using their 

natural mathematical language while using interval 

notation and CAS notation forms. 

Despite the fact that the sample of participants (one 

class) was limited, yet some of the study’s findings might 

go beyond the topic of polynomial inequalities. For 

example, computer algebra use contributed to the topic of 

“transformations” which, being important for all grade 

levels, presents teachers and students with many 

difficulties and is not treated by the Lebanese curriculum 

in a consistent manner across grade levels.  Here, it can be 

concluded that the generalizability of the findings to other 

grades and levels, suggests even larger instrumentation 

difficulties in grades lower than the ninth. For higher 

grades, similar difficulties can be expected as those 

reported in this research; however, students will have more 

mathematical experience with which to overcome them. 

Students, mostly, used the CAS for exploration and for 

implementing previously acquired solution strategies and 

expressed solutions of the different activities by using their 

natural mathematical language while using interval 

notation and CAS notation forms. 

The results of the research reveal that the 

instrumentation of CAS was limited and that students 

encountered several technical and conceptual difficulties. 

For example, students’ knowledge of the availability of 

some tools and commands, in addition to syntactic 

difficulties persisted (though not with the same intensity) 

throughout the implementation of the instructional 

activities. Other difficulties included language difficulties 

and difficulties with linking techniques in the two 

environments P&P and CAS. Conceptual difficulties 

encompassed linking the different representations (tabular, 

graphical and algebraic) of functions. It is worth 

mentioning that most of these difficulties were not 

foreseen. An outcome of the research that was not expected 

beforehand concerns the importance of language, whole 

class discussions and the students’ familiarity with CAS. 

The research findings show, in line with Doorman, 

Drijvers, Gravemeijer, Boon, and Reed (2012), that CAS 

supported students’ explorative activities for investigating 

the graph behavior of polynomial functions and, later, for 

investigating the way the sign of these functions varied. 

According to this study, CAS plays a limited epistemic 

mediation role. Again technical and conceptual difficulties 

prove, according to the study’s findings and in line with 

those of Drijvers and van Herwaarden (2001), the existence 

of difficulties that hinder the instrumentation process.  

The availability of multiple environments 

(algebraic, graphics and CAS) offer students opportunities 

to combine different representations, and hence, to promote 

their reasoning process. Yet, students mostly used 

graphical reasoning and considered numerical reasoning as 

a primary reasoning method to check their results. CAS, 

according to the current study’s findings and in line with 

those of Doorman et al. (2012), helps students to shift from 

reasoning that depends on calculations with discrete 

integers to the graphical reasoning that depends on 

intervals of real numbers.   

At the same time, the results of this research indicate 

that CAS allows students to check their P&P solutions, of 

the instructional activities, in ways that would have been 

very hard using P&P alone. Also, students sometimes use 

numerical calculations in P&P to check solutions that they 

got by using CAS. Consequently, the study’s findings 

highlight the complementary roles of the techniques in the 

two environments, namely, the P&P and CAS 

environments. These findings are similar to what Kieran 

and Drijvers (2006) and Davis and Fonger (2015) 

suggested the complementary role of  P&P and CAS 

techniques.  

The research’s findings do not reveal that all 

students reached a structural understanding of polynomial 

functions within the timeline of the teaching sequence. In 

line with Drijvers’ (2003) and Doorman et al.’s findings 

(2012), this research’s findings conclude that integrating 

CAS into algebra education is “better suited for longer 

periods, so that students would be able to really get used to 

the tool, or in higher grades, when they have more algebraic 

experience”(p. 296), and where the instrumentation 

difficulties are less dominant. Allowing more time for CAS 

training and for the implementation of the instructional 

activities would have led to a better instrumentation of 

CAS, is yet another result of this study. The achieved 

results agree with the results of a study by Trouche (2005 

b) who indicates that time is necessary for analyzing the 

process of instrumentation in students’ activity. In addition, 

the results of these aforementioned studies agree with the 

current research in what relates the reciprocal relation 

between technical and conceptual understanding.  

The importance of students’ achievement level and 

their familiarity with CAS, on the development and value 

of techniques and usage schemes, is apparent as some 

students (high and low achievers) were able to build a 

number of these schemes and techniques, while others (low 

achievers) were not able to build similar schemes and 

techniques. This result is supported by several researchers 
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(Guin and Trouche,1999; Artigue, 2002; and Kieran, 

2007).  

Teacher’s inadequate and inefficient orchestration 

of whole class discussions, with other factors, have led to a 

limited instrumentation of CAS. This is in line with the 

results of studies by Drijvers and van Herwaarden (2001), 

Drijvers (2003), Artigue (2002) and Trouche (2004), which 

indicate the important role of the teacher in the 

instrumentation process.  

 

6. Recommendations : 

The results of this research verify that the use of 

CAS does improve problem-solving skills and contributes 

to a better understanding of mathematical concepts. 

Additionally, students acquire gains in problem-solving 

abilities and engagement with mathematics. In fact, such 

issues were similarly concluded in a recent book titled 

“Teaching Secondary Mathematics” (Hine, Reaburn, 

Anderson, Galligan, Carmichael, Cavanagh, Ngu and 

White, 2016, p. 108). 

The loss of skill can be used as a reason for not 

adopting CAS systems; however, the current study has 

shown that this is not the case and students’ skills did 

improve. Consequently, it is recommended to introduce 

CAS systems in the 10th and 11th grades during the full 

academic years. Further, and surprisingly, students tend to 

use CAS tools much more often than their teachers. 

Actually, “students use CAS tools to manipulate variables 

and look at their outcomes very quickly” (ibid). According 

to this observation, and in order to achieve the full benefits 

of the use of CAS systems, all teachers must be trained 

during the summer time and before starting the academic 

year on the full potentials of the system. Such training 

would allow the students to be exposed to this experience 

under the full supervision and support of their teachers. The 

aforementioned recommendation is supported by Kahn and 

Kyle (2002) who contend that “approximately 50% of the 

institutions conducting studies on the impact of technology 

reported increases in conceptual understanding, greater 

facility with visualization and graphical understanding, and 

an ability to solve a wider variety of problems…” (p. 59). 

As for teaching algebra using computer algebra, the 

results suggest that it is important to orchestrate individual 

and collective instrumentation, to have students compare 

CAS techniques with P&P techniques, and to have students 

reflect on the way CAS works.  

In terms of further research on learning 

mathematics in a technological environment, the 

researchers recommend that the scope of this research be 

extended to other mathematical concepts, such as the 

concept of function after participants have undergone an 

extensive training in CAS and its tools before shifting to 

the math topics. 

 

 

 

7. The significance of the study: 

This study highlights the issues of CAS integration 

into the Lebanese curriculum and contributes to filling the 

gap in research within Lebanese (and maybe Arab) 

contexts. Moreover, the study highlights the matter of 

organization of the topics within the Lebanese curriculum, 

taking the topics of inequalities and functions as an 

example.  

The results provide a vision for schools, for 

administrators and professional development teams, about 

using technology in general, and CAS in particular, for 

teaching and learning of mathematics across the different 

grade levels. Likewise, the study findings offer feedback 

about the barriers that might hinder CAS integration. Once 

these barriers are identified, effective integration plans can 

be developed. The results of the study foster a better 

understanding, by teachers, of the potentials of CAS in 

algebra classes and how the use of this technology can 

benefit their teaching and learning practices. Moreover, the 

results help in alleviating some of the problems that arise 

when students work in CAS and in a paper-and-pencil 

environment.  

 

8. Limitations of the study: 

The results would have been more revealing if the 

number of CAS-based sessions and the time allotted to the 

study had been more. However, students generally lacked 

the familiarity with CAS.  

Whole-class demonstrations and discussions should 

have received more attention during the teaching 

experiments. The group’s interactions and discussions and 

mediation were not steered productively in a manner that 

encourage the production of appropriate usage schemes.  

The teacher’s stimulated interventions during the whole 

class discussions were not adequately managed and 

consequently, the advances made by the students were not 

remarkable. Moreover, it is worth mentioning that this 

research was carried out with a limited sample (in only one 

class) which limits the generalization of the results.  
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Exhibit 1. Pretest 

 

 

Appendix A: Pretest 

Group# Name Activity Date 

  Pretest  

The aim of this test is to have an idea of your previous experience with solving linear inequalities graphically 

and by algebraic calculations in a paper-and-pencil environment and without using CAS.  

 

Instructions: 

- Don’t forget to write the necessary indicators: the number of the group and your name. 

- Don’t erase or overwrite any part of your paperwork. If necessary, put the part that you want to omit, 

within brackets and indicate that it is not needed. 

- Use only the provided paper for writing all your solutions. 

- In case you need draft paper, use the back of your solution sheet after writing the number of the 

question and the corresponding part. 

- Please note that no questions are to be left unanswered  

 

Question 1 

Objectives: 

Solve linear inequalities by algebraic calculation and represent the solutions on a number line. 

Duration: One period (50 minutes) 

The context of the question:  

1.  Which values of �, given in the table below, are a solution of the given inequality? Justify? 

� � 	100 	3 	1.4 0 6 

3�� 	 2� � 	2x 	 13      

 

2. Solve the following inequalities and represent your solution using a number line: 

a. � 	 45 � 13 

b. 3� 	 18 � 5� � 21 

 

Question 2  

Objectives:  

Plot the graphs of straight lines 

Solve linear inequalities graphically and justify the solutions verbally. 

 

Duration: One period (50 minutes) 

The context of the question: 

In the same orthonormal system (x’ox, y’oy):  

1. Plot the graph of the function � such as ���� � 2� 	 5. 

2. Plot the graph of the function � such as  ���� � 	� � 4 

3. Complete the statements below about the suitable values of x, and justify: 

a. 2� 	 5 � 0  when � is ………………… 

b. 	� � 4 � 0  when � is ………………… 

c. 2� 	 5 � 3  when � is ………………… 

d. 	� � 4 � 4  when � is ………………… 

e.  	� � 4 � 2� 	 5   when � is ………………… 
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Exhibit 2.a. Outline of the first instructional activity 

 

 

 

Group# Session number Activity Date 

 S1 Act 1  

 

Activity one (Act1) 

- Steps for software use 

     Note: For each step, you read start applying directly. 

- Replace each # symbol by the required number.   

- Make sure that your folder, for storing GeoGebra files is ready under the name GG. 

- Make sure that your folder, for storing DVC files, is ready under the name DVC 

- Open DVC and start recording with Debut Video Capture (DVC) before you start working 

with GeoGebra. 

- Open GeoGebra. 

- Start working on your activity. 

- Every five minutes:  

1. Stop working. 

2. Save your GeoGebra file on the desktop folder GG under the name G#S1Act1GG# to indicate the 

number of the group, then the number of the session, followed by the number of the activity and the 

number of the GeoGebra file.  

3. Stop recording and save your recorded DVC file in the folder DVC under the name G#S1Act1Vid# to 

indicate the number of the group, then the number of the session and activity, followed by the 

number of the video. 

4. Resume working on your activity after operating DVC and opening a new GG window. 

5. Repeat the above steps every five minutes until you finish the activity. 

- When you finish working on your activity, copy folders GG and DVC to the provided CD and hand in 

the CD to your teacher. 

- Don’t ever try to delete or modify or edit any file or part of the files on the laptop. 

• Steps for paper use 

- At the top of this file, don’t forget to write your group’s name in the required cell. 

- Don’t erase or overwrite any part of your paperwork. If necessary, put the part that you want 

to omit within brackets and indicate that it is not needed. 

- If there is more than one way for solving apart, don’t hesitate to write them.  

- If you need additional space to solve any part, use the back of the pages after writing the 

number of the part 
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  Exhibit 2.b. Activity 1 

 

• Activity 1:  

 

1. Complete the table below by finding the value of the given expression ���� for the 

indicated values of �: 

When � � 	3 	2 2 3 6 

 The value of the expression ���� �
�3� 	 1� � 4�� 	 5� 

     

 

 

2. In this part, it is required to explain how the sign of ���� would vary if you include 

other values of x to the above table.  

 

Complete the statements below, by filling the blank space with the correct number, based on your 

observations of the results in the above table 

a. In the table above, the expression ���� � �3� 	 1� � 4�� 	 5� will be 

 ……… (negative/positive) if we add other values of x which are less than ……… 

 

b. In the table above, the expression ���� � �3� 	 1� � 4�� 	 5� will be 

 ……… (negative/positive) if we add other values of x which are greater than ……..  

 

 

3. In this part, it is required to explain how you would use GeoGebra to determine the sign 

of the expression ����.  

a. Explain how you would use GeoGebra to determine the sign of the expression: 

	���� � �3� 	 1� � 4�� 	 5�. If more than one way is possible, explain these ways. 

 

b. Explain how you would deduce the sign of the expression: 

���� � �3� 	 1� � 4�� 	 5� when �	 � �4. 

 

c. Explain how you would deduce the sign of the expression:  

���� � �3� 	 1� � 4�� 	 5� when �	 � 	6  
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Exhibit 3.a. Outline of the second instructional activity 

 

 

 

Group Session number Activity Date 

 S2 Act 2  

 

Activity two (Act2) 

• Steps for software use 

      Note: For each step, you read start applying directly. 

- Replace each # symbol by the required number.   

- Make sure that your folder, for storing GeoGebra files, is ready under the name G#S#Act#GG. 

- Make sure that your folder, for storing DVC files, is ready under the name G#S#Act#DVC 

- Open DVC and start recording with Debut Video Capture (DVC) before you start working with 

GeoGebra. 

- Open GeoGebra. 

- Start working on your activity. 

- Every five minutes:  

1. Stop working. 

2. Save your GeoGebra file on the desktop folder GG under the name G#S2Act2GG# to indicate the 

number of the group, then the number of the session, followed by the number of the activity and the 

number of the GeoGebra file.  

3. Stop recording and save your recorded DVC file in the folder DVC under the name G#S2Act2Vid# to 

indicate the number of the group, then the number of the session and activity, followed by the 

number of the video. 

4. Resume working on your activity after operating DVC and opening a new GG window. 

5. Repeat the above steps every five minutes until you finish the activity. 

- When you finish working on your activity, copy folders GG and DVC to the provided CD and hand in 

the CD to your teacher. 

- Don’t ever try to delete or modify or edit any file or part of the files on the laptop. 

• Steps for paper use 

- At the top of this file, don’t forget to write your group’s name in the required cell. 

- Don’t erase or overwrite any part of your paperwork. If necessary, put the part that you want to omit 

within brackets and indicate that it is not needed. 

- If there is more than one way for solving apart, don’t hesitate to write those ways.  

- If you need additional space to solve any part, use the back of the pages after writing the number of the 

part 
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Exhibit 3.b. Activity 2 

 

 

• Activity 2: 

1. In this part, it is required to describe the sense of variation of even-powered polynomial 

functions that are represented by the graphs that you see in GeoGebra.  

- Use GeoGebra to plot the graphs of the even powered polynomial functions: 

���� � �! � 2,  ���� � �� 	 1, and  "��� � �� 	 2��  and  #��� � 2�$ 	
%

!
�.  

- Describe the pattern that you notice about the graph behavior (sense of variation) of the even-

powered polynomial functions that you see. Specify if the graph admits a minimum or a maximum 

(without calculating them) then indicate the number of points of intersection with the x-axis.  

 

2. Deduce the sense of variation of the even-powered polynomial function &��� where    

      &��� � 5�3� 	 1��� � 4�. Explain and justify your answer.  

 

3. Explain how you would use GeoGebra and/or paper-and-pencil to determine the sign of &��� 

for the values of � given in the table below. More than one method is possible. 

 

� � 	5 	2 0 9 

Sign of  &��� � 5�3� 	 1��� � 4�     

 

4. Explain how you would use GeoGebra and/or paper-and-pencil to study the sign of any even 

powered polynomial function. More than one method is possible 

 

5. Use GeoGebra and/or paper-and-pencil to solve the inequality below: 

       4�� � 4�( 	 33�! 	 9� � 54 � 0.         

			     More than one method is possible. Explain your work in details 
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Exhibit 4.a. Outline of the third instructional activity 

 

 

Group Session number Activity Date 

 S3 Act 3 Tuesday, May 24, 2016 

 

Activity three (Act3) 

• Steps for software use 

          Note: For each step, you read start applying directly. 

- Replace each # symbol by the required number.   

- Make sure that your folder, for storing GeoGebra files, is ready under the name G#S3Act3GG. 

- Make sure that your folder, for storing DVC files, is ready under the name G#S3Act3DVC 

- Open DVC and start recording with Debut Video Capture (DVC) before you start working with 

GeoGebra. 

- Open GeoGebra. 

- Start working on your activity. 

- Every five minutes,  

1. Stop working. 

2. Save your GeoGebra file on the desktop folder G#S3Act3GG under the name G#S3Act3GG# to 

indicate the number of the group, then the number of the session, followed by the number of the 

activity and the number of the GeoGebra file.  

3. Stop recording and save your recorded DVC file in the folder G#S3Act3DVC  under the name 

G#S3Act3Vid# to indicate the number of the group, then the number of the session and activity, 

followed by the number of the video. 

4. Resume working with your activity after opening operating DVC and opening a new GG window. 

5. Repeat the above steps every five minutes until you finish the activity. 

- When you finish working with your activity, copy folders GG and DVC to the provided CD and handle 

the CD to your teacher. 

- Don’t ever try to delete or modify or edit any file or part of the files on the laptop. 

 

• Steps for paper use 

- At the top of this file, don’t forget to write your group’s name in the required cell. 

- Don’t erase or overwrite any part of your paperwork. If necessary, put the part that you want to omit 

within brackets and indicate that it is not needed. 

- If there is more than one way for solving apart, don’t hesitate to write those ways.  

- If you need additional space to solve any part, use the back of the pages after writing the number of the 

part 
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Exhibit 4.b. Activity 3 

 

 

• Activity 3 

1. In this part, it is required to describe the sense of variation of odd-powered polynomial functions 

that are represented by the graphs that you see in GeoGebra.  

- Use GeoGebra, to plot the graphs of the odd powered polynomial functions: 

      ���� � �( 	 4�,  ���� � ��,   "��� � �) � 2� 	 1 and of #��� � �* 	 3�! 	
%

!
.  

- Describe the pattern that you notice about the graph behavior (sense of variation) of the odd -

powered polynomial functions that you see. Specify if the graph admits a minimum or a maximum 

(without calculating them) then indicate the number of points of intersection with the x-axis.  

 

2. Deduce the sense of variation of the even-powered polynomial function +��� where    

+��� � �3� 	 9���! � 2� 	 3�. Explain and justify your answer. 

 

3. Explain how you would use GeoGebra and/or paper-and-pencil to determine the sign of T��� for 

the values of � given in the table below: 

 � � 	10 � � 	1 � � 3 � � 17.5 

Sign of 

T(x)=�3� 	 9���! � 2� 	 3� 
? ? ? ? 

 

4. Explain how you would you would use GeoGebra and/or paper-and-pencil to study the sign of 

any odd-powered polynomial function. 

 

5. Use GeoGebra and/or paper-and-pencil to solve the following inequality below: �� 	 3�� 	
8�! � 24� � 0 . Explain your work in details 
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Exhibit 5.a. Outline of the fourth instructional activity 

 

 

Group Session number Activity Date 

 S4 Act 4  

 

Activity four (Act4) 

• Steps for software use 

    Note: For each step, you read start applying directly. 

- Replace each # symbol by the required number.   

- Make sure that your folder, for storing GeoGebra files, is ready under the name G#S4Act4GG. 

- Make sure that your folder, for storing DVC files, is ready under the name G#S4Act4DVC 

- Open DVC and start recording with Debut Video Capture (DVC) before you start working with 

GeoGebra. 

- Open GeoGebra. 

- Start working on your activity. 

- Every five minutes,  

1. Stop working. 

2. Save your GeoGebra file on the desktop folder G#S4Act4GG under the name G#S4Act4GG# to 

indicate the number of the group, then the number of the session, followed by the number of the 

activity and the number of the GeoGebra file.  

3. Stop recording and save your recorded DVC file in the folder G#S4Act4DVC under the name 

G#S4Act4Vid# to indicate the number of the group, then the number of the session and activity, 

followed by the number of the video. 

4. Resume working on your activity after operating DVC and opening a new GG window. 

5. Repeat the above steps every five minutes until you finish the activity. 

- When you finish working on your activity, copy folders G#S4Act4GG and G#S4Act4DVC to the 

provided CD and handle the CD to your teacher. 

- Don’t ever try to delete or modify or edit any file or part of the files on the laptop. 

• Steps for paper use 

- At the top of this file, don’t forget to write your group’s name in the required cell. 

- Don’t erase or overwrite any part of your paperwork. If necessary, put the part that you want to omit 

within brackets and indicate that it is not needed. 

- If there is more than one way for solving apart, don’t hesitate to write those ways.  

- If you need additional space to solve any part, use the back of the pages after writing the number of the 

part 

 

 

 

Exhibit 5.b. Activity 4 

Activity 4 (CAS technique activity) 

1. Use GeoGebra to solve the inequalities below. Explain your work in details. 

- �� 	 1��2� 	 3��3� 	 2�(�� 	 2�� � 0 

- �5� 	 1��� � 2�(�4� � 5�( � 0 

2. Explain how you would use paper-and-pencil to solve the above inequalities. Explain your steps in details. 

 


