

2

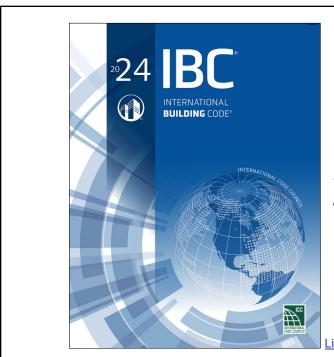
Beaufort wind scale

Force	Wind Speed (mph)	Description	Characteristics
0	0-1	Calm	Smoke rises vertically
1	1-3	Light air	Direction of smoke drift
2	4-7	Light breeze	Wind felt of face; leaves rustle
3	8-12	Gentle breeze	Wind extends a light flag
4	13-18	Moderate breeze	Small branches are moved
5	19-24	Fresh breeze	Small trees in leaf begin to sway
6	25-31	Strong breeze	Large branches in motion
7	32-38	Near gale	Whole trees in motion
8	39-46	Gale	Breaks twigs off trees
9	47-54	Severe gale	Slight structural damage occurs
10	55-63	Storm	Trees uprooted; structural damage
11	64-72	Violent storm	Wide-spread damage
12	73-83	Hurricane	See Saffir-Simpson Hurricane Scale
10 11	55-63 64-72	Storm Violent storm	Trees uprooted; structural damage Wide-spread damage

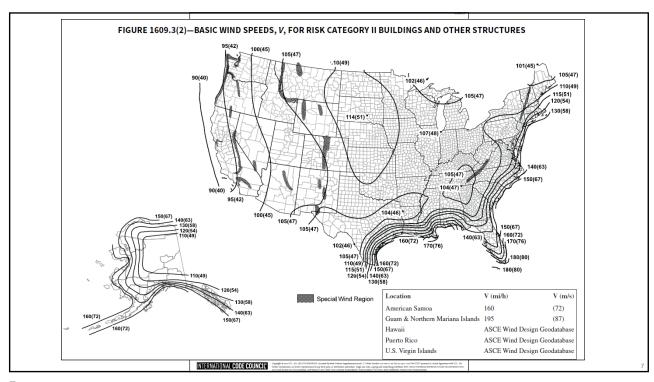
3

Saffir-Simpson Hurricane Wind Scale

Category	Wind Speed (mph)	Characteristics
1	74-95	Very dangerous winds produce some damage
2	96-110	Extremely dangerous winds will cause extensive damage
3	111-129	Devastating damage will occur
4	130-156	Catastrophic damage will occur
5	157 and higher	Catastrophic damage will occur


4

Enhanced Fujita Tornado Scale (EF scale)


Category	Wind Speed (mph)
0	65-85
1	86-110
2	111-135
3	136-165
4	166-200
5	Over 200

5

6

International Building Code, 2024 Edition

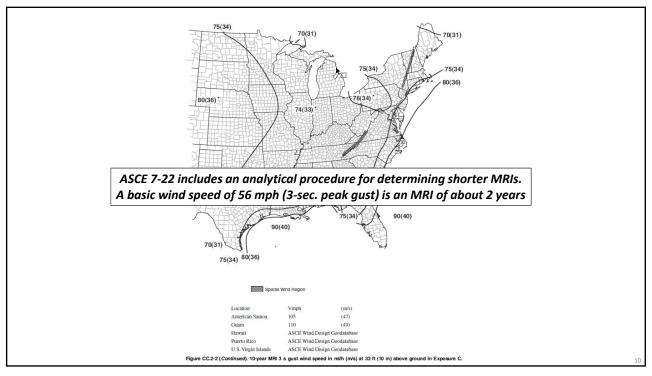
Mean recurrence interval

MRI dictates a building's Risk Category \rightarrow Basic wind speed (3-sec. peak gust) map

Risk Category I 300-year MRI

Risk Category II 700-year MRI

Risk Category III 1,700-year MRI

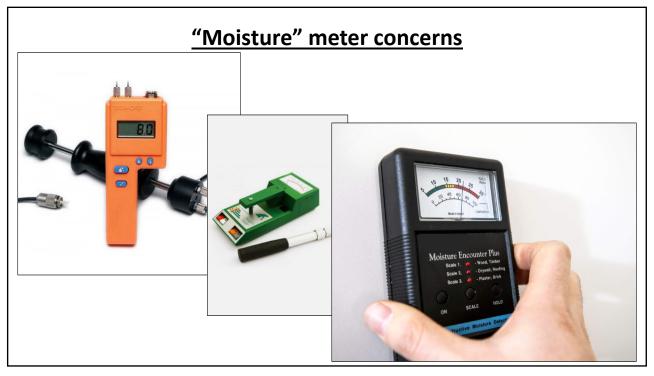

Risk Category IV 3,000-year MRI

8

Manufacturers' warranties

- Typically limit wind coverage to 56 mph
- "...sole and exclusive warranty..."

9



10

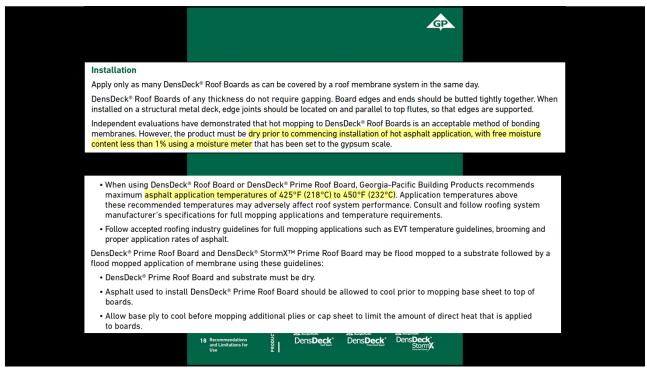
Considerations...

- Manufacturers are increasingly using wind speed history to void their warranties... and avoid responsibilities
- Contractors face some liability:
 - Wind speeds between the manufacturer's warranty limit and the design wind speed (i.e., building code)
 - Non-wind-related issues when the warranty limit is exceeded
- Building owners may better served <u>without</u> a manufacturer's warranty with a low wind speed limit
- Contractors can consider wind speed limitations in their warranties

11

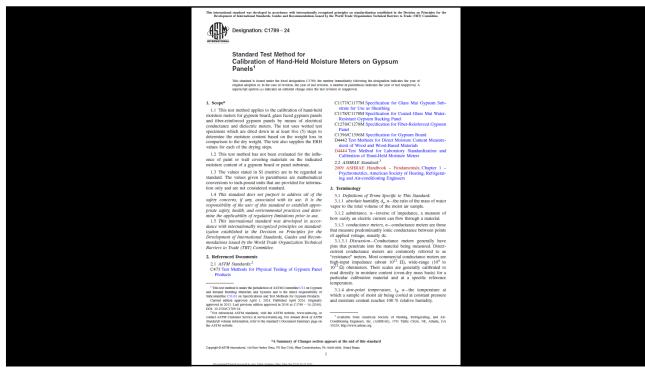
12

These meters do not read moisture...
...they are reading relative conductivity, which can be correlated to specific materials in specific conditions when properly calibrated.


13

Considerations

"Moisture" meters


- Read/understand the instruction manual
- Understand device sensitivity
- Understand proper operating conditions
- Proper calibration/recalibration is critical
- Don't overstate the meter's capability
- Verify job-specific results with gravimetric analysis

14

16

Considerations...

- Be extra cautious of handheld moisture meters
- The "dryness" of gypsum board products is somewhat unknown
- NRCA cautions mopped- or torch-application to gypsum board products

18

Polyiso. testing

R-value testing Facer sheet adhesion (with the Chicago Roofing Contractors Association)

19

20

LTTR - ASTM C1303 and ASTM C518

- A 15-year time-weighted average R-value
- The predicted R-value after 5-years (under controlled laboratory conditions)

R-value – ASTM C518

• R-value at the time of the test

21

- LTTR and R-value is typically tested and reported at 75 F.
- NRCA tests at 75 F, but we also test at 40 F and 110 F.

22

Test results Physical properties

Manufacturer	Apparent density (lb/ft³)	Thickness (inches)
1c	2.726	2.578
1p	2.002	2.594
2c	3.254	2.576
2p	2.024	2.585
3p	2.218	2.500
4p	2.057	2.735

23

Test results

Manufacturer	R-value (75 F)
1c	14.4
1p	13.9
2c	13.6
2p	15.6
3p	13.2
4p	15.3

24

More test results

R-value

Manufacturer	R-value (40 F)	R-value (75 F)	R-value (110 F)
1c	10.8	14.4	12.8
1p	8.9	13.9	12.0
2c	14.5	13.6	12.1
2p	15.4	15.6	13.4
3p	12.6	13.2	11.6
4p	16.9	15.3	13.1

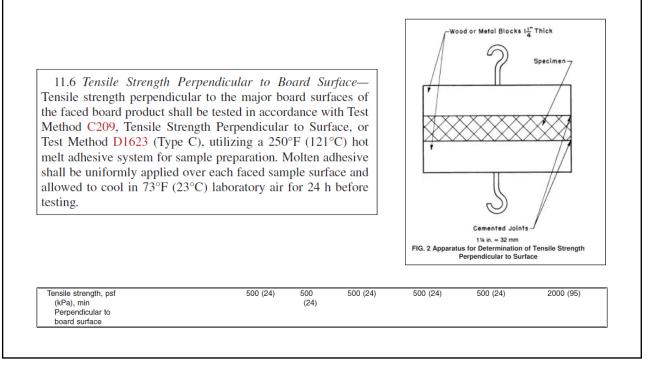
25

Preliminary conclusions

- Tested R-values vary
- Some tested R-values are already lower than LTTR
- Some samples are exhibiting different characteristics

26

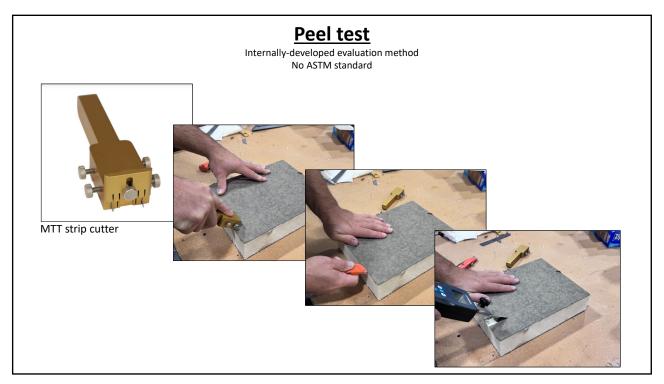
Preliminary recommendations


 Specify, purchase and sell polyisocyanurate insulation (and all insulation products) based on their thicknesses, not its R-values

27

Polyiso facer sheet adhesion

28


30

Test results

ASTM C209 tensile strength

Manufacturer	Tensile strength Average (psf)	Standard deviation (psf)
1c	1,888	556
1p	2,041	909
2c	1,874	730
2p	1,301	409
3p	1,029	495
4p	1,185	327

31

32

Test results

Manufacturer	Peel strength Average (psi)	Standard deviation (psi)
1c	2.78 MD 3.03 XMD	0.62 MD 0.44 XMD
1p	2.52 MD 2.89 XMD	0.78 MD 0.94 XMD
2c	2.30 MD 2.30 XMD	0.31 MD 0.28 XMD
2p	2.52 MD 2.36 XMD	0.61 MD 0.53 XMD
3р	2.83 MD 2.97 XMD	0.59 MD 0.57 XMD
4p	2.61 MD 2.19 XMD	0.56 MD 0.76 XMD
Average	2.59 MD 2.62 XMD	

33

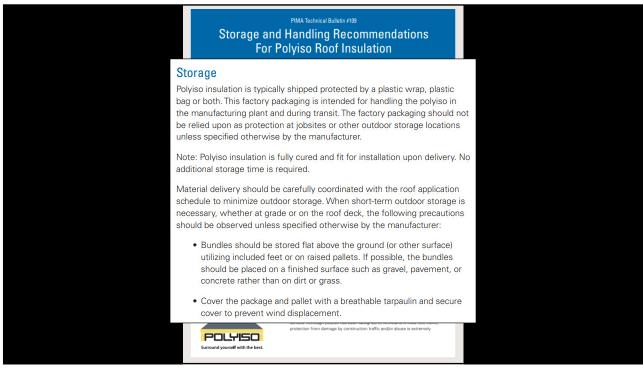
Preliminary conclusions

- Our peel test method seems viable
 - More refinement of the test method may be needed
- Peel values are only about 10% of tensile values
- Peel values seem low
- More testing is planned:
 - More polyiso. specimens (production lots, plants)
 - Board top vs. board bottom
 - Impact of knit lines
 - Other faced insulation boards

34


Polyiso. storage

35



36

38

Wood sheathing

Plywood and oriented strand board, and nailbase insulation

40

Standards for wood structural panels

International Residential Code, 2024 Edition

Plywood:

- U.S. Department of Commerce PS-1, "Structural Plywood"
- CSA Group O325, "Construction Sheathing"

Oriented-strand board (OSB):

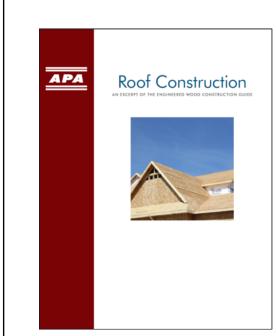
- U.S. Department of Commerce PS-2, "Performance Standard for Wood-based Structural-use Panels"
- CSA Group O437, "Standards for OSB and Waferboard"

41

Common, but not referenced in the Code

Plywood and OSB:

 APA-The Engineered Wood Association Standard PRP-108, "Performance Standards and Policies for Structural-Use Panels"


42

Attachment of Wood Panels: The International Residential Code, 2024 Edition's Table R602.3(1)-Fastening Schedule provides minimum fastener and fastener spacing requirements for wood structural panels into roof framing shown in Figure 6.1.

			Spacing of fasteners	
Item	Description of building elements	Number and type of fasteners	Edges (inches)	Intermediate supports (inches)
	Wood s	tructural panels, roof sheathing to fr	aming	
	and p	particle board wall sheathing to fram	ing	
		6d common or deformed nail (2" x 0.113" x 0.281" head)	6	6
31 3/8	3/8- to ½-inch-thick	8d common nail (2½" x 0.131" x 0.281" head), or RSRS-01 nail (2%" x 0.113" x 0.281" head)	6	6
32	19/32- to ¾-inch thick	8d common nail (2½" x 0.131" x 0.281" head), or RSRS-01 nail (2%" x 0.113" x 0.281" head)	6	6
33	7/8- to 1¼-inch thick	10d common nail (3" x 0.148" x 0.281" head), or 2½" x 0.131" x 0.281" head deformed nail	6	12

Figure 6-1. Roof sheathing-specific excerpt from International Residential Code, 2024 Edition's Table R602.3(1)-Fastening Schedule

43

APA Form E30, "Roof Construction"

--Roofing-specific excerpts from APA's *Engineered Wood Construction Guide* (102 pages)

Link

44

Considerations

Lumber, plywood and OSB roof decks

- Be extra cautious of plywood and OSB roof decks
- Limit your deck acceptance responsibilities
- Consider more proactive plywood and OSB deck replacement
- Consider pull tests for plywood and OSB roof decks when using mechanically-attached membrane systems

45

46

<u>Professional Roofing</u>
December/January 2020-21

NRCA LegalCON Live 23

Link

<u>Professional Roofing</u> September 2024

Link

47

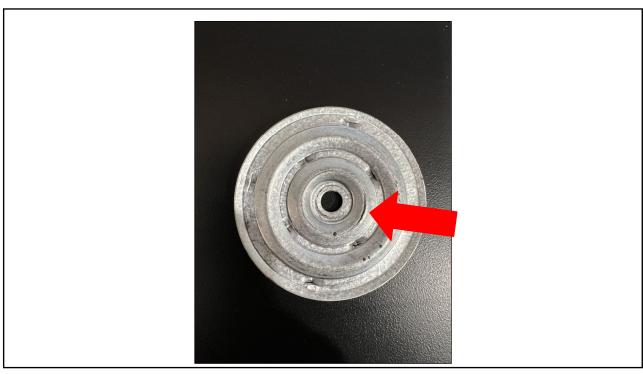
Nailbase insulation considerations

- Double layer design and application
- Taped joints can control vapor leaks/underlayment wrinkling at board joints
- Pressure-tested and FRT nailbase are not good ideas for nailbase

48

NRCA has concerns about the long-term performance of OSB panels, including those addressed by PS 2 used as substrates for asphalt shingle roof systems. Although NRCA acknowledges the widespread use of OSB panels for constructing roof deck substrates, experience has shown OSB panels are subject to dimensional changes, ridging and fastener backout resulting from changing moisture conditions the roof decks typically encounter. NRCA has received reports of asphalt shingle roof assemblies constructed with OSB panel decks experiencing panel edge swelling, warping and buckling. NRCA also is concerned about the effects on OSB panels of repeated fastener removal and new fastener installation as existing roof systems are removed and replacement roof systems are installed during a roof deck's life. Because of these reasons, NRCA does not recommend using OSB panels as a substrate for asphalt shingle roof systems.

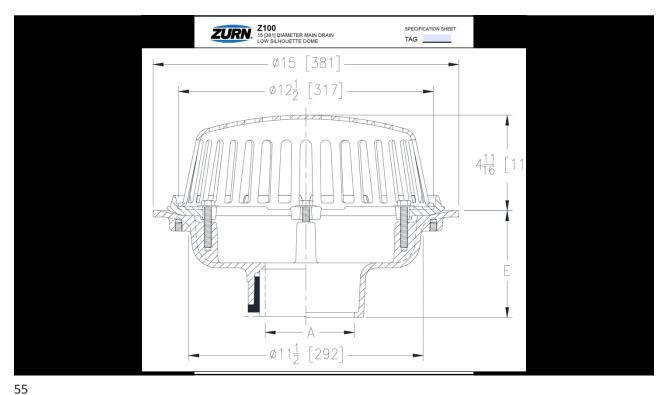
50

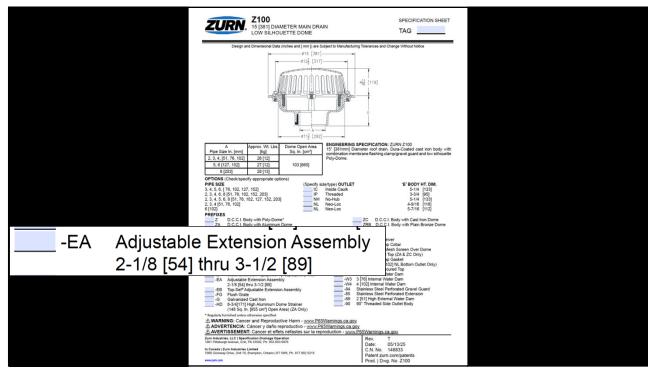

	Recent and common technical inquires Requests of NRCA for technical assistance	
51		

NRCA LegalCON Live 26

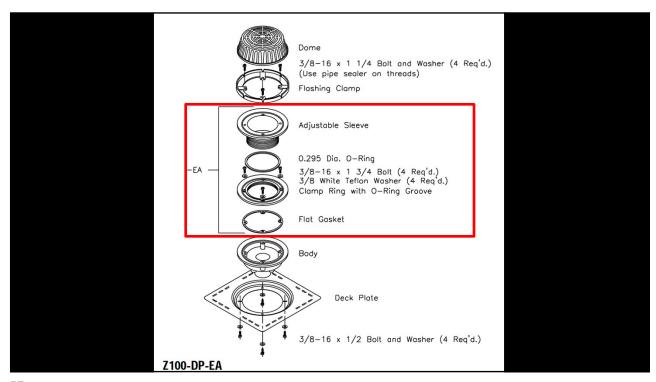
Fastener issues

Technical update
"Technical issues posing liability risks"

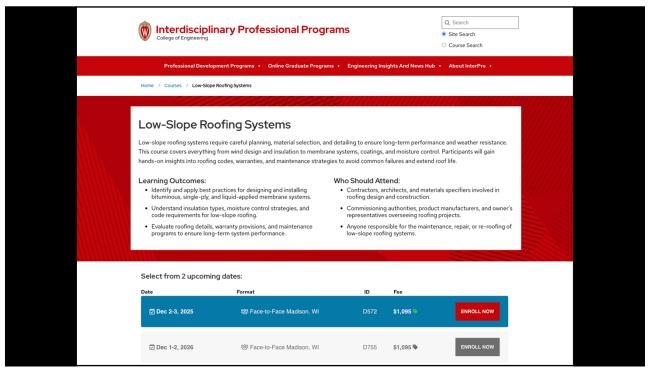

October 9, 2025

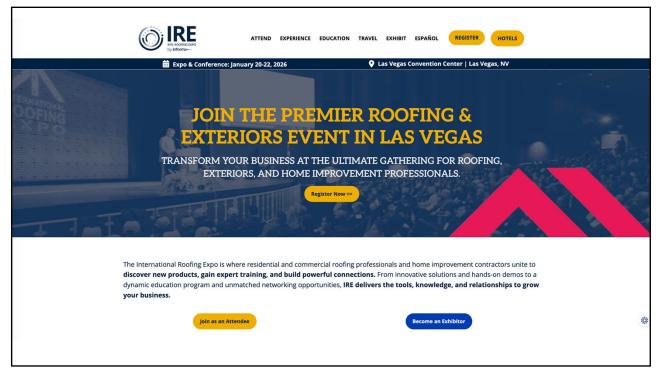

53

Roof drain issues


54

-



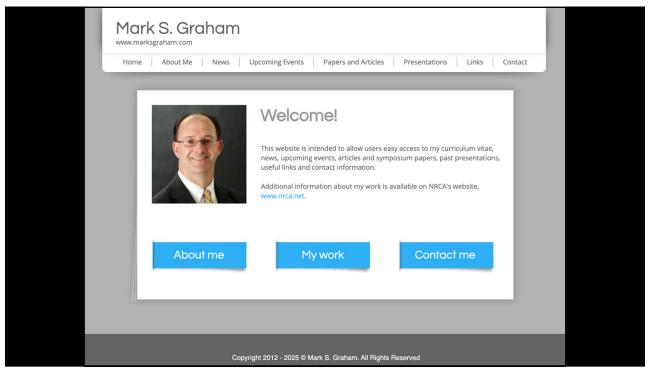

56

Other topics and your questions

58

60

NRCA


Mark S. Graham

Vice President, Technical Services National Roofing Contractors Association Two Pierce Place, Suite 1200 Itasca, Illinois 60143

(847) 299-9070 mgraham@nrca.net www.nrca.net

Personal website: www.MarkGrahamNRCA.com LinkedIn: linkedin.com/in/MarkGrahamNRCA

61

62