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Abstract

The standard measures of distress risk ignore the fact that firm defaults are
correlated and that some defaults are more likely to occur in bad times. We use risk
premium computed from corporate credit spreads to measure a firm’s exposure to
systematic variation in default risk. Unlike previously used measures, the credit risk
premium explicitly accounts for the non-diversifiable component of distress risk. In
contrast to prior findings in the literature, we find that stocks with higher systematic
default risk exposures have higher expected equity returns which are largely
explained by the Fama–French risk factors. We confirm the robustness of these
results by using an alternative systematic default risk factor for firms that do not
have bonds outstanding.
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1. Introduction

A fundamental tenet of asset pricing is that investors should be compensated with higher

returns for bearing systematic risk that cannot be diversified. As default risk remains a

major source of potential large losses to equity investors, a number of recent papers have

examined whether default risk is priced in the cross-section of equity returns. Empirical

work has focused on determining the probability of firms failing to meet their financial

obligations using accounting and market-based variables and testing to see if estimated

default probabilities are related to future realized returns. The existing empirical evidence

contradicts theoretical expectations and suggests that firms with high default risk earn sig-

nificantly lower average returns.1

The low returns on stocks with high default risk cannot be explained by Fama–French

(1993) risk factors. Stocks with high distress risk tend to have higher market betas and load

more heavily on size and value factors. This leads to significantly negative alphas for the

high-minus-low default risk hedge portfolio and makes the anomaly even larger in magni-

tude. These empirical results provide a challenge to the standard risk-reward trade-off in

financial markets and to the contention that small firms and value firms earn high average

returns because they are financially distressed (Chan and Chen, 1991; Fama and French,

1996; Kapadia, 2011).

In this paper, we argue that what matters for pricing is the non-diversifiable component

of default risk. Figure 1, which plots the historical default rates on Moody’s rated corporate

issuers, suggests that default rates are highly dependent on the stage of the business cycle.

This casual analysis of the historical data suggests that there is an important systematic

component of default risk and that the incidence of financial distress is correlated with mac-

roeconomic shocks such as major recessions. Previous papers measure financial distress by

determining firms’ expected probabilities of default inferred from historical default data.

This calculation ignores the fact that firm defaults are correlated and that some defaults are

more likely to occur in bad times, and therefore fails to appropriately account for the sys-

tematic nature of default risk. Investors, however, would take into account the covariance

of default losses from a company with the rest of the assets in their portfolio when pricing

distress risk.2

Moreover, probability of default of a firm may not necessarily reflect its exposure to sys-

tematic default risk. In fact, George and Hwang (2010), in a theoretical model, show that

firms with higher sensitivities to systematic default risk reduce their leverage in order to

decrease their probabilities of default. This can lead to a negative relationship between

default probabilities and systematic default risk exposures. It would not be correct to rank

firms based on their default probabilities inferred from historical default data—as done in

Dichev (1998); Campbell, Hilscher, and Szilagyi (2008); and others in this literature—

when examining pricing implications of default risk, because such a ranking does not

1 See for example Dichev (1998) and Campbell, Hilscher, and Szilagyi (2008) for a discussion of this

anomaly.

2 To illustrate this point, consider two portfolios of bonds with average default probabilities equal to

5% a year. Even though both portfolios have the same average default rate, one bond portfolio con-

tains companies that are likely to experience defaults in good states of the world whereas the sec-

ond portfolio contains companies that are likely to default in bad states of the world. The timing of

the defaults would be as important in pricing these bond portfolios as their average default rates.
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properly reflect firms’ exposures to systematic default risk, the only type of default risk that

should be rewarded with a premium.

We use two approaches to measure a firm’s exposure to the non-diversifiable portion of

default risk. Our first measure is credit risk premia (CRP) computed from corporate bond

credit spreads. The fixed-income literature provides evidence of a significant risk premium

component in corporate credit spreads, justifying our use of this measure as a proxy for

firm exposure to systematic default risk.3 It has been well-documented (Hull, Predescu, and

White, 2004; Berndt et al., 2005; Almeida and Philippon, 2007) that there is a substantial

difference between the risk-adjusted probabilities (or risk-neutral, as commonly denoted in

contingent claim pricing) inferred from bond prices and physical probabilities of default

inferred from historical data. The difference between the two probabilities reflects the pre-

mia demanded by investors for being exposed to non-diversifiable default risk.

We compute credit spreads as the difference between the bond yield of a given firm and

the corresponding maturity-matched treasury rate. We then compute CRP by removing

expected losses, taxes, and liquidity effects (Elton et al., 2001; Chen, Lesmond, and Wei,

2007; Driessen and de Jong, 2007) and using only the fraction of the spread that is due to

systematic default risk exposure. Using CRP sorted portfolios, we find that firms with

higher exposures to systematic default risk have higher excess returns. This premium is eco-

nomically and statistically subsumed by the Fama–French risk factors.4

Figure 1. Historical corporate default rates.

Notes: This figure plots the historical default rates on Moody’s rated corporate issuers. The data are

from Moody’s Investor Services. Gray areas indicate NBER recessions.

3 The spread between corporate bond yields and maturity-matched treasury rates is too high to be

fully captured by expected default and has been shown to contain a large risk premium for system-

atic default risk. See, for detailed analysis, Elton et al. (2001); Huang and Huang (2003); Longstaff,

Mithal, and Neis (2005); Driessen (2005); and Berndt et al. (2005).

4 Our measure of systematic default risk exposure, calculated from credit spreads, limits the sample

of firms to those that have issued corporate bonds. To ensure the robustness of our results, we
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Our second measure of systematic default risk exposure is computed for all firms in the

CRSP–COMPUSTAT universe. First, we estimate the average default probability of all

firms at each point in time and denote this average as the default risk factor. Then, we fit

an AR (1) model to the default risk factor, and denote the residuals as innovations in the

default factor. Finally, we compute systematic default risk betas for each firm by calculating

the sensitivity of a firm’s return to innovations in the default risk factor.

Using the systematic default risk beta, we first verify that it is significantly priced in the

cross-section of corporate bond risk premia. This finding ensures that the two systematic

default risk measures used in this study are internally consistent and justifies our use of cor-

porate bond risk premium as a measure of systematic default risk exposure. Second, we

form portfolios by sorting all equities in the CRSP–COMPUSTAT sample based on their

systematic default risk betas. Consistent with the bond sample results, we find that the port-

folio with the highest systematic default risk exposure has higher returns than the lowest

systematic default risk exposure portfolio. Moreover, we find that once we control for the

Fama–French risk factors, the difference in returns between the highest and lowest system-

atic default risk portfolios becomes insignificant.

These results are consistent with basic structural models of default in which aggregate

risk factors drive default probabilities as well as the returns on bonds and equities (Merton,

1974; Campello, Chen, and Zhang, 2008). Since equity is a long call while debt is a short

put option on the firm’s assets, structural models propose that, if a firm’s asset value is

determined by a set of factors, such as the Market, SMB, and HML factors, then the same

set of factors should also determine the values of claims written on this asset. Similarly,

since default occurs when asset value falls below the face value of debt, the same factors

should also determine conditional default probabilities. A basic structural model, therefore,

does not predict a separate risk factor to account for default risk, which is consistent with

our findings.

In cross-sectional regressions we show that systematic default beta is positively priced

on its own, but is subsumed by CAPM beta, size, and value variables consistent with our

time-series results. When systematic default beta and default probability are included

together in cross-sectional regressions, they are both priced significantly, but both lose eco-

nomic and statistical significance. These results indicate that systematic default beta parti-

ally explains the distress risk anomaly. This finding is consistent with the theoretical model

in George and Hwang (2010) which shows that firms with low exposures to systematic dis-

tress risk choose high leverage and, as a result, have high default probabilities despite hav-

ing low systematic default risk exposures.

We test and find empirical support for this notion that firms with high exposure to sys-

tematic default risk make capital structure choices to reduce their physical default (PD)

probabilities. Adding changes in systematic default risk in the empirical models of Frank

and Goyal (2003) and Rajan and Zingales (1995), we show that an increase (decrease) in

systematic default risk exposure predicts reduced (higher) leverage in the next period.

Controlling for systematic default risk exposure reduces the distress risk anomaly, but

the fact that the distress risk anomaly is not fully explained by systematic default exposures

suggests that default probabilities may capture information about future returns distinct

from systematic default exposure. One possible explanation for the remaining predictability

show that when firms are ranked based on their physical default probabilities, as previously done

in the literature, the distress anomaly is also observed in the Bond sample.
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of default probabilities may simply be due to an amalgamation of existing empirical regu-

larities that the prior literature has uncovered. In particular, previous papers have shown

that three stock characteristics—high idiosyncratic volatility, high leverage, and low

profitability—are associated with high historical default rates. These are the same charac-

teristics that are known to be associated with low expected future returns. Within the

q-theory framework (Cochrane, 1991; Liu, Whited, and Zhang, 2009), low profitability

(more likely to default) firms have low expected future returns. Similarly, firms with high

leverage (more likely to default) and high idiosyncratic volatility (more likely to default)

have low expected future stock returns (Penman, Richardson and Tuna, 2007; Dimitrov

and Jain, 2008; Korteweg, 2010; Ang et al., 2009). In addition to the leverage channel

which we examine in this paper, distress anomaly may be attributable to one or more of

these previously documented return relationships.5

Ours is not the first paper to study the relationship between default risk and equity

returns. Dichev (1998) uses Altman’s (1968) z-score and Ohlson’s (1980) O-score to meas-

ure financial distress. He finds a negative relationship between default risk and equity

returns for the 1981–95 time period. In a related study, Griffin and Lemmon (2002), using

the O-score to measure default risk, find that growth stocks with high probabilities of

default have low returns. Using a comprehensive set of accounting and market-based meas-

ures, Campbell, Hilscher, and Szilagyi (2008, hereafter CHS) show that stocks with high

risk of default deliver anomalously low returns. Garlappi, Shu, and Yan (2008), who obtain

default risk measures from Moody’s KMV, find results similar to those of Dichev (1998)

and CHS (2008). They attribute their findings to the violation of the absolute priority rule.

Vassalou and Xing (2004) find some evidence that distressed stocks, mainly in the small

value group, earn higher returns.6

Avramov, Jostova, and Philipov (2009) show that the negative return for high default

risk stocks is concentrated around rating downgrades. Chava and Purnanandam (2010)

argue that the poor performance of high distress stocks is limited to the post-1980 period,

when investors were positively surprised by defaults. When they use implied cost of capital

estimates from analysts’ forecasts to proxy for ex-ante expected returns, they find a positive

relationship between default risk and expected returns. Campello, Chen, and Zhang (2008)

compute expected equity returns from corporate bonds spreads and use these returns to test

asset pricing factors. Our paper contributes to the literature by constructing default risk

5 There is a strong relationship between distress risk and these three stock characteristics. When

we form quintile portfolios sorted on physical probabilities of default—computed using coefficients

from Column 1 of Table II—idiosyncratic volatility increases monotonically from 2.5% for the lowest

distress group to 4.5% for the highest distress group. Leverage increases from 0.22 for the lowest

distress group to 0.61 for the highest distress group. Similarly, profitability for the lowest distress

group is 1.2% and decreases monotonically to� 1.1% for the highest distress group. The three-

factor alpha for the zero cost portfolio formed by going long high distress stocks and shorting low

distress stocks is� 1.078% per month, yet this premium decreases to� 0.36% after controlling for

leverage. When we control for idiosyncratic volatility, the return spread between high and low dis-

tress stocks reduces to� 0.29%. Finally, controlling for profitability also reduces the spread

to� 0.29% per month, at the same time making it statistically insignificant.

6 Da and Gao (2010) argue that Vassalou and Xing’s results are driven by 1-month returns on stocks

in the highest default likelihood group that trade at very low prices. They show that returns are

contaminated by microstructure noise and that the positive 1-month return is compensation for

increased liquidity risk.
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measures that rank equities explicitly based on their exposures to systematic default risk

rather than ranking firms based on their physical probabilities of default.

A concurrent paper by Friewald, Wagner, and Zechner (2014, hereafter FWZ) computes

CRP from credit default swaps (CDSs) and ranks equities based on this measure. There are

significant differences in the samples used, both in terms of cross-section and time-series, in

our paper and in that of FWZ (2014). These sample differences lead to different results and

interpretations of the pricing of CRP.

First, FWZ (2014) results are confined to a small subsample of firms with actively

traded CDSs. FWZ (2014) do not find a significant distress anomaly in the cross-section of

equity returns for firms with traded CDSs. This finding suggests that they analyze a subset

of firms which is not representative of the US equity market leading to a sample selection

bias.7 In our paper, we extract CRP from a large cross-section of bonds over a 30-year time

period. We alleviate sample selection concerns by showing that the distress anomaly exists

for the sub-sample of firms with bonds, and by extending the analyses to the full CRSP uni-

verse by using an alternative systematic default risk measure for firms that do not have

bonds outstanding. Second, FWZ (2014) paper is significantly limited in terms of the time

frame it analyzes. Chava and Purnanandam (2010) stress the importance of looking at lon-

ger time-series when examining the pricing implications of default risk. FWZ (2014) find

significant CAPM and three-factor alphas to high CRP portfolios for the time period

between 2001 and 2010. In our analysis of the 1980–2010 time period, we find a statisti-

cally significant and positive difference only in the raw returns of high minus low CRP port-

folios. This difference is explained by the Fama–French risk factors, consistent with the

simple structural models of credit risk.8

The rest of the paper is organized as follows. Section 2 describes the data. Section 3

describes the PD probability measure used in this study. Section 4 describes the use of credit

spreads as a proxy for systematic default risk exposure. Section 5 contains asset pricing

tests, in which equities are ranked based on their PD probabilities and systematic default

risk exposures constructed from bond credit spreads. Section 6 describes the construction

and use of our alternative systematic default risk measure and extends the equity return

analyses to the full CRSP–COMPUSTAT sample. Section 7 provides empirical evidence for

George and Hwang’s (2010) theoretical model by showing that an increase in systematic

distress risk exposure predicts a reduction in leverage in the next period. Finally, Section 8

concludes.

2. Data

Corporate bond data used to compute the credit risk-premium in this study come from

three separate databases: Lehman Brothers Fixed Income Database (Lehman) available for

the period 1974–97, the National Association of Insurance Commissioners Database

(NAIC) available for the period 1994–2006, and the Trade Reporting and Compliance

7 Since the focus of the literature has been on the distress risk anomaly, it is important to show that

the anomaly exists in the smaller sample from which credit risk premia is computed. Otherwise,

there is no anomaly to explain.

8 We also find significant positive CAPM and three-factor alphas for the post-2000 time period

studied by FWZ (2014). This finding further reveals the importance of studying a longer time series

in the analyses.
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Engine (TRACE) system dataset available for the period 2003–10. We also use the Fixed

Income Securities Database (FISD) for bond descriptions. Due to the small number of

observations prior to 1980, we include only the period 1980–2010 in the analyses that fol-

low. We match the bond information with firm-level accounting and price information

obtained from COMPUSTAT and CRSP for the same time period. We exclude financial

firms (SIC codes 6000-6999) from the sample. To avoid the influence of microstructure

noise, we also exclude firms priced less than 1 dollar.

Our sample includes all US corporate bonds listed in the above datasets that satisfy a set

of selection criteria commonly used in the corporate bond literature.9 We exclude all bonds

that are matrix-priced (rather than market-priced) from the sample. We remove all bonds

with equity or derivative features (i.e., callable, puttable, and convertible bonds),

bonds with warrants, and bonds with floating interest rates. Finally, we eliminate all bonds

that have less than 1 year to maturity.

For all selected bonds, we extract beginning of month credit spreads, calculated as the

difference between the corporate bond yield and the corresponding maturity-matched treas-

ury rate. There are a number of extreme observations for the variables constructed from the

different bond datasets. To ensure that statistical results are not heavily influenced by out-

liers, we set all observations higher than the 99th percentile value of a given variable to the

99th percentile value. All values lower than the first percentile of each variable are winsor-

ized in the same manner. Using credit spreads we compute CRP as described in the next sec-

tion. For each firm, we then compute a value-weighted average of that firm’s CRP, using

market values of the bonds as weights. There are 121,714 firm-months and 1,071 unique

firms with CRP and corresponding firm-level accounting and market data. There is no

potential survivorship bias in our sample as we do not exclude bonds of firms that have

gone bankrupt or bonds that have matured.

We use hazard regressions using historical defaults to compute PD probabilities.

Corporate defaults between 1981 and 2010 are identified from the Moody’s Default Risk

Services’ Corporate Default database, SDC Platinum’s Corporate Restructurings Database,

Lynn M. LoPucki’s Bankruptcy Research Database, and Shumway’s (2001) list of defaults.

We choose 1981 as the earliest year for identifying defaults because the Bankruptcy Reform

Act of 1978 is likely to have caused the associations between accounting variables and the

probability of default to change. Furthermore, we have little corporate bond yield informa-

tion prior to 1980. In all, we obtain a total of 1,290 firm defaults covering the period

1981–2010. We have complete accounting-based measures for 728 of these defaults. Of

these 728 defaults, 118 also have corresponding corporate bond information.

For the full CRSP–COMPUSTAT sample as well as for the subsample of firms that have

bonds outstanding we use accounting and market-based variables used by CHS (2008) when

predicting defaults. The variables we use are the following: NIMTAAVG is a geometrically

declining average of past values of the ratio of net income to the market value of total assets;

TLMTA is the ratio of total liabilities to the market value of total assets; EXRETAVG is a

geometrically declining average of monthly log excess stock returns relative to the S&P 500

index; SIGMA is the standard deviation of daily stock returns over the previous 3 months;

RSIZE is the log ratio of market capitalization to the market value of the S&P 500 index;

CASHMTA is the ratio of cash to the market value of total assets; MB is the market-to-book

9 See for instance Duffee (1999); Collin-Dufresne, Goldstein, and Martin (2001); and Avramov,

Jostova, and Philipov (2007).
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ratio, PRICE is the log price per share winsorized at $15 for shares priced above $15; DD is

the Merton (1974) “distance-to-default (DD)” measure, which is the difference between the

asset value of the firm and the face value of its debt, scaled by the standard deviation of the

firm’s asset value. These variables are described in detail in the Appendix.

The bond sample covers a small portion of the total number of companies, but a sub-

stantial portion in terms of total market capitalization. For instance, in the year 1997, the

number of firms with active bonds in our sample constitutes about 4% of all the firms in

the market. However, in terms of market capitalization, the dataset captures about 40% of

aggregate equity market value in 1997. We compute summary statistics for default meas-

ures and financial characteristics of the companies in our bond sample and for all compa-

nies in CRSP. These results are summarized in Table I. As not all companies issue bonds, it

is important to discuss the limitations of our bond dataset. Not surprisingly, companies in

the bond sample are larger and show a slight value tilt. They also have higher profitability,

more leverage, and higher equity returns; they hold less cash and are less likely to default.

There is, however, significant dispersion in size, market-to-book ratio, default probability,

and credit spread values of firms in the bond sample. To ensure that our results are not

driven by sample selection, in Section 5, we show that when firms are ranked based on PD

probabilities the distress anomaly is observed in the Bond sample. In Section 6, we extend

the analyses to the CRSP/COMPUSTAT sample.

3. Physical Default Probabilities

There is a vast literature on modeling the probability of default. In this paper, we utilize

dynamic models of default prediction (Shumway, 2001; Chava and Jarrow, 2004; CHS,

2008), that avoid biases of static models by adjusting for potential duration dependence

issues. We compute PD probabilities by estimating a hazard regression using the set of

defaults described in the previous section. We use information available at the end of the cal-

endar month to predict defaults 12 months ahead. Specifically, we assume that the probability

of default in 12 months, conditional on survival in the dataset for 11 months, is given by:

PDi;t�1 Yi;t�1þ12 ¼ 1jYi;t�2þ12 ¼ 0
� �

¼ 1

1þ exp bXi;t�1

� � ; (1)

where Yi;t�1þ12 is an indicator that equals one if the firm defaults in 12 months conditional

on survival for 11 months. Xi;t�1 is a vector of explanatory variables available at the time of

prediction. We use accounting and market-based variables used in CHS (2008) when pre-

dicting defaults. In addition we use Merton’s (1974) distance to default measure that has

been utilized in a number of previous studies. All the variables included in the hazard

regressions are described in detail in the Appendix. We use quarterly accounting variables

lagged by 2 months and market variables lagged by 1 month to ensure that this information

is available at the time of default prediction.

We run two sets of hazard regressions, one using the sample of firms in the Bond sam-

ple, and the other using all firms in the CRSP–COMPUSTAT sample. As mentioned earlier,

to ensure that our results are not driven by sample selection, we construct PD probabilities

for the Bond sample using coefficients obtained from hazard regressions that use only the

firms in the Bond sample. This ensures that the distress anomaly documented by the prior

literature exists for the subset of firms that have bonds outstanding.
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Table II reports the results from the hazard regressions. In the first column, we use the same

covariates (NIMTAAVG, TLMTA, EXRETAVG, SIGMA, RSIZE, CASHMTA, MB, and

PRICE) used in CHS (2008) to predict corporate defaults. The sample includes all CRSP–

COMPUSTAT firms for the 1980–2010 time period. As a comparison, we report the estimates

from the CHS (2008) study in column 2. The coefficient estimates from these two regressions

are very similar, suggesting that our default dataset, although smaller than the CHS (2008)

default dataset, captures a significant portion of the variation in firm defaults. In column 3, we

limit the sample to firms with only bonds outstanding. Relative value (MB), liquidity position

(CASHMTA), and share price (PRICE) are no longer statistically significant predictors of fail-

ure. In the bond sample, relatively larger firms are less likely to default, consistent with the full

CRSP–COMPUSTAT sample. We also use Merton’s distance to default (DD) measure as a pre-

dictor of defaults in the bond sample (reported in Column 6). We obtain qualitatively similar

results to those in the full CRSP–COMPUSTAT sample using our own set of defaults (reported

in Column 4) as well as when compared with CHS (2008) results (reported in Column 5).

4. Using Corporate Spread to Measure Systematic Default Risk
Exposure

There is now a significant body of research that shows that compensation for default risk con-

stitutes a considerable portion of credit spreads.10 We create our first systematic default risk

exposure measure by extracting the CRP component from the credit spreads. Although credit

risk makes up a significant portion of corporate spreads, liquidity risk and taxes have also

been shown to be important (Elton et al., 2001; Chen, Lesmond, and Wei, 2007; Driessen and

de Jong, 2007). In computing the CRP, we take into account expected losses, taxes, and

liquidity effects, and use only the fraction of the spread that is likely to be due to systematic

default risk exposure. We follow Driessen and de Jong (2007); Elton et al. (2001); and

Campello, Chen, and Zhang (2008) and compute the CRP for each bond i and month t as:

CRPi;t ¼ ½ðPDi;t � ð1� Li;tÞ þ ð1� PDi;tÞÞ � ð1þ CYi;tÞs�
1
s � 1þ YGi;t

� �
� TXi;t � LQi;t;

(2)

In Equation (2), PD is the s-year physical probability of default for firm i in month t.11 L is

the loss rate in the event of default. We follow Elton et al. (2001) and Driessen and de Jong

10 Huang and Huang (2003), using the Longstaff–Schwartz (1995) model, find that distress risk

accounts for 39%, 34%, 41%, 73%, and 93% of the corporate bond spreads, respectively, for bonds

rated AA, A, BAA, BA, and B. Longstaff, Mithal, and Neis (2005) use the information in CDS to

obtain direct measures of the size of the default and non-default components in corporate

spreads. They find that the default component represents 51% of the spread for AAA/AA-rated

bonds, 56% for A-rated bonds, 71% for BBB-rated bonds, and 83% for BB-rated bonds. Blanco,

Brennan, and Marsh (2005) and Zhu (2006) show significant similarity in the information content of

CDS spreads and bond credit spreads with respect to default.

11 We compute physical default probabilities using the sample and variables from Column 3 of Table

II. We form ten groups (similar to rating categories) based on estimated 1 year default probabil-

ities. We then compute the 1 year transition matrix for the ten groups as in Moody’s (2011). We

also compute cumulative physical default probabilities for each group up to 10 years. To compute

cumulative physical default probabilities beyond 10 years, we use the 1 year transition matrix

assuming it remains constant. We obtain similar results if we use Moody’s (2011) cumulative phys-

ical default probabilities and 1 year transition matrix.
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Table II. Default prediction

Table II reports results from hazard regressions of the default indicator on the predictor varia-

bles. The data are constructed such that all of the predictor variables are observable 12 months

before the default event. NIMTAAVG is a geometrically declining average of past values of the

ratio of net income to the market value of total assets. TLMTA is the ratio of total liabilities to

the market value of total assets. EXRETAVG is a geometrically declining average of monthly log

excess stock returns relative to the S&P 500 index. SIGMA is the standard deviation of daily

stock returns over the previous 3 months. RSIZE is the log ratio of market capitalization to the

market value of the S&P 500 index. CASHMTA is the ratio of cash to the market value of total

assets. MB is the market-to-book ratio; PRICE is the log price per share truncated at $15, and DD

is Merton’s distance-to-default. These variables are described in detail in the Appendix. Results

under “All Firms” are estimates computed using the full CRSP–COMPUSTAT sample of

defaults with available accounting information. Results under “CHS Sample” show the esti-

mates CHS (2008) report in their paper. Results under “Firms with Bonds” are estimates com-

puted using the sample of defaults from companies that have issued bonds with available

accounting information. Absolute values of z-statistics are reported in parentheses below coef-

ficient estimates. McFadden pseudo-R2 values are reported for each regression. Statistical sig-

nificance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

Sample

period:

(1) (2) (3) (4) (5) (6)

1981–2010 1963–2003 1981–2010 1981–2010 1981–2010 1981–2010

Lag (months) 12 12 12 12 12 12

NIMTAAVG �21.989*** �20.260*** �18.308***

(10.33) (18.09) (2.74)

TLMTA 2.188*** 1.420*** 1.503***

(16.84) (16.23) (2.76)

EXRETAVG �7.871*** �7.13*** �6.241**

(10.28) (14.15) (2.13)

SIGMA 1.461*** 1.410*** 1.774***

(11.19) (16.49) (5.17)

RSIZE �0.063*** �0.045** �0.614***

(4.21) (2.09) (7.28)

CASHMTA �1.516*** �2.130*** �1.064

(7.85) (8.53) (1.21)

MB 0.085*** 0.075*** 0.127

(2.63) (6.33) (0.91)

PRICE �0.167* �0.058 �0.017

(1.74) (1.40) (0.95)

DD �0.356*** �0.345*** �0.460***

(17.18) (33.73) (8.07)

CONSTANT �9.718*** �9.160*** �13.844*** �3.401*** Not �2.634***

(18.12) (30.89) (8.90) (48.52) Reported (11.10)

Observations 993,560 1,565,634 54,551 993,560 1,565,634 54,551

Defaults 728 1,968 118 728 1,968 118

Pseudo-R2 0.134 0.114 0.156 0.083 0.066 0.129

Sample type All firms

in CRSP–

COMPUSTAT

CHS sample,

CHS (2008)

Firms

with

bonds

All firms

in CRSP–

COMPUSTAT

CHS sample,

CHS (2008)

Firms

with

bonds
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(2007) and use historical loss rates reported in Altman and Kishore (1998) by rating cate-

gory. The loss rates vary from 32% for AAA-rated firms to 62% for CCC-rated firms. CY

is the s-maturity corporate bond yield, and YG is the corresponding maturity-matched

treasury yield. The equation assumes that all losses are incurred at maturity.

Because bond investors have to pay state and local taxes on bond coupons whereas

treasury bond investors do not, we also remove this tax differential from the corporate

yields. Expected tax costs, TX, are computed as: 1� PDi;t

� �
� Couponi;t þ PDi;t�

�
1� Li;t

� �
� � TR. The first part of this equation captures the coupon rate, Coupon, condi-

tional on default. The second part captures the tax refund in the event of default. TR is the

effective tax rate and following Elton et al. (2001) is set to 4.875%.

The recent literature emphasizes the role of liquidity risk in the pricing of corporate

bonds (Downing, Underwood, and Xing, 2005; Driessen and de Jong, 2007; Lin, Wang,

and Wu, 2011). We explicitly account for the liquidity effect in credit spreads by comput-

ing liquidity risk premium for each bond in our dataset. The analysis follows Driessen

and de Jong (2007) and is based on a linear multifactor asset pricing model in which

expected corporate bond returns are explained by their exposure to market risk and

liquidity risk factors.12 We consider two types of liquidity risk, one originating from the

equity market and another one originating from the treasury market. For the stock mar-

ket, we use the liquidity innovations of Pastor and Stambaugh (2003); for the treasury

market, we use changes in quoted bid–ask spreads on long-term treasury bonds.13 We

compute expected bond returns for eleven rating-maturity groups using Equation (2), and

use a cross-sectional regression to compute risk premium associated with liquidity inno-

vations in the stock and treasury markets.14 We then subtract the computed liquidity pre-

mium, LQ, from the corporate bond spreads with the corresponding rating and maturity.

Since the cross-sectional variation in liquidity and tax effects is low by construction, we

obtain similar results if we compute CRP without taking into account liquidity and tax

effects in the corporate bond spreads.

Our results are in line with the findings in the literature (Elton et al., 2001; Driessen

and de Jong, 2007; Campello, Chen, and Zhang, 2008). Figure 2 plots the computed

expected losses, taxes, and liquidity premium against corporate spreads. In the rest of

this paper, we use the portion of credit spreads that compensates for systematic default

risk exposure, net of expected losses, taxes, and liquidity premium. We call this variable

CRP.

It is possible that the CRP may contain risk premia that is not purely due to distress risk.

For instance, if the stock and bond markets are integrated, traditional capital structure

theory implies that a company’s equity and credit premia will be linked and driven by the

same aggregate risk factors. To the extent that the CRP contains premia unrelated to dis-

tress risk, they would be captured by the standard risk factors in the factor regressions we

carry out in the next two sections.

12 As in Driessen and de Jong (2007) we also included changes in implied market volatility orthogon-

alized by market returns as an additional factor, and we obtained similar results.

13 We thank Alex Hsu for providing the data on treasury bid–ask quotes.

14 We refer to bonds with maturity greater than 7 years as having “long maturity” and with maturity

less than 7 years as having “short maturity.”
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5. Pricing of Distress Risk

5.1 Physical PDs and Equity Returns

In this section, we analyze the relationship between PD probabilities and future stock

returns using the full cross-section of firms in the CRSP–COMPUSTAT sample as well as

using the firms that have bonds outstanding in the Bond sample. For the CRSP–

COMPUSTAT sample we compute default probabilities using coefficients obtained from

Column 1 of Table II.15 For the Bond sample we compute default probabilities using coeffi-

cients obtained from Column 3 of Table II. In computing these default probabilities, we use

quarterly accounting variables lagged by 2 months and market variables lagged by 1 month

to ensure that this information is available at the beginning of the month over which default

probabilities are measured. We sort stocks in the full CRSP–COMPUSTAT sample into

deciles each month from 1981 to 2010 according to their PD probabilities, and compute

value-weighted returns for each portfolio. If a delisting return is available, we use the delist-

ing return; otherwise, we use the last available return in CRSP.

We repeat the same analyses for stocks that have bonds outstanding. We construct PD

probabilities in the Bond sample using coefficients obtained from hazard regressions using

Figure 2. Components of corporate spreads.

Notes: This figure plots the expected losses, taxes, and liquidity premium components of corporate

spreads. The estimation of these components is described in Section 4. Bonds with maturity greater

than 7 years are referred to as having “long maturity” and bonds with maturity less than 7 years are

referred to as having “short maturity.”

15 We obtain similar results using CHS coefficients computed on a rolling basis (we thank Jens

Hilscher for providing this data), Merton’s distance-to-default (DD) measure, Ohlson’s O-score,

and Altman’s z-score, which are not reported to save space.
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the bond sample. This analysis ensures that the distress risk anomaly observed in the full

CRSP–COMPUSTAT sample also exists for the bond sample when firms are ranked using

PD probabilities. We compute value-weighted returns for these decile portfolios on a

monthly basis and regress the portfolio return in excess of the risk-free rate on the market

(MKT), size (SMB), value (HML), and momentum (MOM) factors, to compute CAPM,

three- and Carhart (1997) four-factor alphas.

In Panel A of Table III, we report returns for the ten decile portfolios and the return dif-

ference between the top and bottom deciles for the CRSP–COMPUSTAT sample. Our

results are consistent with those obtained in previous studies. Stocks in the highest default

risk portfolio have significantly lower returns. The difference in returns between the highest

and lowest default risk portfolios is �1.18% per month. The alphas from the market and

the three- and four-factor models are economically and statistically significant. The

monthly four-factor alpha for the zero cost portfolio formed by going long on stocks in the

highest default risk decile, and short on stocks in the lowest default risk decile is �0.83%

per month.

Portfolio return analyses that utilize historical default probabilities calculated using

coefficients from the bond sample are reported in Panel B of Table III. The results are

weaker for the bond sample, but still economically and statistically significant. Using firms

that have credit spread information, the monthly four-factor alpha for the zero cost portfo-

lio formed by going long on stocks in the highest default risk decile and short on stocks in

the lowest default risk decile is �0.49%. Distressed stocks load positively on the size and

value factors.

As a robustness check, we also compute risk-adjusted returns per unit of distress risk for

the bond sample as well as for the CRSP–COMPUSTAT sample. One reason that the dis-

tress anomaly is smaller in the bond sample is that the companies in the highest distress dec-

ile in the CRSP–COMPUSTAT sample have higher default probabilities than the stocks in

the highest distress decile in the bond sample. To take into account the differences in

default probabilities, we follow CHS (2008) and regress the return of each long-short port-

folio onto the differences in log default probabilities including no intercept in the regres-

sion. The coefficients from this regression would provide us with a distress premium per

unit of log default probability. We use long-short distress portfolio returns adjusted for the

Fama–French three-factor model. The coefficient estimate on the log default probability is

6.492 (t-stat¼ 5.02) for the CRSP–COMPUSTAT sample and 5.657 (t-stat¼3.24) for the

bond sample, suggesting that per unit of log default probability, the distress effect is similar

in the CRSP–COMPUSTAT and Bond samples. These results are in contrast to FWZ

(2014) who do not find PD probabilities to be negatively priced in their sample of firms

with actively traded CDS contracts.

The analyses in this section show that using PD probabilities computed in the Bond sam-

ple and the CRSP–COMPUSTAT sample produces results similar to those of CHS (2008)

and others in the literature. The distress anomaly persists in our Bond sample when we use

physical probabilities of default to rank firms.

5.2 CRP and Equity Returns

In this section, we examine how CRPs are related to future realized equity returns. We sort

stocks into deciles from 1981 to 2010, using CRPs in the previous month. We compute

value-weighted returns for each portfolio and update the portfolios each month. As before,
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Table III. Distress portfolio returns sorted on PD probabilities

Table III reports the time-series averages of excess returns as well as CAPM, Fama–French

three-factor and Carhart four-factor alphas for distress risk portfolios. We sort stocks into dec-

iles each month from January 1981 to December 2010 according to their PD probabilities,

obtained at the beginning of the previous month, calculated using the hazard coefficients com-

puted in the full CRSP–COMPUSTAT sample (Panel A) as well as in the bond sample (Panel B).

We compute the value-weighted returns for these decile portfolios and calculate portfolio

returns in excess of the risk-free rate on a monthly basis. We report the regression coefficients

on the market (MKT), size (SMB), and value (HML) factors in both panels for the respective dec-

ile portfolios as well as the high-minus-low distress risk hedge portfolio. The factors are

obtained from Ken French’s website. Absolute values of t-statistics are reported in parentheses

below their respective coefficient estimates. Statistical significance at the 10%, 5%, and 1% lev-

els is denoted by *, **, and ***, respectively.

Panel A: Monthly equity returns for default risk portfolios in the full CRSP–COMPUSTAT sample

Physical PD’s constructed with coefficients from Column (1) of Table 2

Excess ret. CAPM

alpha

Three-factor

alpha

Four-factor

alpha

MKT SMB HML

Low 0.608** 0.166 0.433*** 0.096 0.879*** 0.109** �0.462***

(2.01) (0.99) (2.86) (0.72) (23.63) (2.17) (8.05)

2 0.569** 0.095 0.090 0.022 0.898*** 0.110*** �0.141***

(2.55) (1.51) (1.42) (0.36) (54.84) (4.66) (�2.72)

3 0.534** 0.092 0.034 0.043 1.033*** 0.116*** �0.071***

(2.51) (1.48) (0.55) (0.69) (60.30) (4.66) (�2.75)

4 0.553* �0.059 �0.168** �0.075 1.170*** 0.249*** 0.069**

(1.92) (�0.70) (�2.06) (�0.96) (54.03) (7.90) (2.13)

5 0.496 �0.175 �0.279*** �0.167* 1.252*** 0.367*** �0.021

(1.54) (�1.64) (�2.73) (�1.69) (45.85) (9.24) (�0.84)

6 0.385* �0.112 �0.157 0.056 1.254*** 0.389*** 0.013

(1.70) (�0.79) (�1.19) (0.47) (36.52) (9.37) (0.32)

7 0.408* �0.089 �0.224* �0.043 1.245*** 0.458*** 0.031

(1.68) (�0.65) (�1.77) (�0.37) (41.65) (10.52) (0.68)

8 0.308 �0.371*** �0.476*** �0.280*** 1.171*** 0.358*** 0.027

(0.92) (�2.73) (�3.99) (�2.61) (36.10) (7.57) (0.55)

9 0.200 �0.596** �0.653*** �0.375*** 1.425*** 0.920*** 0.053

(0.44) (�2.17) (�2.67) (�2.85) (23.64) (12.44) (0.58)

High �0.576 �1.216*** �1.509*** �0.736*** 1.511*** 0.923*** 0.430***

(1.19) (3.87) (5.29) (3.24) (21.63) (9.82) (3.99)

High–Low �1.184** �1.382*** �1.942*** �0.832*** 0.632*** 0.814*** 0.892***

(2.34) (2.96) (4.68) (2.64) (5.69) (10.96) (6.25)

Panel B: Monthly equity returns for default risk portfolios in the bond sample

Physical PD’s constructed with coefficients from Column (3) of Table II

Excess ret. CAPM

alpha

Three-factor

Alpha

Four-factor

Alpha

MKT SMB HML

Low 0.825*** 0.382** 0.385** 0.271* 0.891*** �0.274*** 0.003

(3.05) (2.29) (2.36) (1.65) (22.27) (5.18) (0.05)

2 0.425* 0.152* 0.165* 0.103 0.913*** �0.271*** 0.030

(1.96) (1.68) (1.67) (1.42) (35.69) (�8.17) (0.88)

3 0.551** 0.119 0.078 0.070 0.935*** �0.183*** 0.160***

(2.43) (1.18) (0.85) (0.67) (44.08) (�5.91) (5.00)

(continued)
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if a delisting return is available we use the delisting return; otherwise, we use the last avail-

able return in CRSP. We report returns for the ten decile portfolios, and the return differ-

ence between the top and bottom deciles in Table IV.

Our results challenge those obtained in the previous studies. Using CRPs as a measure

of systematic default risk exposure, the difference in raw returns between the highest and

lowest default risk portfolios is 0.521% per month and statistically significant. There is a

positive relationship between CRP and excess equity returns, and the return of the high-

minus-low excess spread portfolio is statistically significant. CAPM and multi-factor

regressions show that alphas are subsumed in all CRP portfolios, suggesting that variation

in systematic default risk exposure is captured by the market, size, and value factors. The

four-factor monthly alpha for a portfolio formed by going long on stocks in the highest

default risk exposure portfolio and short on stocks in the lowest default risk exposure

portfolio is 0.005% and statistically insignificant. Exposures to the market, size, and

value factors almost monotonically increase with CRP and are statistically significant for

the high minus low CRP hedge portfolio suggesting that these factors are intimately

related to systematic default risk exposure. As mentioned earlier, these results are consis-

tent with structural models of default in which aggregate risk factors drive default proba-

bilities as well as the returns on bonds and equities (Merton, 1974; Campello, Chen, and

Zhang, 2008).

Ranking stocks on their PD probabilities inferred from historical data, as done in

Dichev (1998), CHS (2008), and others, implicitly assumes that high default probability

stocks also have high exposures to the systematic component of default risk.

Using CRP, we explicitly rank firms based on their exposures to the systematic compo-

nent of default risk and we find no evidence of systematic default risk being negatively

priced.

Table III. Continued

Panel B: Monthly equity returns for default risk portfolios in the bond sample

Physical PD’s constructed with coefficients from Column (3) of Table II

Excess ret. CAPM

alpha

Three-factor

Alpha

Four-factor

Alpha

MKT SMB HML

4 0.502* 0.077 �0.079 �0.139 0.986*** �0.121*** 0.280***

(1.88) (0.75) (�0.86) (�1.54) (46.41) (�3.91) (8.77)

5 0.575** 0.053 �0.173 �0.113 1.153*** �0.069** 0.369***

(1.99) (0.37) (�1.45) (�1.15) (50.71) (�2.10) (10.78)

6 0.524 0.027 �0.225 �0.153 1.219*** �0.038 0.445***

(1.59) (0.17) (�1.45) (�1.21) (50.42) (�1.09) (12.24)

7 0.776** 0.001 �0.204** �0.065 1.275*** �0.039 0.496***

(2.41) (0.01) (�2.08) (�0.45) (46.04) (�0.96) (11.90)

8 0.489 �0.089 �0.284** �0.168 1.372*** �0.010 0.519***

(1.35) (�0.54) (�2.24) (�1.06) (46.84) (�0.23) (11.77)

9 0.184 �0.105 �0.349*** �0.196 1.387*** 0.106 0.476***

(0.45) (�0.83) (�3.34) (�0.91) (38.78) (1.03) (5.13)

High 0.318 �0.323 �0.694*** �0.217 1.437*** 0.009 0.685***

(0.82) (1.36) (3.19) (1.15) (26.89) (0.13) (8.39)

High–Low �0.507* �0.705*** �1.079*** �0.487** 0.546*** 0.284*** 0.682***

(1.66) (2.60) (3.83) (1.97) (7.89) (3.10) (6.45)
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6. Alternative Measure of Systematic Default Risk

6.1 Systematic Default Beta

We now extend the analysis of Section 5.2 to the full CRSP–COMPUSTAT sample to

ensure the robustness of our results. In particular, we identify a measure of systematic

default risk exposure that can be calculated for all firms regardless of whether they have

bonds outstanding.

We assume that historical default probabilities have a single common factor and use the

mean cross-sectional default probability to proxy for this common factor. The assumption

Table IV. Monthly equity returns for credit risk premium (CRP) portfolios

In Table IV, we report time-series averages of excess returns as well as CAPM, Fama–French

three-factor and Carhart four-factor alphas for distress risk portfolios. Each month from

January 1981 to December 2010, we sort stocks into 10 portfolios based on their bond CRP at

the beginning of the previous month. We compute the value-weighted returns for these decile

portfolios and calculate portfolio returns in excess of the risk-free rate on a monthly basis. We

report the regression coefficients the on the market (MKT), size (SMB), and value (HML) factors

for all the decile portfolios as well as the high-minus-low distress risk hedge portfolio. The fac-

tors are obtained from Ken French’s website. Absolute values of t-statistics are reported in

parentheses below their respective coefficient estimates. Statistical significance at the 10%, 5%,

and 1% levels is denoted by *, **, and ***, respectively.

Equity returns in credit risk premia portfolios

Excess

return

CAPM

alpha

Three-factor

alpha

Four-factor

alpha

MKT SMB HML

Low 0.463* �0.074 �0.021 0.01 0.890*** �0.319*** 0.020

(1.65) (0.52) (0.17) (0.08) (27.51) (9.29) (0.47)

2 0.489** 0.048 0.026 �0.000 0.971*** �0.287*** 0.017

(2.19) (0.45) (0.24) (�0.20) (41.48) (�8.35) (0.48)

3 0.552** �0.033 0.006 0.001 0.909*** �0.131*** 0.050

(2.31) (�0.25) (0.05) (0.99) (37.17) (�3.66) (1.35)

4 0.568** �0.053 �0.116 0.000 0.978*** �0.105*** 0.046

(2.29) (�0.39) (�0.86) (0.28) (36.24) (�2.66) (1.12)

5 0.574** 0.095 0.020 �0.001 1.022*** �0.066* 0.190***

(2.29) (0.68) (0.14) (�0.75) (39.59) (�1.73) (4.84)

6 0.608*** 0.069 0.092 0.002 1.032*** 0.004 0.281***

(2.66) (0.47) (0.62) (1.56) (35.49) (0.09) (6.36)

7 0.619* 0.063 0.004 �0.000 1.114*** 0.157*** 0.419***

(1.73) (0.54) (0.04) (�0.21) (35.73) (3.43) (8.86)

8 0.621** �0.012 �0.053 0.002 1.217*** 0.192*** 0.324***

(2.21) (�0.10) (�0.46) (1.12) (31.57) (5.15) (5.54)

9 0.795** 0.054 0.015 �0.000 1.239*** 0.231*** 0.575***

(2.45) (0.49) (0.14) (�0.15) (29.70) (5.00) (8.39)

High 0.984*** 0.325 �0.193 0.005 1.28*** 0.157*** 0.715***

(2.58) (1.33) (0.93) (0.02) (22.83) (2.63) (9.62)

High–low 0.521** 0.399 �0.172 �0.005 0.391*** 0.476*** 0.695***

(1.98) (1.50) (0.75) (0.02) (6.32) (7.25) (8.49)
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of a single factor is a good approximation as we find that the first principal component

explains more than 70% of the variation in default probabilities. The first principal compo-

nent and the mean default probability have a correlation greater than 0.90 and are signifi-

cantly higher during and after recessions.16

We fit an AR (1) model on a rolling window of 48 months to the average default proba-

bility and use the residuals as innovations. We regress firm returns on these innovations

over 48-month rolling windows to compute loadings on the innovations in average default

probability. We refer to the loading on the innovation as systematic default risk beta

(SYSDEFBETA).17

6.2 Default Risk Beta and Credit Spreads

In this subsection, we analyze the relationship between our measure of CRP calculated in

Section 4 and systematic default risk beta. We show that systematic default risk beta ðSYSD

EFBETAÞ can explain the cross-sectional variation in CRP in corporate bonds.

Table V summarizes Fama–MacBeth cross-sectional regression results when monthly

CRP (in %) is regressed on lagged systematic default risk beta (SYSDEFBETA as calculated

in Equation (5)) and firm characteristics that are related to credit risk. In all regression spec-

ifications, we control for two bond characteristics: average issue amount (OAMT) and

average time to maturity (TTM) of a firm’s outstanding bonds. Furthermore, in all regres-

sion specifications we also control for the Standard & Poor’s (S&P) rating (RATING)

assigned to the firm. We control for the firm’s credit risk using three alternative specifica-

tions. Our first proxy for the firm’s credit risk is Merton’s distance to default (DD). We use

PD probability as the second alternative measure. Finally, we utilize a specification that

does not impose any structure and use firm characteristics that are associated with credit

risk to estimate the third and final proxy for the firm’s credit risk. In particular, we control

for return volatility (SIGMA), profitability (NIMTAAVG), leverage (TLMTA), amount of

liquid assets (CASHMTA), market-to-book ratio (MB), and relative size of the firm

(RSIZE). The t-statistics for the slopes are based on the time-series variability of the esti-

mates, incorporating a Newey–West (1987) correction with four lags to account for possi-

ble autocorrelation in these estimates.

In Column (1), we control for the bond offering amount, time to maturity, and firm rat-

ing. In Column (2), we control for the bond offering amount, time to maturity, firm rating,

and Merton’s distance to default. In Column (3), we control for the bond offering amount,

time to maturity, firm rating, and the physical probability of default. In Column (4), we

control for the bond offering amount, time to maturity, firm rating, and the stock charac-

teristics that have been shown to be important determinants of credit risk by CHS (2008).

In all specifications the loading on the systematic default risk beta, SYSDEFBETA; is posi-

tive and statistically significant.

The impact of SYSDEFBETA on spreads is also economically significant. Results in

Column 4 of Table V suggest that moving from the 75th percentile systematic default risk

beta firm (SYSDEFBETA¼0.298) to the 95th percentile firm (SYSDEFBETA¼0.854)

16 We follow Hilscher and Wilson (2016) and first shrink the size of the cross-section by assigning

each firm-month to a rating-month group and calculate equal-weighted average 12-month cumu-

lative default probabilities for each rating-group. This leaves us with a panel of 17 ratings groups

with 360 months of data. Forming industry groups rather than ratings groups yields similar results.

17 We thank an anonymous referee for suggesting this approach.

650 D. Anginer and Ç. Yıldızhan

Downloaded from https://academic.oup.com/rof/article-abstract/22/2/633/4320213
by University of Georgia Libraries user
on 18 April 2018

Deleted Text:  
Deleted Text: -
Deleted Text: credit risk premium
Deleted Text: credit risk premia
Deleted Text: -
Deleted Text: credit risk premium
Deleted Text: equation 
Deleted Text: physical default
Deleted Text:  (PD)
Deleted Text: time 
Deleted Text: column 
Deleted Text: column 
Deleted Text: column 
Deleted Text: column 
Deleted Text: column 


Table V. Pricing of systematic default risk beta in the cross-section of credit spreads

In Table V, we run monthly Fama–MacBeth (1973) regressions of CRP (in %) on default risk pre-

diction variables used in CHS (2008), firm rating, and systematic default risk beta. Our sample

period covers January 1981 to December 2010. We report Fama–MacBeth regression coeffi-

cients as well as their corresponding Newey–West (1987) corrected t-statistics in parentheses.

CRP are calculated in month tþ1 as the difference between the corporate bond yield and the

corresponding maturity-matched treasury rate minus expected losses, liquidity compensation,

and tax compensation. SYSDEFBETA is the firm’s systematic default risk exposure and calcu-

lated as the sensitivity of its equity return in excess of the risk-free rate to innovations in the

mean default probability of all firms in the CRSP–COMPUSTAT sample. SYSDEFBETA is calcu-

lated over the past 48 months on a rolling basis. SIGMA, NIMTAAVG, TLMTA, CASHMTA, MB,

RSIZE, RATING, and DD are all calculated at time t. These variables are described in detail in

Table II. OAMT is the market value of debt at the time of its issuance in millions of dollars, and

TTM is the time to maturity of debt in years. PD is the physical probability of default reported as

a percentage. Absolute values of t-statistics are reported in parentheses below coefficient esti-

mates. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***,

respectively.

(1) (2) (3) (4)

Credit risk

premium

Credit risk

premium

Credit risk

premium

Credit risk

premium

SYSDEFBETA 1.989*** 1.493*** 1.276*** 0.673***

(8.26) (7.45) (8.57) (4.13)

OAMT �0.592 �1.190** �1.403*** 0.103

(0.13) (2.50) (4.40) (0.43)

TTM 1.082*** 1.221*** 1.054*** 0.098***

(4.81) (6.88) (5.96) (4.71)

RATING 1.438*** 1.308*** 1.050*** 0.092***

(15.80) (14.40) (21.73) (17.47)

DD �1.191***

(9.50)

PD * 106 0.577***

(7.31)

SIGMA 0.308***

(14.78)

NIMTAAVG �0.355***

(9.62)

TLMTA 0.315***

(4.15)

CASHMTA �1.031***

(4.71)

MB 0.013

(0.08)

RSIZE �0.459***

(13.69)

Constant �2.508** 1.165*** 0.959 �3.552***

(2.15) (7.63) (1.00) (16.07)
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leads to an increase of 37 basis points in bond risk premium after controlling for all param-

eters known to influence credit spreads.

The results suggest that systematic default risk exposure is an important driver of the

CRP in corporate bond spreads. The results also suggest that our measure of exposure to

systematic default risk computed from corporate bond spreads, CRP, and systematic

default risk beta, SYSDEFBETA; are comparable proxies for exposure to systematic default

risk.

6.3 Pricing of Systematic Default Risk in the CRSP–COMPUSTAT Sample

The systematic default risk beta described in the previous section allows us to test whether

systematic default risk is priced in the full cross-section of the CRSP–COMPUSTAT sam-

ple. We use the same portfolio analysis approach described in Section 5. In particular, we

sort stocks into deciles each month from January 1981 to December 2010 according to

their systematic default risk betas (SYSDEFBETA) obtained at the beginning of the previous

month. We then calculate the value-weighted decile portfolio returns for all stocks on a

monthly basis and regress the portfolio return in excess of the risk-free rate on the market

(MKTRF), size (SMB), value (HML), and momentum (MOM) factors. In Table VI, we

report regression results for all the decile portfolios along with the top decile minus bottom

decile hedge portfolio.

The results in Table VI are similar to those reported in Table IV. Highest systematic

default risk beta decile portfolio in the full CRSP–COMPUSTAT sample earns 60 basis

points more per month compared with the lowest systematic default risk beta decile portfo-

lio. This result is significant at the 10% level. Once we control for the market factor, as

well as the Fama–French size and value factors the statistical significance of the hedge port-

folio return disappears, supporting the Fama and French (1992) conjecture that size and

value premiums may be related to systematic distress risk.

Exposures to the market, size, and value factors are statistically significant for the

high minus low SYSDEFBETA hedge portfolio. Nevertheless, we only observe a strong

monotonic pattern in the exposure to the value factor, suggesting that the value factor is

more correlated with innovations in the systematic default risk factor compared with the

market and size factors. To further investigate the relationship between the value pre-

mium and systematic default risk compensation we control for the impact of

SYSDEFBETA on the value premium.18 We find that about half of the value-premium

can be attributed to systematic default risk exposure. These results are consistent with the

Fama and French (1996) contention that the value firms earn high average returns

because they are financially distressed.

Exposure to the market factor is largely constant across SYSDEFBETA portfolios,

except for a sharp increase for the highest systematic default risk exposure stocks, while

18 To control for the impact of systematic default risk exposure on value premium we do a dependent

bivariate-sort. First, we sort stocks into five groups based on SYSDEFBETA. Then within each

SYSDEFBETA group, we sort stocks based on their book-to-market values into another five

groups, creating a total of twenty-five portfolios. We calculate the returns for the zero-cost portfo-

lios that buy the highest book-to-market quintile and sell the lowest book-to-market quintile within

each SYSDEFBETA group. We control for the impact of SYSDEFBETA on the value premium by

averaging the returns of the five hedge portfolios over each of the SYSDEFBETA groups.
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exposure to the size factor is U-shaped as it is higher for high systematic default risk and

low systematic default risk portfolios alike but smaller in between. Overall, the results in

this sub-section lend further support to our findings using the bond sample.

6.4 Cross-sectional Pricing of PD and SYSDEFBETA

In this sub-section, we conduct cross-sectional analyses to confirm our earlier findings

based on the analysis of portfolio returns in the time series. In particular, we run Fama–

Table VI. Equity returns for systematic default risk beta portfolios

In Table VI, we report time-series averages of excess returns as well as CAPM, Fama–French

three-factor, and Carhart four-factor alphas for distress risk portfolios. We sort all stocks in the

CRSP–COMPUSTAT sample into deciles each month from January 1981 to December 2010

according to their systematic default risk betas—SYSDEFBETAs—obtained at the beginning of

the previous month. SYSDEFBETA is the firm’s systematic default risk exposure and calculated

as the sensitivity of its equity return in excess of the risk-free rate to innovations in the mean

default probability of all firms in the CRSP–COMPUSTAT sample. We compute the value-

weighted returns for these decile portfolios and calculate portfolio returns in excess of the risk-

free rate on a monthly basis. We report the regression coefficients on the market (MKT), size

(SMB), and value (HML) factors for all the decile portfolios as well as the high-minus-low dis-

tress risk hedge portfolio. The factors are obtained from Ken French’s website. Absolute values

of t-statistics are reported in parentheses below coefficient estimates. Statistical significance at

the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

Equity returns in SYDEFBETA portfolios

Excess

return

CAPM

alpha

Three-factor

alpha

Four-factor

alpha

MKT SMB HML

Low 0.405 �0.469** �0.180 �0.064 1.126*** 0.391*** �0.424***

(1.03) (2.10) (0.92) (0.92) (22.03) (6.18) (5.63)

2 0.448 �0.274** �0.254** �0.182** 1.103*** 0.062 �0.026

(1.49) (2.23) (2.02) (2.02) (33.70) (1.54) (0.53)

3 0.586** �0.520 �0.151 �0.105* 1.069*** �0.174*** 0.138***

(2.23) (0.53) (1.66) (1.66) (45.20) (5.92) (3.97)

4 0.575** �0.340 �0.181* �0.010** 1.050*** �0.157*** 0.217***

(2.26) (0.33) (1.92) (1.92) (42.94) (5.17) (6.02)

5 0.770*** 0.183* 0.002 0.002 1.009 �0.133*** 0.248***

(3.21) (1.88) (0.24) (0.24) (46.13) (4.88) (7.69)

6 0.829*** 0.231** 0.003 0.006 1.064*** �0.141*** 0.307***

(3.27) (2.07) (0.30) (0.30) (43.43) (4.65) (8.51)

7 0.727*** 0.127 �0.007 0.001 1.0549*** �0.090** 0.301***

(2.77) (0.98) (0.56) (0.56) (33.70) (2.33) (6.53)

8 0.854*** 0.219 0.005 0.038 1.072*** 0.100** 0.277***

(3.07) (1.57) (0.38) (0.38) (29.98) (2.26) (5.27)

9 0.880*** 0.136 0.004 0.082 1.195*** 0.171*** 0.227***

(2.73) (0.83) (0.03) (0.03) (27.94) (3.23) (3.60)

High 1.03** 0.061 0.006 0.182 1.393*** 0.676*** 0.154*

(2.33) (0.25) (0.03) (0.03) (23.81) (9.32) (1.79)

High–low 0.598* 0.530 0.186 0.246 0.267*** 0.285*** 0.579***

(1.84) (1.61) (0.57) (0.57) (3.13) (2.70) (4.61)
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MacBeth regressions of excess equity returns on systematic default betas (SYSDEFBETA),

PD probabilities, and firm characteristics. The results are reported in Table VII.

In Column (1) of Table VII, regressing excess returns on PD probabilities, we find that

the loading on PD is �3.733 and statistically significant. In Column (2), regressing excess

returns on the systematic default risk exposure measure (SYSDEFBETA), we find a statisti-

cally significant positive loading of 2.23, verifying our earlier results that the systematic

component of default risk is priced in the cross-section of equity returns.

In Column (3) of Table VII we include both PD and SYSDEFBETA and find that the

loading on PD is �0.871 and statistically significant and that the loading on SYSDEFBETA

is 1.892 and also statistically significant. Controlling for SYSDEFBETA reduces the loading

on PD economically, from �3.733 to �0.871, as well as statistically, from a t-statistic of

4.74 to 1.99, indicating that SYSDEFBETA partially reduces the significance of distress risk

anomaly, but does not eliminate it. This finding is consistent with the model in George and

Table VII. Cross-sectional pricing of PD and SYSDEFBETA

In Table VII, we run monthly Fama–MacBeth (1973) regressions of returns in excess of the mar-

ket (in %) on physical probability of default calculated as in CHS (2008) as well as on systematic

default risk beta. Our sample period covers January 1981 to December 2010. We report Fama–

MacBeth regression coefficients as well as their corresponding Newey–West (1987) corrected t-

statistics in parentheses. Excess return is the equity return of the firm minus the risk-free rate

calculated in month t þ1. PD is the physical probability of default at time t and is reported as a

percentage. SYSDEFBETA is the firm’s systematic default risk beta (failure beta) at time t and is

calculated as the sensitivity of its equity return in excess of the risk-free rate to innovations in

the mean default probability of all firms in the CRSP–COMPUSTAT sample. SYSDEFBETA is cal-

culated over the past 48 months on a rolling basis. CAPM Beta is the sensitivity of a stock’s

excess return to the market risk premium at time t as predicted by the Capital Asset Pricing

Model. CAPM Beta is also calculated over the past 48 months on a rolling basis. log BM is the

log of book-to-market ratio and is calculated as in Daniel and Titman (2006). Momentum is the

cumulative return in the past 12-to-2-month period. log ME is the logarithm of market capitaliza-

tion. Absolute values of t-statistics are reported in parentheses below coefficient estimates.

Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

(1) (2) (3) (4) (5)

Excess return Excess return Excess return Excess return Excess return

PD �3.733*** �0.871** �2.286***

(�4.74) (1.99) (�3.60)

SYSDEFBETA 2.230** 1.892* 0.810

(2.08) (1.78) (1.10)

CAPM Beta 0.007 0.047

(0.05) (0.26)

log BM 0.180*** 0.120*

(4.22) (1.70)

Momentum 0.791*** 0.590***

(3.48) (3.41)

log ME �0.075* �0.232***

(�1.79) (�3.37)

Constant 1.285*** 1.427*** 1.148*** 1.71*** 2.697***

(4.61) (4.72) (4.19) (6.30) (5.83)
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Hwang (2010) which shows that firms with low exposures to systematic distress risk

choose high leverage and, as a result, have high default probabilities despite having low sys-

tematic default risk exposures.19

In Column (4), we further control for firm characteristics such as size, book-to-market,

momentum, and CAPM-beta that are associated with expected returns, and find that the

default risk anomaly persists economically and statistically. Finally, in Column (5) regress-

ing excess returns on SYSDEFBETA as well as size, book-to-market, momentum, and

Table VIII. Impact of systematic default risk exposure on leverage

Table VIII reports regression results where the dependent variable is the year over year change

in leverage (DLeverage), computed in year t þ1. The independent variables are also year over

year changes, computed in year t. NIMTA measures profitability and is computed as the ratio of

net income to the market value of total assets. MB is the market-to-book ratio. LogSALE is the

log of total sales. TANG measures tangibility of assets. CRP is the difference between the corpo-

rate bond yield and the corresponding maturity-matched treasury rate minus expected losses,

liquidity compensation, and tax compensation. SYSDEFBETA is the firm’s systematic default

risk beta (failure beta) and is calculated as the sensitivity of its equity return in excess of the

risk-free rate to innovations in the mean default probability of all firms in the CRSP–

COMPUSTAT sample. The regression includes firm-fixed effects. Robust standard errors

adjusted for firm-level clustering are reported below coefficient estimates. Statistical signifi-

cance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.

(1) (2) (3)

DLeverage DLeverage DLeverage

DNIMTA �0.217*** �0.209*** �0.462***

(0.035) (0.052) (0.139)

DMB �0.004*** �0.004*** �0.007***

(0.001) (0.001) (0.002)

DLogSALE 0.012*** 0.013*** 0.022***

(0.002) (0.003) (0.008)

DTANG �0.019*** �0.017*** �0.086***

(0.005) (0.007) (0.016)

LEVERAGE �0.399*** �0.367*** �0.361***

(0.006) (0.007) (0.018)

DSYSDEFBETA �0.028**

(0.012)

DCRP �0.579***

(0.140)

Constant 0.160*** 0.160*** 0.180***

(0.002) (0.002) (0.009)

Firm FE Yes Yes Yes

Observations 46,747 46,747 4,552

R-squared 0.279 0.282 0.277

19 The three factor alphas are insignificant for the high-minus-low CRP and SYSDEFBETA hedge

portfolios, while it remains negative for PD hedge portfolio. We find that the relationship between

physical default probabilities and systematic default risk compensation, although positive on aver-

age, is non-linear.
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CAPM-beta, we verify earlier findings presented in Table VI that characteristics associated

with known risk factors largely subsume the premium for systematic default risk exposure.

7. Systematic Default Risk Exposure and Leverage

George and Hwang (2010) offer a specific mechanism for how the distress risk anomaly

may arise. Their theoretical model suggests that firms with high exposures to systematic

distress risk may lower their PD probabilities by choosing low levels of leverage in an

attempt to reduce distress costs. This in turn may lead one to classify risky firms as safe and

yield a negative risk premium on PD. Cross-sectional regressions in Section 6 reveal that

controlling for systematic default risk exposure reduces the distress risk anomaly, lending

partial support to George and Hwang (2010). In this section, we empirically verify that an

increase in systematic distress risk exposure predicts a reduction in leverage in the next

period.

In Table VIII, following the empirical model in Frank and Goyal (2003) and Rajan and

Zingales (1995), we investigate what happens to financial leverage when exposure to sys-

tematic default risk changes. In particular, we regress changes in leverage (DLeverage) on

changes in systematic default risk beta (DSYSDEFBETA) and changes in CRP (DCRP), con-

trolling for changes in profitability (DNIMTA), market-to-book ratio (DMB), the log of

total sales (DLogSALE), tangibility of assets (DTANG), and firm-fixed effects.

In Column (1) of Table VIII we report baseline results confirming the findings in Frank

and Goyal (2003) and Rajan and Zingales (1995). In Columns (2) and (3) we add changes

in CRP and changes in systematic default risk beta, respectively, as additional covariates.

Using both measures we find that there is a statistically and economically strong negative

relationship between changes in systematic default risk exposure and changes in financial

leverage. In addition to providing empirical support to the theoretical predictions in George

and Hwang (2010), these results also support the basic premise of our paper that when

assessing the default risk premium in the cross-section of equity returns one should use

exposure to systematic default risk and not the physical probability of default.

8. Conclusion

In this paper, we argue that what matters for pricing is the non-diversifiable component of

default risk. The prior literature measures financial distress by computing firms’ expected

probabilities of default inferred from historical default data. This calculation ignores the

fact that firm defaults are correlated and that some defaults are more likely to occur in bad

times and fails to appropriately account for the systematic nature of default risk. We use

CRP obtained from corporate credit spreads as well as an alternative measure that captures

the sensitivity of equity returns to innovations in average default probability to proxy for a

firm’s exposure to systematic default risk.

We find that stocks that have higher CRP have higher expected equity returns.

Consistent with structural models of default, we also show that the premium to a high

minus low systematic default risk hedge portfolio is largely explained by the market, size

and value factors, suggesting that sensitivities to three well-known risk factors capture most

of the variation in systematic default risk exposure.

The empirical results in the paper also lend support to the George and Hwang (2010)

hypothesis that firms with higher sensitivities to systematic default risk make capital
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structure choices that reduce their overall physical probabilities of default. We find that

changes in systematic default risk exposure predict changes in leverage in the next period

offering a partial explanation for the anomalous results previously documented in the

literature.
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Appendix

Here we explain the details of the variables used to compute the physical probability of

default (PD) and the Merton DD measure. We use quarterly accounting data from

COMPUSTAT and monthly market data from CRSP. Book equity, BE is defined as in Davis,

Fama, and French (2000). We adjust total value of assets, TA by the difference between the

market equity (ME) and book equity (BE): MTAi;t ¼ TAi;t þ 0:1� MEi;t � BEi;t

� �
.

NIMTAAVG is a geometrically declining average of past quarterly values of the ratio of

net income to adjusted total assets: NIMTAAVGt�1; t�12 ¼ 1�13

1�112 NIMTAt�1; t�3þ
�

� � � þ19NIMTAt�10; t�12Þ. EXRETAVG is a geometrically declining average of monthly log

excess stock returns relative to the S&P 500 index: EXRETAVGt�1; t�12 ¼
1�1

1�112 EXRETt�1; þ � � � . . . :þ111EXRET t�12

� �
. The weighting coefficient is set to

1¼2�1/3, such that the weight is halved each quarter. TLMTA is the ratio of total liabilities

to adjusted total assets. SIGMA is the standard deviation of daily stock returns over the pre-

vious 3 months. SIGMA is coded as missing if there are fewer than five observations. RSIZE

is the log ratio of market capitalization to the market value of the S&P 500 index.

CASHMTA is the ratio of the value of cash and short-term investments to the value of

adjusted total assets. PRICE is the log price per share truncated from above at $15. All varia-

bles are winsorized using a 1/99 percentile interval in order to eliminate outliers.

We follow CHS (2008) and Hillegeist et al. (2004) to compute the Merton’s DD

measure. Market value of equity is modeled as a call option on the company’s assets:

VE ¼ VAe�dTN d1ð Þ �Xe�rTN d2ð Þ þ 1� e�dT
� �

VA with d1 ¼ log VA

X

� �
þ r� d þ s2

A

2

� �
T

� �
=

sA

ffiffiffiffi
T
p� �

and d2 ¼ d1 � sA

ffiffiffiffi
T
p

.

VE is the market value of firm equity. VA is the value of the firm’s assets. X is the face

value of debt maturing at time T. r is the risk-free rate and d is the dividend rate expressed

in terms of VA. sA is the volatility of the value of assets, which is related to equity volatility,

sE, through the following equation: sE ¼ VAe�dT N d1ð ÞsA

� �
=VE:

We simultaneously solve the above two equations to find the values of VA and sA. We use

the market value of equity for VE and short-term plus one-half long-term book debt to proxy

for the face value of debt X. sE is the standard deviation of daily equity returns over the past

3 months. T equals 1 year, and r is the 1-year treasury bill rate. The dividend rate, d, is the
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sum of the prior year’s common and preferred dividends, obtained from COMPUSTAT div-

ided by the market value of assets. We use the Newton method to simultaneously solve the

two equations above. For starting values for the unknown variables we use VA ¼ VE þX,

and sA ¼ sE � VE= VE þXð Þ. Once we determine asset values, VA, we then compute asset

returns as in Hillegeist et al. (2004): mt ¼ max VA;t þ d � VA;t�1

� �
=VA;t�1; r

� �
. Because

expected returns cannot be negative, if asset returns are below zero, they are set to the risk-

free rate.20 Merton’s DD is finally computed as: DD ¼ log VA

X

� �
þ m� d � s2

A

2

� �
T= sA

ffiffiffiffi
T
p� �

.

20 We obtain similar results if we use a 6% equity premium instead of asset returns as in Campbell,

Hilscher, and Szilagyi (2008).
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