Reverse Derivations On Prime Rings

${ }^{1}$ Dr. C. Jaya Subba Reddy, ${ }^{1}$ K. Hemavathi
${ }^{l}$ Department of mathematics, S. V. University, Tirupati, Andhra Pradesh, India

Abstract

In this paper some results concerning to reverse derivations on prime rings are presented. If R be a prime ring with a non-zero reverse derivation d and S be the ideal of R then R is commutative.

Keywords- Center, Prime ring, Derivation, Reverse derivation.

I. INTRODUCTION

Bresar and Vukman [1] have introduced the notion of a reverse derivation. The reverse derivations on semi prime rings have been studied by Samman and Alyamani [2].

II. PRELIMINARIES

Throughout, R will represent an associative ring with center $Z(R)$ defined as $Z=\{z \in R /[z, R]=0\}$. We write $[x, y]$ for $x y-y x$. Recall that a ring R is called prime if $a R b=0$ implies $a=0$ or $b=0$. An additive mapping d from R into itself is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$ and is called a reverse derivation if $d(x y)=d(y) x+y d(x)$ for all $x, y \in R$.

III. MAIN RESULT

THEOREM 1: Let R be a prime ring with a nonzero reverse derivation d and let S be an ideal of R Suppose that $d(x r) \in Z, \forall x \in S, r \in R$ where Z denotes the center of R. Then R is commutative.

PROOF: Given $[d(x r), y]=0, \forall x \in S$ and $y, r \in R$ i.e., $[d(r) x+r d(x), y]=0$
$\Rightarrow[d(r) x+r d(x)] y-y[d(r) x+r d(x)]=0$
$\Rightarrow d(r) x y+r d(x) y-y d(r) x-y r d(x)=0$
Adding and subtracting $r y d(x), d(r) y x$,
then we get,

$$
\begin{aligned}
\Rightarrow & d(r) x y+r d(x) y-r y d(x)+r y d(x)-y d(r) x+ \\
& d(r) y x-d(r) y x-y r d(x)=0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & d(r) x y+r[d(x) y-y d(x)]+[r y-y r] d(x)+ \\
& {[d(r) y-y d(r)] x-d(r) y x=0 } \\
\Rightarrow & {[d(r) x y-d(r) y x]+r[d(x) y-y d(x)]+} \\
& {[r y-y r] d(x)+[d(r) y-y d(r)] x=0 } \\
\Rightarrow & d(r)[x y-y x]+r[d(x), y]+[r, y] d(x)+[d(r), y] x=0 \\
\Rightarrow & d(r)[x, y]+r[d(x), y]+[r, y] d(x)+[d(r), y] x=0 \\
\Rightarrow & d(r)[x, y]+r[d(x), y]+[r, y] d(x)=0
\end{aligned}
$$

Put $\mathrm{y}=\mathrm{x}$ in the above equation, then we get,
$\Rightarrow d(r)[x, x]+r[d(x), x]+[r, x] d(x)=0$
$\Rightarrow r[d(x), x]+[r, x] d(x)=0$
By expanding this equation, we conclude that,
$\Rightarrow r(d(x) x-x d(x))+(r x-x r) d(x)=0$
$\Rightarrow r d(x) x-r x d(x)+r x d(x)-x r d(x)=0$
$\Rightarrow r d(x) x-x r d(x)=0$
$\Rightarrow r d(x) x=x r d(x)$
We write zr instead of r in (1) and using this equality, we get,
$\Rightarrow z r d(x) x=\operatorname{xzrd}(x)$
$\Rightarrow \operatorname{zxrd}(x)=\operatorname{xzrd}(x)$
$\Rightarrow \operatorname{zxrd}(x)-x z r d(x)=0$
$\Rightarrow[z x-x z] r d(x)=0$
$\Rightarrow[z, x] r d(x)=0, \forall x \in S$ and $z, r \in R$
Since R is prime, we have, $[z, x]=0$ or $d(x)=0$.
Since d is a non zero reverse derivation,
we have, $d(x) \neq 0$.
$\Rightarrow[z, x]=0, \forall z \in R, x \in S$.
$\Rightarrow[R, S]=0$.
Hence R is commutative. This completes the proof of the theorem.

IV. REFERENCES

1. M. Bresar and J. Vukman, on some additive mappings in rings with involution, Aequations math., 38(1989), 178-185.
2. M. Samman, N. Alyamani, Derivations and reverse derivations in semiprime rings, International Mathematical Forum, 2, No. 39(2007), 1895-1902.
