
IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 445 | P a g e

Single Precision Floating Point Arithmetic Using Vedic

Mathematics

Sarbjeet Singh1, Ankit Trivedi2

1ECE Department, Sant Longowal Institute of Engineering and Technology, Longowal, India

2Axis Institute of Technology and Management, India

(E-mail: er.sarbjeet.singh@gmail.com, trisita92@gmail.com)

Abstract—Maneuver on the real numbers

comprehensively necessitate floating-point arithmetic for

expending its use in the numerous ambits of science,

engineering, medical imaging, biometrics, motion capture

and audio applications. Floating-point reckonings are

extensively used in operations of real numbers. Computer

organization has staunchly premeditated a floating-point

arithmetic unit (FPU) coprocessor that stewards entirely

on the operations of numbers with floating-point values

and IEEE protocols are trailed by arithmetic of floating-

point numbers. Single precision format specified by IEEE

754 incorporate 32-bit binary number, which have first bit

(MSB) is sign bit, subsequently next 7 bits is exponent part

and next 24 bits mantissa part. Infinities, underflow,

overflow, inexact and NaN’s are well expounded in this

format. This exertion intent to form a competent FPU that

is proficient in executing basic functions, reduced delay

and memory constraint to supreme zenith. This paper

encompasses FPU for single precision floating-point is

premeditated and instigated expending Vedic

mathematics. The scrupulous multiplier, Urdhva

Triyakbyham sutra, discovered by Swami Jagadguru

Krishna Sri Bharati Maharaja Tirthji, is expended in this

work. This sutra is fundamentally vertical and crosswise

multiplication of bits. With the aid of Vedic mathematics,

better results have been attained when paralleled with

conventional algorithms in terms of LUT’s, IoB’s, device

utilizations and delay. The reduction of 23 percent in

LUT’s, 3.6 percent in IOB’s and 18.7 percent in delay has

been triumphed, when compared to conventional method.

The design is simulated and implemented on Xilinx ISE

Vivado 2014.4 by using VHDL coding and synthesised for

Virtex-7. The result illustrates that FPU using Vedic

mathematics has a prodigious influence on delay, speed

and area.

Keywords— Single precision; Floating-point arithmetic;

Vedic mathematics; VHDL.

I. INTRODUCTION

 Floating-point arithmetic is contemplated as a murky

subject, which is quite astounding as floating-point is one of

the fundamental topic in computer system. Floating-point data

types are present roughly for every language of any operating

system. Every range of Computers commencing from personal

computers to supercomputers all are equipped with floating-

point accelerators. Computer system has an FPU as its

essential component. Usual actions that are manipulated by

FPU are addition, subtraction, multiplication and division.

Therefore, certain facet of floating-point arithmetic enacts a

straight impression on the designing of systems of computer.

Floating-point arithmetic has its extensively solicitations in the

several fields of science, engineering, medical imaging,

biometrics, motion capture and audio applications, as most of

these cited fields are associated with operations on real

numbers which indirect inference towards floating-point

numbers. For most of mathematical operations on real

numbers, floating-point operations are extensively used. In

computer system gives options for number representation in

two ways, either fixed point representation or floating-point

representation these representations are selected contingent on

user and the application where number representation is ought

to be used.
One of worth mentioning benefits of using floating-

point representation compared to representation of fixed-point
(and integer) arithmetic is floating-point arithmetic’s capability
or capacity to address broader range of values. The floating-
point presentation necessities vaguely additional storing space
(to encode the place of the radix point), so when kept in the
similar space as given to other representations, floating-point
numbers attain their larger range at the cost of a little less
precision [1]. Floating-point format, in specific is the standard
Institute of Electrical and Electronics Engineers (IEEE) format.
It is by far the most common method of representing a rough
calculation to real numbers in computers because it proficiently
picked up by most large computer processors.

II. FLOATING POINT REPRESENTATION

 IEEE has designed an operating standard with

arithmetic of floating-point i.e. IEEE 754 standard that

describes floating-point representation and arithmetic. This

standard is considerably used as a standard for real numbers

on computers although there exist various other

representations for real numbers. This standard engulf formats

for representing floating-point numbers including negative

numbers, de-normalized numbers special values i.e. infinities

and not a number together with a set of floating-point

operations being operate on special values. Four rounding

modes and five exceptions are also specified in IEEE standard.

The general form of the representation for floating-point

number is given in equation (1):

mailto:er.sarbjeet.singh@gmail.com

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 446 | P a g e

Z = (-1)S (M * 2E) (1)

Where

Z = any floating-point number

 S = sign bit of Z

 M = mantissa of Z

 E = exponent of Z
Most prevalent IEEE 754 standards are equipped with

single precision floating-point and double precision floating-
point representation as shown in figure 1.The single precision
format comprise of 32 bit binary number, which have first bit
(MSB) is sign bit, then next 7 bits exponent part and next 24
bits mantissa part whereas in double precision format out of 64
bits Most significant bits is signed bit, then next 11 bits belongs
to exponential part and final 52 bits are kept for mantissa part.
For single precision with floating-point format and double
precision with floating-point designs, mantissa that is stored
with one hidden bit is represented as 1.M.

Fig. 1. Floating Point Representation

III. WORK ANTICIPATED

A. Arithmetic Unit for Floating Points

The prime aim in general for every arithmetic unit is to

have substantially high speed; lower values of power

consumption and efficient utilization of chip area. In this

paper, single precision arithmetic unit has been anticipated

which incorporates different units for addition, subtraction,

multiplication and division units. In the proposed FPU as

shown in figure 2, pre-normalization block is retained to

adjusts the operands by executing the indispensable shifts

before an addition or a subtract operation. Add block is used

for execution of addition and purpose of subtraction block is

subtraction of mantissa part. The purpose of Vedic multiply

block is to execute the multiplication (Vedic mathematics) of

the mantissa part. Divide block is used for division of the

operands projected to be divided, determines the remainder.

Post normalization block is employed for normalizing the

outcome of add/ sub/ mul/ div operation to its IEEE754 form.

Four cases of rounding discussed in this paper are: 00- even

present in vicinity, 01- Zero, 10- infinity with Positive, 11-

infinity with negative infinite and four cases are used for

operation on fpu_operation: (000-addtion, 001-subtraction,

010-multiplication, 011-division).

Fig. 2. Floating Point Arithmetic Unit

B. Floating Point Addition/Subtraction

The block as shown in figure 3 is used for both addition

and subtraction. The steps convoluted in execution of these

operations are as follows [2]:

1) Scrutinize for special values on inputs such as zero’s,

nan, etc.

2) Performing the necessary shifts before addition or

subtraction operation to equalize exponents by

modifying operands.

3) Addition and subtraction of mantissa is done

accordingly

4) Normalization and rounding of the outcome are done

using defined rounding modes. Additionally, exception

on output is produced if any, such as NaN, Infinity, etc.

C. Floating Point Multiplier

This block is used for multiplication, which involves

following steps [3]:

1) Input values are checked for a zero, a zero at input

implies a zero at output.

2) Next check is done for sign of multiplication; sign is

dependent on the sign of multiplying numbers. If

numbers are having opposite sign, then result ought to

have negative value. And if numbers have similar sign

the result ought to be positive.

3) Exponent of both operands are then added and bias is

subtracted bias from it then calculate exponent of

result.

4) Multiplication of the mantissas.

5) Normalize the product and round the result by using

specified rounding modes. Also produces exceptions.

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 447 | P a g e

Fig. 3. Block diagram of floating-point Adder/ Subtractor

In this paper, Vedic mathematics is used for

multiplication of mantissa of both operands. Vedic

mathematics, originated from the Vedas, postulates one line,

intellectual and tremendously fast methods along with quick

crosschecking systems. Sri Bharati Krishna Tirthaji has

bought in light the Vedic mathematics, and proposed that

Vedic mathematics is a mathematical embellishment of

sixteen simple mathematical formulae taken from the Vedas. It

is based on 16 mathematical formulae (generally called

Sutras) production along with several areas of mathematics

such as trigonometry, arithmetical formulas, algebraic

equation, geometry etc. These sutras are cited below with

their concise meaning [4].

1) Ekadhikena Purvena means “one in addition to

preceding one”.

2) Nikhilam navatascaramam Dasatah implies “all from

nine and the last from ten ”

3) Urdhva – tiryagbhyam is the general formula by

using vertical and crosswise multiplication and

division of all numbers .

4) Paravartya Yojayet means invert and operate.

5) Sunyam Samya Samuccaye says the 'Samuccaya is

also zero.' i.e., it should be kept in equal to zero.

6) Anurupye – Sunyamanyat says 'If one is present in

ratio, the other one will be equal to zero'.

7) Sankalana – Vyavakalanabhyam means adding and

subtracting.

8) Puranapuranabhyam means by the accomplishment or

non-accomplishment.

9) Calana – Kalanabhyam means 'Sequential motion'.

10) Ekanyunena Purvena takes by one minus from

previous one.

11) Gunakasamuchyah says the factors of the sum of

number result are equal to the sum of the factors.

12) Gunitasamuchyah means the product of the sum

result is equal to the sum of the product.

13) Sopaantyadvayamantyam means final and taken

twice the last but one.

14) Vyashtisamanstih means do portion and complete.

15) Yaavadunam takes whatever the extent to fits

deficiency.

16) Shesanyankena Charamena takes the remainders by

the last digit.

Urdhva – tiryagbhyam sutra is employed for multiplication of

24*24 bits as shown in figure 4 and in same way,

multiplication of 12*12 is done and with same Vedic sutra

multiplication of 6*6 is done which is shown in figure 5.

Fig. 4. Block diagram for 24*24 bit multiplier implementation

Fig. 5. Block diagram for 6*6 bit multiplier implementation

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 448 | P a g e

Fig. 6. Implementation of 3*3 bit multiplication

 In 3*3 Vedic multiplication, first step is to multiply

operand's last significant bits as A0*B0 [5]. In second step is

evaluation of multiplication of A1*B0 and B1*A0 and adding

the results. In the third step, multiplication of A2*B0, B2*A0

and A1*B1 respectively finally adding them all. In fourth step,

multiplication of A2*B1 and B2*A1 then adding. In final step,

multiplication of A2*B2 is done to get the required result. The

hardware implementation of 3*3 multiplication is shown

above in figure 6.

D. Floating Point Division

This block is used for division that involves following steps

[6].

1) Inspect for zeros, nan, infinity on inputs.

2) Adding the exponents

3) Divide the mantissas

Normalize the product and round by the specified rounding

mode. Also produce exceptions.

IV. RESULT AND ANALYSIS

The FPU has been coded in VHDL, simulated on

Xilinx Vivado 2014.4 and synthesized for Virtex-7 FPGA [7].

The maximum combinational path delay of floating-point

multiplier is 25.494 ns and fmax is at 100MHz [8]. The

various results of arithmetic operation as shown below. As it

can be anticipated from the figure 7, figure 8, figure 9 and

figure 10, the various simulation results, which shows

simulation of subtraction of two 32-bit floating-point number

which is shown in figure 8. The round mode is 10 and the

fpu_operation mode is 001. Figure 9 shows the simulation

result of multiplication of two 32-bit floating-point numbers.

The round mode is 01 and the fpu_operation mode is 010.

Similarly figure 10 shows the simulation result of division of

two 32-bit floating-point numbers. The round mode is 00 and

the fpu_operation mode is 011

V. CONCLUSION

The designed FPU has capable of performing different

operations such as addition, subtraction, multiplication and

division. Addition, subtraction and division operations are

implemented using conventional method. The multiplication is

based on Vedic Mathematics. Xilinx VIVADO 2014.4 is used

for designing of FPU with VHDL coding and is synthesized

for Virtex-7 FPGA. The purposed FPU is effective for less

memory utilization as shown by results. The future of this

research lies with a vast amount of work yet to be done for

improvising the efficiency of the FPU by using other Vedic

sutras.

Fig. 7. Simulation result of addition of two 32-bit floating-
point number. The round mode is 00 and the fpu_operation
mode is 000

Fig. 8. Simulation result of subtraction of two 32-bit floating-
point number. The round mode is 10 and the fpu_operation
mode is 001

Fig. 9. Simulation result of multiplication of two 32-bit
floating-point number. The round mode is 01 and the
fpu_operation mode is 010

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 449 | P a g e

Fig. 10. Simulation result of division of two 32-bit floating-
point number. The round mode is 00 and the fpu_operation
mode is 011

REFERENCES

[1] S. S. Mahakalkar and S. L. Haridas, “Design of high-

performance IEEE 754 floating point multiplier using Vedic
mathematics, “in Computational Intelligence and
Communication Networks (CICN), 2014 International
Conference on. IEEE, 2014, pp. 985-988.

[2] Y. Bamsal, C. Madhu and P. Kaur, “High speed Vedic
multiplier designs- a review,” in Engineering and Computational

[3] Sciences (RAECS), 201 Recent Advances in. IEEE, 2014, pp. 1-
6.

[4] I.Vaibhav, K. Saicharan, B. Sravanthi and D. Srinivasulu,
“VHDL implementation of floating-point multiplier using Vedic
mathematics, “in International Conference on Electrical,
Electronics and Communications (ICEEC), 2014.

[5] S. B. K. Tirtha and V. S. Agrawala, Vedic mathematics. Motilal
Banarsidass Publication, 1992, vol.10.

[6] A. Jain, B. Dash, A. K. Panda, and M. Suresh, “FPGA design of
a fast 32-bit floating point multiplier unit, “in Devices, Circuits
and Systems (ICDCS), International Conference on. IEEE,
2012, pp. 545-547.

[7] Y. S. Rao, M. Kamaraju, and D. Ramanjaneyulu, “An FPGA
implementation of high speed and area efficient double precision
floating point multiplier using Urdhva Triyagbhyam technique,”
in Power, Control, Communication and Computational
Technologies for Sustainable Growth (PCCCTSG), Conference
on. IEEE, 2015, pp. 271-276.

[8] W. Jose, A. R. Silva, H. Neto and M. Vestias, “Efficient
implementation of a single precision floating point arithmetic
unit on FPGA,” in Field Programmable Logic and Applications
(FPL), 24th International Conference on. IEEE, 2014, pp. 1-4.

[9] R. K. Kodali, L. Boppana and S. S. Yenamachintala, “FPGA
implementation of Vedic floating point multiplier,” in Signal
Processing, Informatics Communication and Energy Systems
(SPICES), Conference on. IEEE, 2015, pp-1-4.

