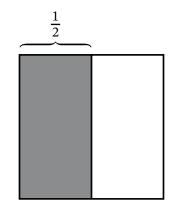
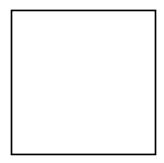
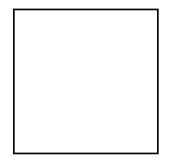

Name Date


Complete the area model to make like units. Then add or subtract. Each area model represents 1.

1.
$$\frac{1}{4} + \frac{5}{8} =$$
_____ + ___ = ____

2.
$$\frac{1}{2} - \frac{2}{6} =$$
_____ = ___


$$\frac{1}{4} = \frac{1 \times \boxed{}}{4 \times \boxed{}} = \frac{\boxed{}}{\boxed{}}$$


$$\frac{1}{2} = \frac{1 \times \boxed{}}{2 \times \boxed{}} = \boxed{}$$

3.
$$\frac{7}{10} + \frac{1}{2} =$$
 4. $\frac{4}{6} - \frac{1}{3} =$ = ____

4.
$$\frac{4}{6} - \frac{1}{3} =$$
 =

$$\frac{1}{2} = \frac{1 \times \boxed{}}{2 \times \boxed{}} = \boxed{}$$

$$\frac{4}{6} = \frac{4 \div \boxed{}}{6 \div \boxed{}} = \boxed{}$$

Draw an area model to make like units. Then add or subtract.

6.
$$\frac{7}{9} - \frac{1}{3} = \underline{} = \underline{}$$

8.
$$\frac{12}{8} + \frac{1}{4} =$$
 =

Add or subtract. Show your work.

9.
$$\frac{2}{9} + \frac{2}{3} =$$
_____ + ___ = ____

10.
$$\frac{1}{2} - \frac{1}{8} =$$
_____ = ____

11.
$$\frac{1}{2} + \frac{3}{4} =$$
_____ = ____

12.
$$\frac{21}{12} - \frac{3}{4} =$$
_____ = ____

5 ► M2 ► TB ► Lesson 6 EUREKA MATH²

13. Jada and Scott use different strategies to find like units to add $\frac{4}{10}$ and $\frac{1}{5}$. They both have correct answers.

Jada's Way	Scott's Way
$\frac{4}{10} + \frac{1}{5}$	$\frac{4}{10} + \frac{1}{5}$
$\frac{1}{5} = \frac{1 \times 2}{5 \times 2} = \frac{2}{10}$	$\frac{4}{10} = \frac{4 \div 2}{10 \div 2} = \frac{2}{5}$
$\frac{4}{10} + \frac{2}{10} = \frac{6}{10}$	$\frac{2}{5} + \frac{1}{5} = \frac{3}{5}$

Explain why Jada's and Scott's answers look different but are equivalent.

PROBLEM SET

© Great Minds PBC

56