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Abstract-- Now a days there is a lot of development in smart 
devices which are combination of human intelligence and 

machines. Character recognition is one of the example of smart 

device and Mathematical expression recognition is belongs to 

such device which is developed to recognize printed 

mathematical symbols. This system conventional programming 

methods of mapping symbol images into matrices, analyzing 

pixel and/or vector data and trying to decide which symbol 

corresponds to which character would yield little or no realistic 

results. Clearly the needed methodology will be one that can 

detect ‘proximity’ of graphic representations to known symbols 

and make decisions based on this proximity.  
 

In this paper discuses about then usefulness of neural networks, 

more specifically the motivations behind the development of 

neural networks, the outline network architectures and learning 

processes. We conclude with Mathematical Symbol 

recognition, a successful layered neural network application 

and try to convent into the text file. Here all character, number 

and mathematical formula are recognition and try to convent 

character into text file. 

 Keywords— Optical Character Recognition; neural network; 

Mathematical symbol; proximity; 

 
I. INTRODUCTION 

 Recognizing Character in image file and convent into 

text file is a new and important field in document analysis. It is 

quite different from extracting mathematical expressions in 

image-based documents. In this paper, we propose a neural 

network method to detect both isolated and embedded 

mathematical expressions in image documents. Moreover, 

various features of formulas, including geometric layout, 

character and context content, are used to adapt to a wide range 

of formula types. Experimental results show satisfactory 

performance of the proposed method.  
 

One of the most classical applications of the Artificial Neural 

Network is the Character Recognition System. This system is 

the base for many different types of applications in various 

fields, many of which we use in our daily lives. Cost effective 

and less time consuming, businesses, post offices, banks, 

security systems, and even the field of robotics employ this 

system as the base of their Operations. Handwritten character 

recognition is a difficult problem due to the great variations of 

writing styles, different size (length and height) and orientation 

angle of the characters. Handwritten Character recognition is an 

area of pattern recognition that has become the subject of 
research during the last some decades. Neural network is playing 

an important role in handwritten character recognition. Many 

reports of character recognition in English have been published 

but still high recognition accuracy and minimum training time 
of handwritten English characters using neural network is an 

open problem. Therefore, it is a great important to develop an 

automatic character recognition system for a mathematical 

symbol.  

 

 
Fig 1. OCR Process 

 

In this paper, efforts have been made to develop 

automatic mathematical symbol recognition system for 

mathematics with high recognition accuracy and minimum 

training and classification time. Hence the conventional 

programming methods of mapping symbol images into matrices, 

analyzing pixel and/or vector data and trying to decide which 

symbol corresponds to which character would yield little or no 
realistic results. Clearly the needed methodology will be one that 

can detect ‘proximity’ of graphic representations to known 

symbols and make decisions based on this proximity. To 

implement such proximity algorithms in the conventional 

programming one needs to write endless code, one for each type 

of possible irregularity or deviation from the assumed output 

either in terms of pixel or vector parameters, clearly not a 

realistic fare. 

 

In this paper, one effective optical character 

recognition from text image using texture and topological 

features is proposed. For better performance, the texture and 
topological features of all characters of text image like corner 

points, features of different regions, and ratio of character area 

and convex area are calculated. Based on the texture and 

topological information, character verification is done using 

feature matching between the extracted character and the 

template of all character serves as a measure of similarity 

between the two. Also discuss about then usefulness of neural 

networks, more specifically the motivations behind the 
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development of neural networks, the outline network 

architectures and learning processes. We conclude with 

Mathematical Symbol recognition, a successful layered neural 

network application and try to convent into the text file. Here all 

character, number and mathematical formula are recognition. 

 
II. Related work 

The existing OCR systems show high accuracy in interpreting 

text portions but failed to properly process other components 

like graphics, half-tones, mathematical formulas and equations. 

Segmenting documents to text, graphics, half-tones, tables etc. 

have been reported in the literature by many researchers. 

However, segmenting math-zone is still a challenging problem. 

It has been observed from the existing literatures that most of 

the works are directed toward math-symbol or equation 

recognition assuming that the math-zones are already marked. 

Though, symbol recognition is a part of OCR activity but when 

it is applied to the non-segmented mixed material (text with 
math-zone and others) computation will be expensive and 

success far from satisfactory. We on the other hand contend that 

a better approach is to segment the math-zone from the mixed 

material thereby helping the future OCR activity to focus its 

processing only on math-symbols and equations. In this paper 

we propose fully automated segmentation technique extracting 

math-zone exploiting spatial distribution of black pixels on 

white background. Unlike many reported works we did not use 

any type of symbol recognition techniques for mathzone 

segmentation. 

 
III. Problem Statement  

 

Existing Character, mathematical symbol and mathematical 

formula are recognition but here to try convent into a text file 

to easy use and helpful. A mathematical symbol recognition 

identify two significant areas of weakness, that of correctly 

segmenting text and math lines, and precisely identifying the 

locations of mathematical formulae. For each of these issues we 

have proposed and implemented more advanced techniques, 

then rerun previously reported experiments and for each case 

reported significant improvements. Here all type of recognition 

but try only character to convent into the text file. 
 

IV. IMPLEMENTATION ENVIRONMENT  

  

1. Network Formation 

The MLP Network implemented for the purpose of this 

project is composed of 3 layers, one input, one hidden and one 

output.The input layer constitutes of 150 neurons which receive 

pixel binary data from a 10x15 symbol pixel matrix. The size 

of this matrix was decided taking into consideration the average 

height and width of character image that can be mapped without 

introducing any significant pixel noise. The hidden layer 
constitutes of 250 neurons whose number is decided on the 

basis of optimal results on a trial and error basis. The output 

layer is composed of 16 neurons corresponding to the 16-bits of 

Unicode encoding. To initialize the weights a random function 

was used to assign an initial random number which lies between 

two preset integers named ±weight_bias. The weight bias is 

selected from trial and error observation to correspond to 

average weights for quick convergence. 

 

 
 

Fig 2. The Project MLP Network 

 

2. Symbol image detection 

The process of image analysis to detect character symbols 
by examining pixels is the core part of input set preparation in 

both the training and testing phase. Symbolic extents are 

recognized out of an input image file based on the color value 

of individual pixels, which for the limits of this project is 

assumed to be either black RGB(255,0,0,0) or white 

RGB(255,255,255,255). The input images are assumed to be in 

bitmap form of any resolution which can be mapped to an 

internal bitmap object in the Microsoft Visual Studio 

environment. The procedure also assumes the input image is 

composed of only characters and any other type of bounding 

object like a boarder line is not taken into consideration. 
 

The procedure for analyzing images to detect characters is 

listed in the following algorithms: 

 

i. Determining character lines 

 

Enumeration of character lines in a character image 

(‘page’) is essential in delimiting the bounds within which the 

detection can proceed. Thus detecting the next character in an 

image does not necessarily involve scanning the whole image 

all over again. 

 

Algorithm: 

 

1. start at the first x and first y pixel of the image 

pixel(0,0), Set number of lines to 0 

2. scan up to the width of the image on the same y-

component of the image 

a. if a black pixel is detected register y as top of the 

first line 

b. if not continue to the next pixel 

c. if no black pixel found up to the width increment 

y and reset x to scan the next horizontal line 
3. start at the top of the line found and first x-component 

pixel(0,line_top) 

4. scan up to the width of the image on the same y-

component of the image 
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a. if no black pixel is detected register y-1 as bottom 

of the first line. Increment number of lines 

b. if a black pixel is detected increment y and reset x 

to scan the next horizontal line 

5. start below the bottom of the last line found and repeat 

steps 1-4 to detect subsequent lines 
6. If bottom of image (image height) is reached stop. 

 

ii. Detecting Individual symbols 

 

Detection of individual symbols involves scanning 

character lines for orthogonally separable images composed of 

black pixels. 

 

Algorithm: 

 

1. start at the first character line top and first x-

component 
2. scan up to image width on the same y-component 

a. if black pixel is detected register y as top of the 

first line 

b. if not continue to the next pixel 

3. start at the top of the character found and first x-

component, pixel(0,character_top) 

4. scan up to the line bottom on the same x-component 

a. if black pixel found register x as the left of the 

symbol 

b. if not continue to the next pixel 

c. if no black pixels are found increment x and reset 
y to scan the next vertical line 

5. start at the left of the symbol found and top of the 

current line, pixel(character_left, line_top) 

6. scan up to the width of the image on the same x-

component 

a. if no black characters are found register x-1 as 

right of the symbol 

b. if a black pixel is found increment x and reset y to 

scan the next vertical line 

7. start at the bottom of the current line and left of the 

symbol, pixel(character_left,line_bottom) 

8. scan up to the right of the character on the same y-
component 

a. if a black pixel is found register y as the bottom 

of the character 

b. if no black pixels are found decrement y and reset 

x to scan the next vertical line 

 
 

Fig 3. Line and Character boundary detection 

 

From the procedure followed and the above figure it is 

obvious that the detected character bound might not be the 

actual bound for the character in question. This is an issue that 
arises with the height and bottom alignment irregularity that 

exists with printed alphabetic symbols. Thus a line top does not 

necessarily mean top of all characters and a line bottom might 

not mean bottom of all characters as well. 

 

Hence a confirmation of top and bottom for the character 

is needed.An optional confirmation algorithm implemented in 

the project is: 

 

1. start at the top of the current line and left of the 
character 

2. scan up to the right of the character 

a. if a black pixels is detected register y as the 

confirmed top 

b. if not continue to the next pixel 

c. if no black pixels are found increment y and reset 

x to scan the next horizontal line 

 

 
 

Fig 4. Confirmation of Character boundaries 

 

3. Symbol Image Matrix Mapping 

 

The next step is to map the symbol image into a 

corresponding two dimensional binary matrix. An important 

issue to consider here will be deciding the size of the matrix. If 

all the pixels of the symbol are mapped into the matrix, one 

would definitely be able to acquire all the distinguishing pixel 

features of the symbol and minimize overlap with other 

symbols. However this strategy would imply maintaining and 

processing a very large matrix (up to 1500 elements for a 

100x150 pixel image). Hence a reasonable tradeoff is needed in 

order to minimize processing time which will not significantly 
affect the separability of the patterns. The project employed a 

sampling strategy which would map the symbol image into a 

10x15 binary matrix with only 150 elements. Since the height 

and width of individual images vary, an adaptive sampling 

algorithm was implemented. The algorithm is listed below: 

 

Algorithm: 

 

a. For the width (initially 20 elements wide) 

1. Map the first (0,y) and last (width,y) pixel 

components directly to the first (0,y) and last 

(20,y) elements of the matrix 
2. Map the middle pixel component (width/2,y) to 

the 10th matrix element 

3. subdivide further divisions and map accordingly 

to the matrix 

b. For the height (initially 30 elements high) 

1. Map the first x,(0) and last (x,height) pixel 

components directly to the first (x,0) and last 

(x,30) elements of the matrix 

2. Map the middle pixel component (x,height/2) to 

the 15th matrix element 

3. subdivide further divisions and map accordingly 
to the matrix 

c. Further reduce the matrix to 10x15 by sampling by a 

factor of 2 on both the width and the height 

. 
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Fig. 5 Mapping symbol images onto a binary matrix 

 

In order to be able to feed the matrix data to the network 

(which is of a single dimension) the matrix must first be 

linearized to a single dimension. This is accomplished with a 

simple routine with the following algorithm: 

 

1. start with the first matrix element (0,0) 
2. increment x keeping y constant up to the matrix width 

a. map each element to an element of a linear array 

(increment array index) 

b. if matrix width is reached reset x, increment y 

3. repeat up to the matrix height (x,y)=(width, height) 

 

Hence the linear array is our input vector for the MLP 

Network. In a training phase all such symbols from the trainer 

set image file are mapped into their own linear array and as a 

whole constitute an input space. 

 

V. PROPOSED METHOD 

   

 Here I try to Using above algorithm and create a 

system recognize a image and convent into a text which helpful 

to using other data without any problem. 

 

 
Fig.6  load image 

 

 
Fig.7 Scan the character and convent into a text file 

 

 
VI. RESULT AND DISCUSSION 

Although the results listed in the subsequent tables are 

from a training/testing process of symbol images created with a 

72pt. font size the use of any other size is also straight forward 

by preparing the input/desired output set as explained. The 

application can be operated with symbol images as small as 

20pt font size. 

 

a. Results for variation in number of Epochs 

Number of characters=90, Learning rate=150, Sigmoid 

slope=0.014 

Font 

Type 

300 600 800 

No of 

wrong 

characters 

% 

Error 

No of 

wrong 

characters 

% 

Error 

No of 

wrong 

characters 

% 

Error 

Latin 

Arial 
4 4.44 3 3.33 1 1.11 

Latin 

Tahoma 
1 1.11 0 0 0 0 

Latin 

Times 

Roman 

0 0 0 0 1 1.11 

 

 

B. Results for variation in number of Input characters 

Number of Epochs=100, Learning rate=150, Sigmoid 

slope=0.014 

Font 

Type 

20 50 90 

No of 

wrong 

characters 

% 

Error 

No of 

wrong 

characters 

% 

Error 

No of 

wrong 

characters 

% 

Error 

Latin 

Arial 
0 0 6 12 11 12.22 

Latin 

Tahoma 
0 0 3 6 8 8.89 

Latin 

Times 

Roman 

0 0 2 4 9 10 



IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019)          ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  2602 | P a g e  

C. Results for variation in Learning rate parameter 

Number of characters=90, Number of Epochs=600, moid 

slope=0.014 

Font 

Type 

50 100 120 

No of 

wrong 

characters 

% 

Error 

No of 

wrong 

characters 

% 

Error 

No of 

wrong 

characters 

% 

Error 

Latin 

Arial 
82 91.11 18 20 3 3.33 

Latin 

Tahoma 
56 62.22 11 12.22 1 1.11 

Latin 

Times 

Roman 

77 85.56 15 16.67 0 0 

 

 

V. CONCLUSION 

In conclusion, the combination of math retrieval and math 
recognition technologies provides rich possibilities for math-

aware computer interfaces, and for intelligent search and 

retrieval tools for math in documents. The 

detection/segmentation technique utilized in this work can 

increase OCR accuracy in document images by allowing for 

a higher degree of document understanding prior to 

recognition. In order for mathematical regions to be properly 

recognized during OCR and not mangled with normal 

language text it is important that mathematical expression 

regions are detected and then properly segmented from their 

surroundings. The evaluation technique utilized in this work 
counts the true positive, false positive, true negative, and 

false negative pixels after detection and segmentation is 

carried out in order to get a highly accurate and objective 

understanding of performance. In this paper we have only 

convent text. In future utilized neural network and try to 

convent mathematical symbols and mathematical formula. 

Also try to other font style convent into a text. 
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