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Controllability and Robustness in Networks

How can we drive a network of agents
from some initial state to a final state by
controlling only a small subset of agents,
referred to as leaders?

Controllability and robustness are crucial attributes of a networked dynamical system.

How can we minimize the
effect of node/edge
removals on the overall
network structure?

Network Controllability Network Robustness

How can we minimize the
effect of noisy information
on the network’s overall
performance

Structural aspect

Functional aspect



Controllability and Robustness in Networks

Controllability and robustness properties in networks are conflicting at times1,2.

1F. Pasqualetti, C. Favaretto, S. Zhao, and S. Zampieri, “Fragility and controllability tradeoff in complex networks,” ACC 2018.

2W. Abbas, M. Shabbir, M. Yazicioğlu and A. Akber, “On the trade-off between controllability and robustness in networks of diffusively 
coupled agents,” ACC 2019.

How can we improve one property (for instance, by modifying the 
network graph) without deteriorating the other property?



:  Weighted Laplacian

:     Input matrix

Follower 
(no external input)

Leaders 
(external input)

We consider a network of agents with Laplacian dynamics.

Network Controllability



Network Controllability

Controllability matrix:

input matrix   

structure of graph
weights of edges

Controllable subspace:    Range ( G )

Controllability measure:  Rank ( G )

Sometimes weights are unknown due to system uncertainties. So we want a controllability
notion that is independent of edge weights.

Strong Structural Controllability

Dimension of SSC

(measure of SSC)



Network Controllability and Graph Distances

Computing minw Rank ( G ) is very challenging (NP-hard in general).

Graph distances between nodes are useful in obtaining a tight lower bound on minw Rank (G).

A. Y. Yazıcıoğlu, W. Abbas, and M. Egerstedt, “Graph distances and controllability of networks,” IEEE TAC, 2016

Preserving distances between certain node pairs guarantees a lower 
bound on the SSC dimension.

Distance-to-leader (DL) vector for a node v :

minw Rank ( G )       
Length of a 

certain sequence of DL vectors



Network Controllability and Graph Distances

A subset of pair-wise distances between nodes in a graph provides a tight 
lower bound on the dimension of SSC.

Preserving these distances guarantees a lower bound on the SSC dimension.

(v1 , v2)      (v1 , v3)     (v1 , v6)     (v1 , v7)     

(v3 , v2)     (v3 , v6)    (v3 , v7)

Example:

Preserving distances between nodes in the following node pairs ensures 
that the dimension of SSC is at least 5.



Network Robustness

Kirchhoff index ( Kf ) of a graph is widely used1,2  to measure 
network’s robustness to node/link failures and to noise.

1W. Ellens, et al. “Effective graph resistance,” Linear Algebra and its Applications (2011)
2G. F. Young, L. Scardovi, and N. E. Leonard, “Robustness of noisy consensus dynamics with directed communication,” ACC 2010.

In fact, network robustness, as measured by Kf , 
increases monotonically with edge additions.

However, adding edges could also deteriorate 
network’s controllability.

How can we maximally add edges in a network to 
improve robustness while preserving its SSC?

Structural robustness

Functional robustness



Improving Network Robustness while Preserving Controllability

Add edges while preserving a 
SSC controllability bound. 

Add edges while preserving 
distances between leaders and 

‘some’ other nodes.

Approach:

Basic problem:

Given a node pair (a, b), add 
maximum edges while preserving a 
distance between those two nodes



Distance Preserving Edge Augmentation (DPEA)

Given G = (V, E), and two nodes a, b  V such that dG(a, b) = k. 

Add maximum no. of edges in G while preserving the distance between a and b.

dG(a, b) = 5 dG’ (a, b) = 5

Adding edges



Clique Chains

Optimal solution of the DPEA problem is related to a special class of graphs 
known as clique chains.

Clique chain: GD(n0, n1, … , nD)
Diameter: D

No. of nodes: 𝑁 = σ𝑖=0
𝐷 𝑛𝑖

Path
Replace node i
by a clique ni

Join adjacent 
cliques

n0 = 1

n1 = 2

n2 = 3

n3 = 3

G3(1, 2, 3, 3)

D = 3
N = 9



DPEA and Clique Chains

Theorem: For a given G = (V, E), and nodes a, b  V where dG(a, b) = k > 1,
optimal solution to the DPEA problem is a clique chain of the form

Gk(n0 = 1,  n1, … , nk = 1). 

d(a, b) = 5

G Gk( 1,  3, 4 , 2, 2, 1)

d(a, b) = 5

We provide a method to 
construct such clique chains.



Clique Chain Construction for DPEA

Given: G = (V, E), a, b  V, dG(a, b) = k

Construct: Clique chain Gk(n0 = 1, n1, … , nk = 1) solving DPEA.

Fixed:  nodes included in some 
shortest path between a and b.

Free:  remaining nodes. 

Every fixed node lies in a unique 𝑆𝑖
𝑎 ( 𝑆𝑖

𝑏).

Free nodes  can be placed in appropriate 

𝑆𝑖
𝑎 or 𝑆𝑖

𝑏 by creating edges.

G

d(a,b) = 5 



Edge Augmentation to Preserve SSC Controllability Bound

First Approach:

Add edges while preserving a SSC 
bound. 

Add edges while preserving distances 
between leaders and ‘some’ nodes.

Solve multiple instances of DPEA 
problems.

Obtain edges that are common in 
solutions of all DPEA instances.

Node pairs:

(v1 , v5)     (v1 , v4)    (v1 , v3)      (v1 , v2)      (v1 , v6)

Solve DPEA for each node pair

(Intersection)



Edge Augmentation to Preserve Controllability

(v1 , v4)     (v1 , v5)     (v1 , v9)       (v1 , v7)      (v1 , v15)      (v1 , v3)      (v1 , v11)      (v1 , v2)      (v1 , v6)       

(v4 , v5)   (v4, v9)  (v4 , v7) (v4 , v15)   (v4 , v3)   (v4 , v11)     (v4 , v2)   (v4 , v6)

Solve DPEA for each node pair and then take common (intersecting) edges

First Approach  (Intersection)



Add edges while preserving a SSC 
bound. 

Add edges while preserving distances 
between leaders and ‘some’ nodes.

Edge Augmentation to Preserve Controllability

Second Approach   (Randomized Algorithm)

Basic idea remains the same:
Obtain all missing edges E’ .

Randomly select a missing edge e ∊ E’.

If adding e does not change distances 
between desired node pairs, then keep it. 

Otherwise, discard it.

Repeat until no more missing edge is left

Node pairs:

(v1 , v5)   (v1 , v4)  (v1 , v3)  (v1 , v2)   (v1 , v6)

Does not change any 
desired distance, so 

keep it. 



Add edges while preserving a SSC 
bound. 

Add edges while preserving distances 
between leaders and ‘some’ nodes.

Edge Augmentation to Preserve Controllability

Second Approach   (Randomized Algorithm)

Basic idea remains the same:
Obtain all missing edges E’ .

Randomly select a missing edge e ∊ E’.

If adding e does not change distances 
between desired node pairs, then keep it. 

Otherwise, discard it.

Repeat until no more missing edge is left

Node pairs:

(v1 , v5)   (v1 , v4)  (v1 , v3)  (v1 , v2)   (v1 , v6)

Changes the distance 
between v1 and v6 , so 

discard it.



Edge Augmentation to Preserve Controllability

Proposition:  The randomized algorithm returns an a-approximate solution with 

probability at least 1 − 𝑒
−𝑐

𝑡

𝑇

𝛼𝑡

, when repeated c times.

Here,

• T ≤ E’ is the number of edges that are (individually) legal to add to the input graph.

• t ≤ T is the size of an (unknown) optimal solution. 

Example:

If T = 100 and t = 0.92 T, then repeating the randomized algorithm c = 500 times gives a 
(3/4) - approximate solution with probability at least 0.8.



Simulation Results

Erdos – Renyi (ER) Random Graphs G(N,p):

N = 50, p = 0.2

(Each point is an average of 100 randomly generated instances.)

Lower bound on the dimension of SSC 
as a function of no. of leaders.

A comparison of Intersection (algo 1) and 
Randomized (algo 2) algorithms to add edges.

(Randomized algorithm is repeated c = 150 times. )



Simulation Results

Barabasi – Albert (BA) Random Graphs G(N,  ):

N = 50,  = 5

(Each point is an average of 100 randomly generated instances.)

Lower bound on the dimension of SSC 
as a function of no. of leaders.

A comparison of Intersection (algo 1) and 
Randomized (algo 2) algorithms to add edges.

(Randomized algorithm is repeated c = 150 times. )



Summary & Conclusions

Add edges to improve robustness while 
preserving SSC

Add edges while 
preserving distances 

between certain nodes
DPEA problem

Intersection 
algorithm

Thank You

Randomized 
algorithm

(waseem.abbas@vanderbilt.edu)


