1. Consider the expression $9 \frac{5}{6}-4 \frac{4}{18}$. Between what two whole numbers do you estimate is the difference? Explain your reasoning.
The difference is between \qquad and \qquad .

Rename the mixed numbers so the fractional parts have like units.
2. $2 \frac{7}{8}-1 \frac{1}{4}=2 \bar{\square}-1 \frac{\square}{\square}$
3. $4 \frac{3}{5}-2 \frac{12}{15}=\square \square \square \square \square \square \square \square$

Subtract.
4. $5 \frac{15}{28}-2 \frac{3}{7}=$ \qquad 5. $15 \frac{1}{5}-2 \frac{9}{10}=$ \qquad
6. $4 \frac{3}{10}-3 \frac{4}{5}=$
8. $18 \frac{2}{3}-7 \frac{11}{12}=$ \qquad
10. $11 \frac{7}{20}-3 \frac{2}{5}=$ \qquad 11. $16 \frac{3}{7}-7 \frac{19}{21}=$ 7. $3 \frac{2}{3}-1 \frac{2}{6}=$ \qquad
9. $6 \frac{4}{5}-2 \frac{4}{15}=$ \qquad
\qquad -

Use the Read-Draw-Write process to solve each problem.
12. A maple tree was $6 \frac{2}{3}$ feet tall when it was planted. The tree is now $13 \frac{5}{12}$ feet tall. How many feet has the maple tree grown since it was planted?
13. Lacy jogged $7 \frac{2}{5}$ kilometers on Saturday and $5 \frac{7}{10}$ kilometers on Sunday. Her goal was to jog $10 \frac{1}{2}$ kilometers during the weekend. How many kilometers more than her goal did Lacy run?

