# HIGH PRECISION SLITS Custom and Standard Slit Designs







ISO 9001:2008 Certified www.adc9001.com

### **Table of Contents**

| Introduction to ADC                            | 03 |
|------------------------------------------------|----|
| ADC's High Precision Slits                     | 06 |
| Standard Slits                                 | 07 |
| SLT-50-P                                       | 07 |
| □ SLT-100-P                                    | 10 |
| □ SLT-310                                      | 14 |
| <b>SLT-400-250</b>                             | 20 |
| SLT-600                                        | 23 |
| SLT-800                                        | 26 |
| □ SLT-1200                                     | 29 |
| Neutron Slits                                  | 32 |
| Custom Slits                                   | 33 |
| SwissFEL High Precision Slits (Curtain Design) | 35 |
| SwissFEL High Precision Slits (45 Degree)      | 37 |
| DLS UHV Slits with YAG Crystal                 | 39 |
| ESRF High Heat Load                            | 41 |
| MAX IV High Precision Slits                    |    |
| General Common Slit Information                | 45 |
| Motors                                         | 45 |
| Limit Switches                                 | 45 |
| Home Switches                                  | 45 |
| Linear Incremental Encoders                    | 46 |
| Linear Absolute Encoders                       |    |
| Rotary Incremental Encoders                    |    |
| Cabling & Connectors                           |    |
| Testing & Quality Control                      | 47 |
| RGA System                                     | 48 |
| Blade Polishing                                | 48 |
| Non-Contact Surface Mapping of Slit Blades     | 51 |
| Blade Beam Monitoring                          |    |
| Slit Stand                                     | 52 |
| Floor Mounting                                 | 53 |
| Electronics and Instrumentation                | 53 |
| References                                     | 55 |
|                                                |    |

# ABOUT ADC

# ADC an ISO9001 certified company

ADC an ISO9001 certified company, located near Cornell University in Ithaca, New York, is a leading developer and supplier of complex scientific components and instruments for large government laboratories and corporations around the world. Founded as a privately held company in 1995, ADC has grown into one of world's leading technology companies and has enjoyed 18 straight years of business growth and profitability with more than 500 customers located in over 26 countries. ADC's vision is to be a global leader in the development and manufacturing of innovative products for scientific and research markets.



For more information on "ADC" please go to: http://www.adc9001.com



#### ADVANCED DESIGN CONSULTING USA, INC.

126 Ridge Rd Lansing, NY, 14882 USA

Bureau Veritas Certification Holding SAS – UK Branch certifies that the Management System of the above organization has been audited and found to be in accordance with the requirements of the management system standards detailed below

Standards

#### ISO 9001:2008

Scope of certification

#### Design, manufacture, and delivery of devices, integrated systems, components and instruments for commercial, academic and government agencies

Certification cycle start date: 31 December 2014

Subject to the continued satisfactory operation of the organization's Management System, this certificate expires on: 30 December 2017

Original certification date: 31 December 2014

Certificate No. US007466-1

Signed on behalf of BVCH SAS – UK Branch

Certification body address: 66 Prescot Street, London, E1 8HG, United Kingdom



Issuing office: Bureau Veritas Certification North America, Inc. 390 Benmar Drive, Houston, Texas, USA www.us.bureauveritas.com/bvc

Further clarifications regarding the scope of this certificate and the applicability of the management system requirements may be obtained by consulting the organization. To check this certificate validity please call +(800) 937-9311. ADC (ISO9001:2008 certified) has been a leading supplier of slits to the synchrotron and neutron source scientific community for over 18 years. Many of our slits have been in operation nearly that long in facilities around the world. Our standard slits run the range from in-air monochrome beam to UHV high heat load white beam. In co-operation with CHESS at Cornell, we have developed the very best blade polishing available in the industry today. We have built an extended family of standard slits in application categories though continuous improvement in our designs.

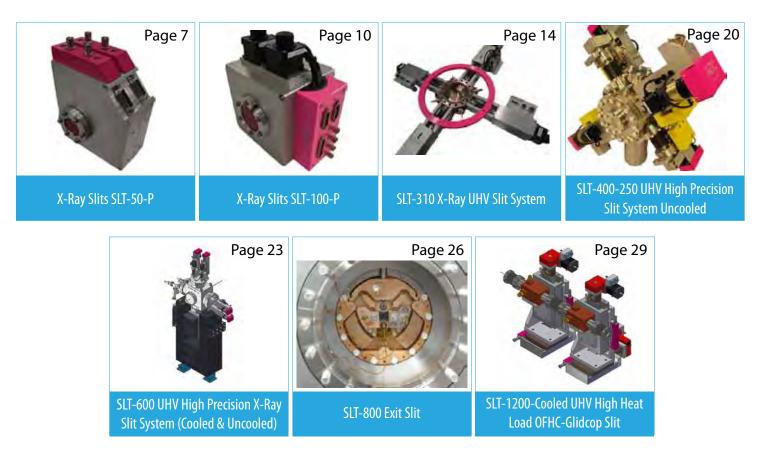
Please see http://www.adc9001.com/SLITS





These improvements have come from our custom designs for customers that require improved space constraints, heat load capacity, low reflectance and scatter, blade stability, and precision positioning. for more information Please see http://www.adc9001.com/products/show list/id/142

The attached catalog provides more information on our standard slits and custom designs along with specific applications and references. Additional details are provided on motors, limit switches, encoders, cabling and connectors, blades and polishing, frequency response, repeatability measurements, non-contact surface mapping of blades, testing and quality control, supports and stands, floor mounting, and electronics instrumentation and controls. We hope you find our product line exceeds your needs and our friendly staff willing to satisfy your specific requirements. Please do not hesitate to contact ADC for further details.


### **ADC'S HIGH PRECISION SLITS**

#### For X-Ray Application

#### http://www.adc9001.com/products/show\_list/id/112 http://www.adc9001.com/SLITS

ADC offers a comprehensive line of slits that covers both Synchrotron and Neutron applications; from white beam to monochromatic beam. We offer several series of standard slits as well as many custom design fabricated to specific customers' requirements such as; space constraint, heat load, precision, motor/encoder, limit switches, connectors, type of experiments budget and schedule.

ADC's standard slits use standard micro stepped stepper motors that can be controlled with a wide array of controllers/drivers available on the market. Our High Precision Slits are being used at many of the world class research facilities around the world. This list includes: Los Alamos National Lab, Argonne, Brookhaven, CAMD, ELETTRA, BESSY, MAX Lab, CLS, ALS, DESY, Soleil, CHESS, SSRF, NSRRC, PAL, SNS, NSRRC, and DLS and many other world class facilities around the world.

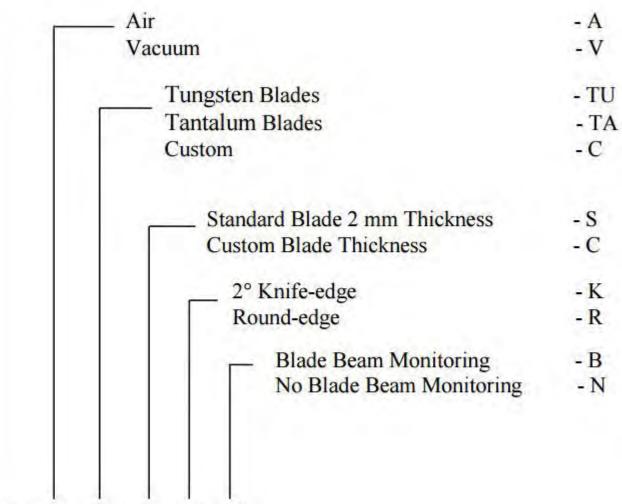


### **STANDARD SLITS**

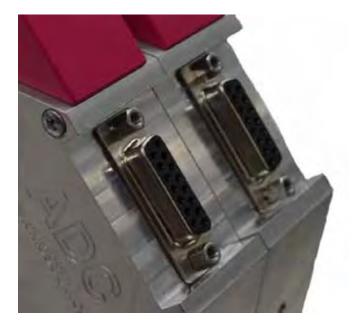
X-Ray Slits: SLT-50-P

#### High Precision X-Ray Slits with Blade Beam Monitoring (BBM) For more information please visit the following website:

http://www.adc9001.com/SLT-200-10

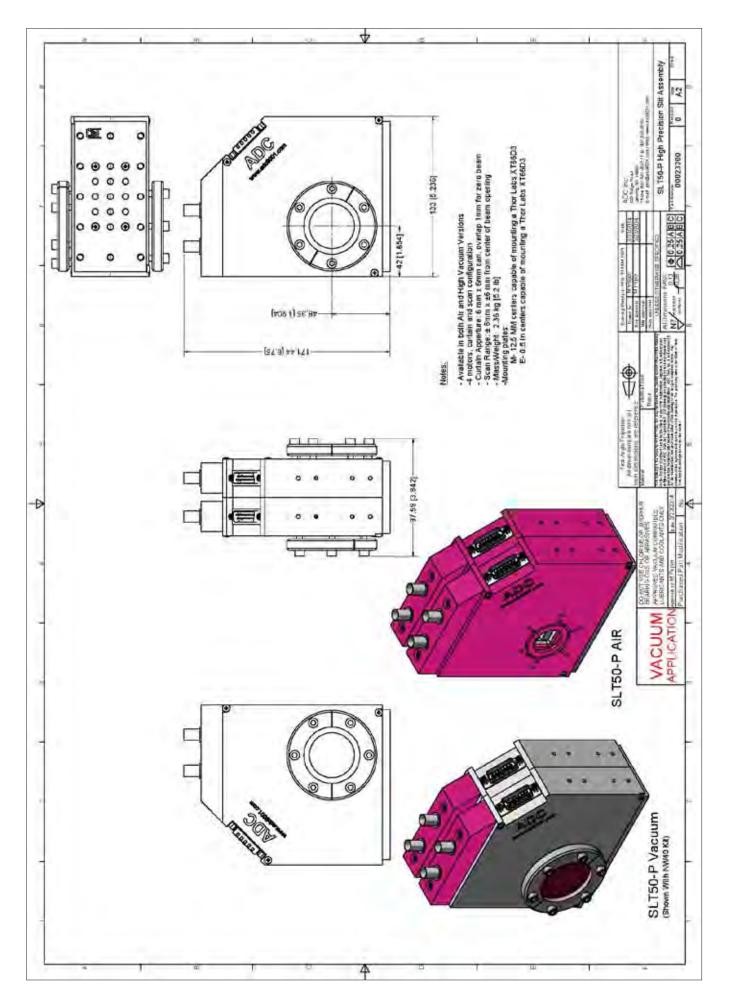

X-Ray Slits SLT-50-P is from a new family of slits ADC has introduced. The original slits design was developed in collaborative effort with National Institute of Standards and Technology (NIST) for compact, reliable, high-precision slits with sub-micron resolution. It consist of four motors; two motors determine the slits aperture size in X & Y and the other two provide the ability to scan the aperture in X & Y axis 'a curtain affect'.




| SLT-50-P Specificatio                                                                     |                                                                                                                 |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Aperture size 6 mm x 6 mm<br>Blades can go "past closed" without clashing "Fully overlap' |                                                                                                                 |
| Resolution                                                                                | ~ 50 nm scanning precision & ~160 nm aperture precision                                                         |
| Accuracy                                                                                  | Accuracy $\pm 2 \mu m$                                                                                          |
| Blade material                                                                            | Tungsten or Tantalum, Tungsten Carbide, Cadmium, Boron Nitride                                                  |
| Blade Thickness                                                                           | Standard 2 mm<br>Thicker blade available; 5, 7 and 10 mm thick blade upon request.                              |
| Blade Options                                                                             | Knife-edge profile (2 degrees slope)<br>Or round blade edge<br>Roughness of the jaw edge surface: <0.2 μm (rms) |
| Environmental Options                                                                     | Air or Vacuum (Tested to 10-6 mbar)                                                                             |
| Overall Dimensions                                                                        | Vacuum: 133 mm x 171 mm x 98 mm<br>Air: 133 mm x 171 mm x 70 mm                                                 |
| Blade Beam Monitoring Each blade is isolated to have the ability to monitor the curre     |                                                                                                                 |

#### **Ordering information**

The SLT-50-P can be ordered with different configurations, please use the following codes provided below when ordering:




SLT-50-P-( )-( )-( )-( )-( )





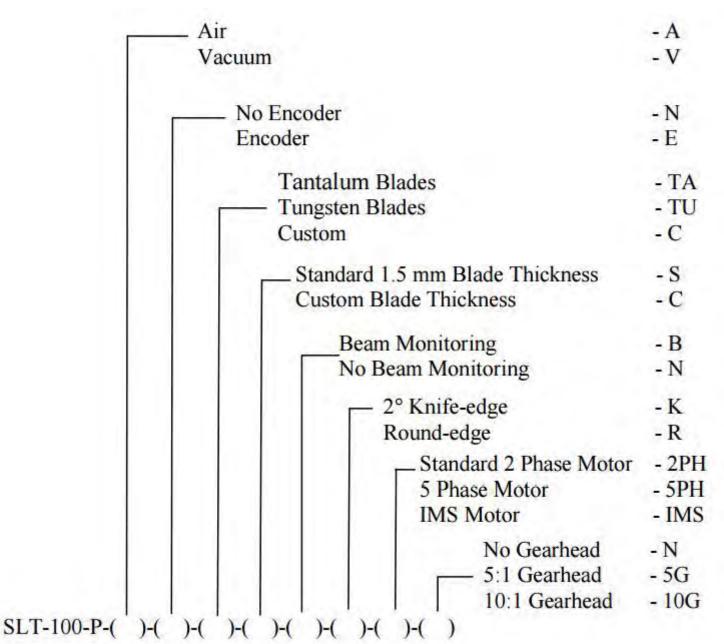
#### SLT-50-P

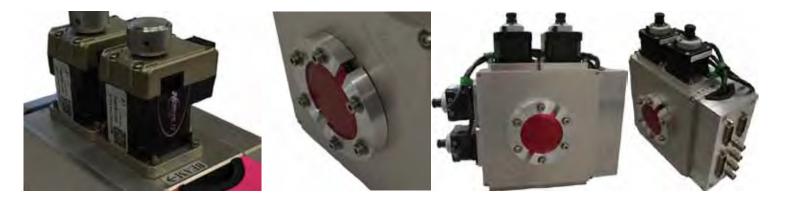


### **SLT-100-P**

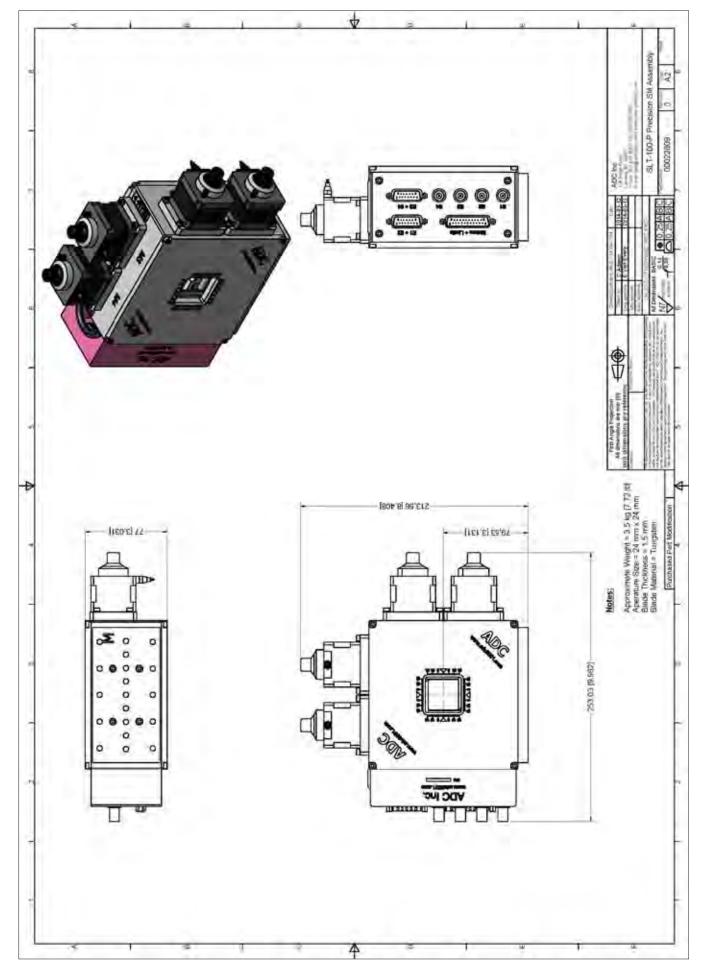
#### High Precision X-Ray Slits with Blade Beam Monitoring (BBM)

For more information please visit the following website: http://www.adc9001.com/SLT-100-10

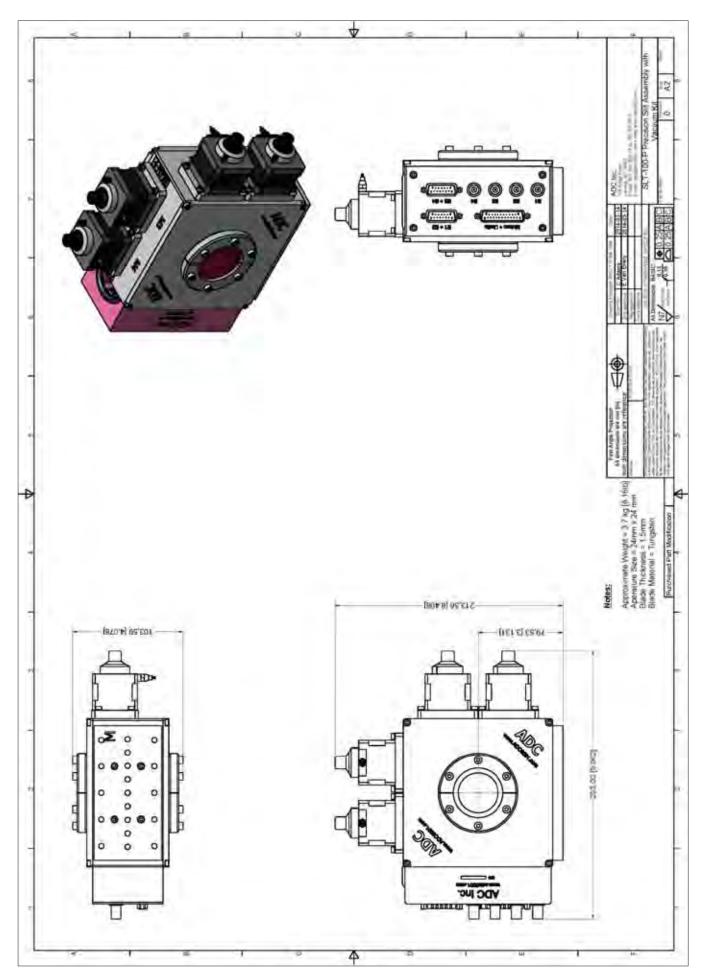

SLT-100-P is from a new family of slits ADC has introduced. The SLT-100-P is ADC's latest design that incorporates many improvements/feedback we have received from hundreds of our customers that have been using the SLT-100 (Blue Slits). These improvements includes: - Better O-ring design resulting in a better and long-term consistent vacuum (eliminating any biding) - Much better quality bearing and simpler assembly - Bigger micro stepper motor resulting in smoother operation - Bigger and better quality drive screw mechanism for higher precision and better accuracy - Blade Beam Monitoring (BBM) These high-precision slits systems consist of four blades that are housed in an aluminum body. All of these slits use standard micro stepped stepper motors that can be controlled with a wide array of controllers/drivers available on the market. The design incorporates mechanical limit switches.




| <b>SLT-100-P</b> Specification |                                                                           |  |  |
|--------------------------------|---------------------------------------------------------------------------|--|--|
| Aperture size                  | 24 mm x 24 mm                                                             |  |  |
|                                | Blades can go "past closed" without clashing "Fully overlap"              |  |  |
| Resolution                     | <0.16µm precision*                                                        |  |  |
| Accuracy                       | Accuracy $\pm 2 \mu m$                                                    |  |  |
| Blade material                 | Tungsten or Tantalum, Tungsten Carbide, Cadmium, Boron Nitride            |  |  |
| Blade Thickness                | Standard 1.5 mm                                                           |  |  |
|                                | Thicker blade available; 5, 7 and 10 mm thick blade upon request.         |  |  |
| Blade Options                  | Knife-edge profile (2 degrees slope)                                      |  |  |
|                                | Or round blade edge                                                       |  |  |
|                                | Roughness of the jaw edge surface: <0.2µm (rms)                           |  |  |
| Environmental Options          | Air or Vacuum (Tested to 10-6 mbar)                                       |  |  |
| Overall Dimensions             | Vacuum: 235 mm x 209 mm x 104 mm                                          |  |  |
|                                | Air: 235 mm x 209 mm x 77 mm                                              |  |  |
| Gearhead Options               | Motors come with optional gearhead to increase resolution, 5:1, 10:1      |  |  |
| Blade Beam Monitoring          | Each blade is isolated to have the ability to monitor the current off the |  |  |
|                                | blade                                                                     |  |  |
| Locking Manual Knobs           | Each motor comes standard with a manual locking knob with scale           |  |  |
| Encoder Options                | Standard: Optional differential rotary encoder                            |  |  |
|                                | By request: Internal linear encoder                                       |  |  |
| Motor Options                  | Bi-polar 2-phase steppers, 5-phase stepper, and IMS motors                |  |  |


### **ORDERING INFORMATION**

The SLT-100-P can be ordered with different configurations, please use the codes provided below when ordering.

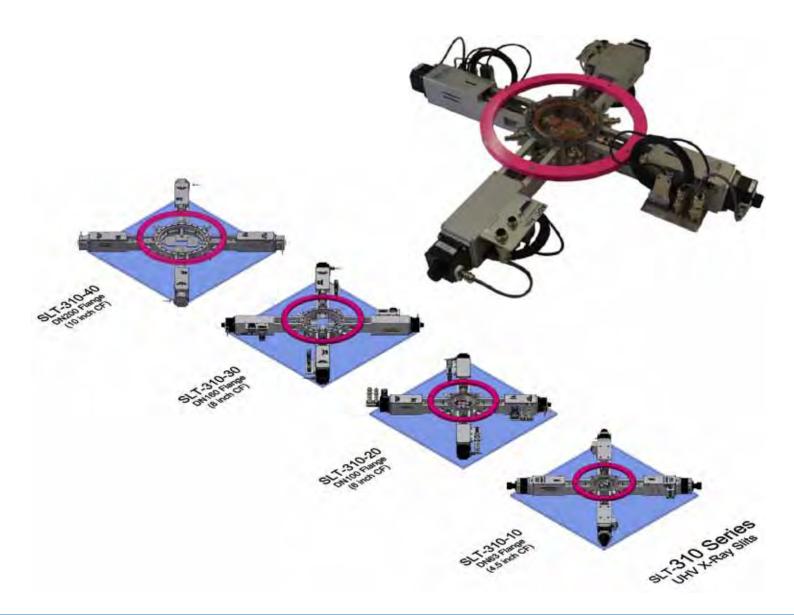





#### SLT-100-P-A



### SLT-100-P-V



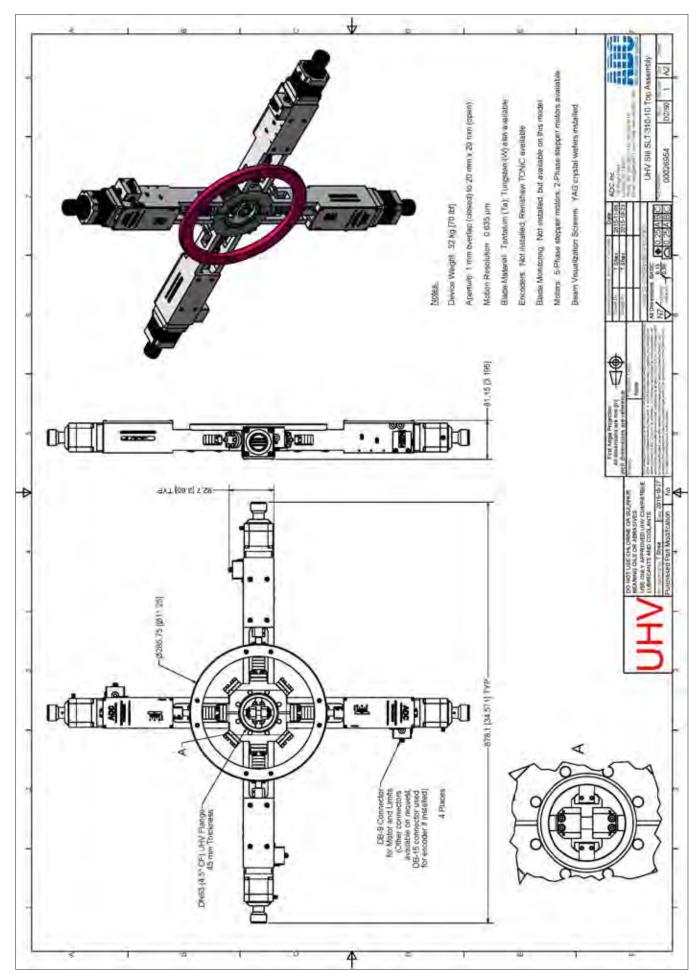

### X-RAY UHV SLIT SYSTEM

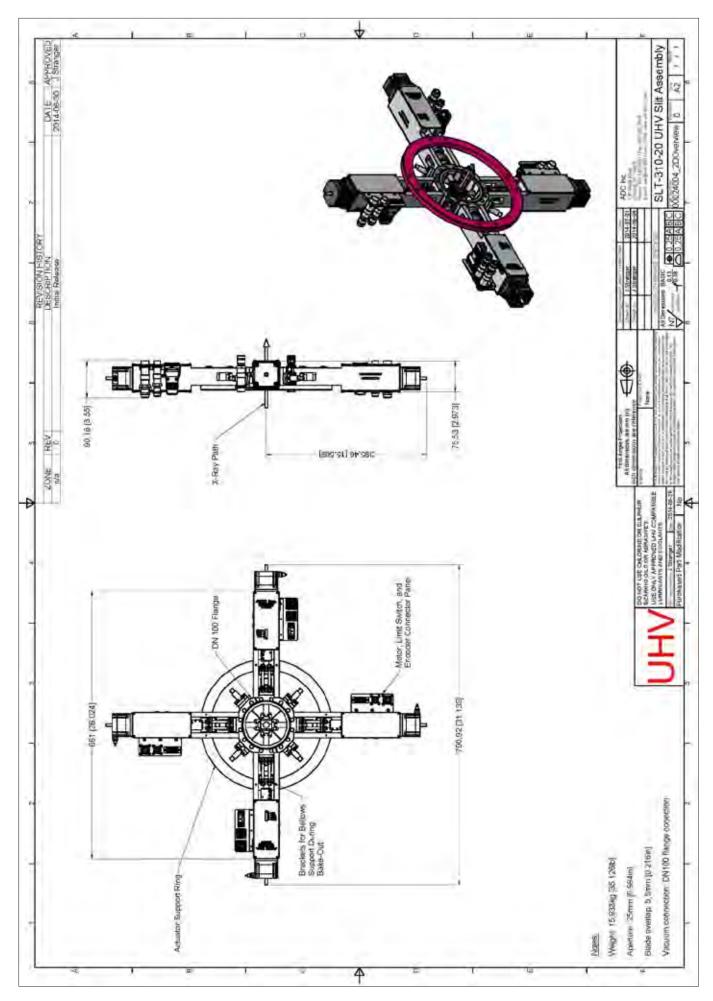
#### SLT-310

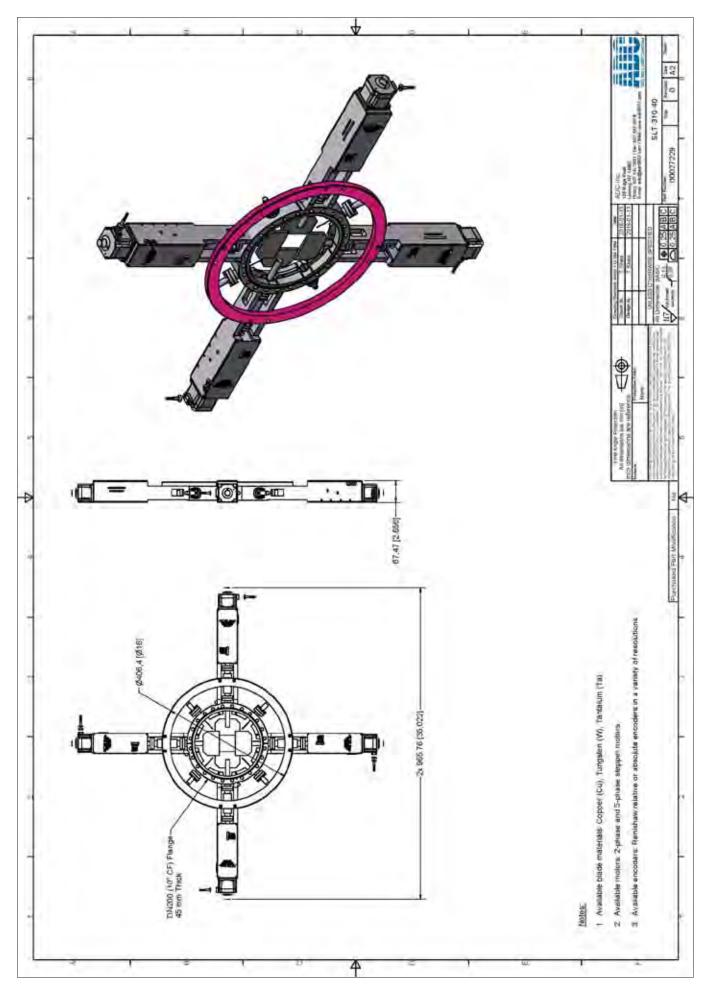
For more information please visit the following website: http://www.adc9001.com/SLT-300-10

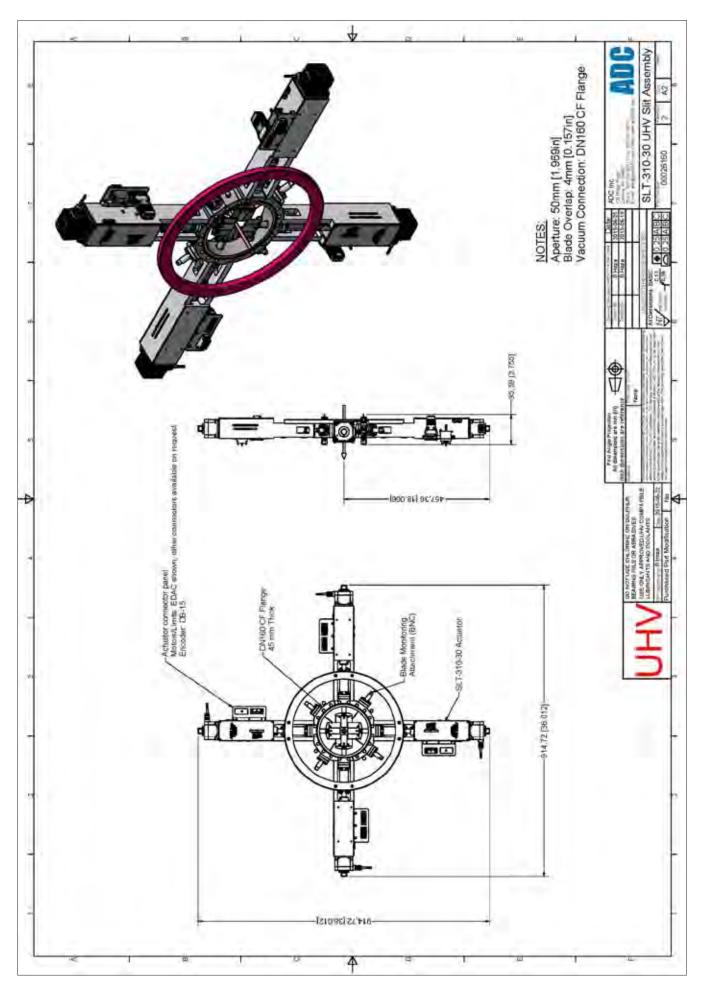
SLT-310 is from a new family of slits ADC has introduced and is based on ADC's previous SLT-300 slits design. The SLT-310 incorporates many improvements from the feedback we have received from the hundreds of our customers that have been using the SLT-300 (UHV). The slits is offered in 4 standard flange sizes as shown below. The SLT-310 slits unit consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, connected to the individual blades, micro stepper motors with linear encoders, mechanical limit switches, and electrical connections including internal wiring for drain current measurement system. Imaging screen is scintillation crystals processed to a thin flat surface plate that serves as excellent imaging screens with high spatial resolution. There are four fiduciary marks provided per slit unit. All UHV sections are vacuum rated for better than 5x10-10 mbar and have a leak rate of less than 1x10-9 mbar-l/s.




#### SLT-310 X-Ray UHV Slit System Specification:


| Aperture size         | 20 mm, 25 mm, 50 mm, & 60 mm                                                                                                                                          |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Resolution            | <0.16µm precision*                                                                                                                                                    |  |  |
| Accuracy              | ±2 μm                                                                                                                                                                 |  |  |
| Blade material        | Tungsten or Tantalum, Tungsten Carbide, Cadmium, Boron,<br>cupper, Nitride, or custom<br>Blades can go "past closed" without clashing (Overlapping/Zero<br>beam ~6mm) |  |  |
| Blade Thickness       | Standard 1.5 mm<br>Thicker blade available; 5, 7 and 10 mm thick blade upon request.                                                                                  |  |  |
| Blade Options         | Knife-edge profile (2 degrees slope)<br>Or round blade edge<br>Roughness of the jaw edge surface: <0.2µm (rms)                                                        |  |  |
| Vacuum                | Vacuum rated to better than $5 \times 10^{-10}$ mbar and have a leak rate of less than $1 \times 10^{-9}$ mbar-l/s.                                                   |  |  |
| Gearhead Options      | Motors come with optional gearhead to increase resolution, 5:1, 10:1                                                                                                  |  |  |
| Blade Beam Monitoring | Each blade is isolated to have the ability to monitor the current off the blade                                                                                       |  |  |
| Encoder Options       | Standard: Renishaw (Incremental or Absolute)<br>By request: Heidenhain, Other                                                                                         |  |  |
| Motor Options         | Standard: Bi-polar 2-phase steppers<br>By request: 5-phase stepper and IMS motors                                                                                     |  |  |
| Image Screen Options  | creen Options Using fluorescent screen fixed to vertical upper and lower bl<br>single crystal YAG (Yttrium Aluminum Garnet)                                           |  |  |


#### **Ordering Information**


The SLT-310 can be ordered with different configurations, please use the codes provided below when ordering.

0-20 mm Aperture (DN63 Flange) - 10 0-25 mm Aperture (DN100 Flange) - 20 0-50 mm Aperture (DN160 Flange) - 30 0-60 mm Aperture (DN200 Flange) - 40 Custom - C - E With Encoder - N Without Encoder Tantalum Blades - TA Tungsten Blades - TU Custom - C Beam Monitoring - B No Beam Monitoring - N - Imaging Screen - I No Imaging Screen - N RGA - B No RGA - N SLT-310-( )-( )-( )-( )-( )-(



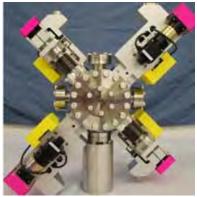


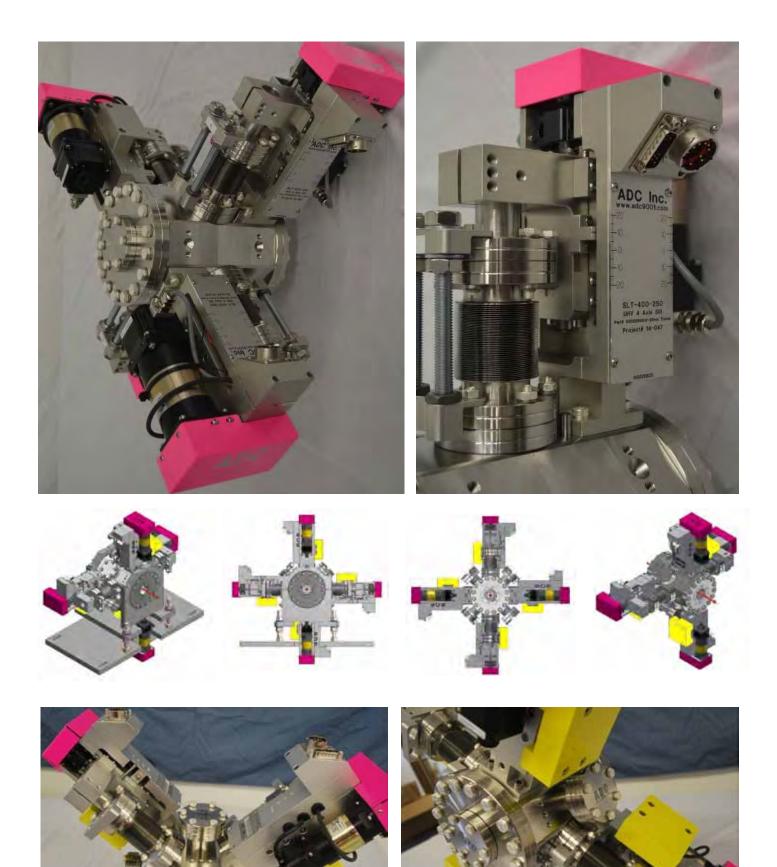


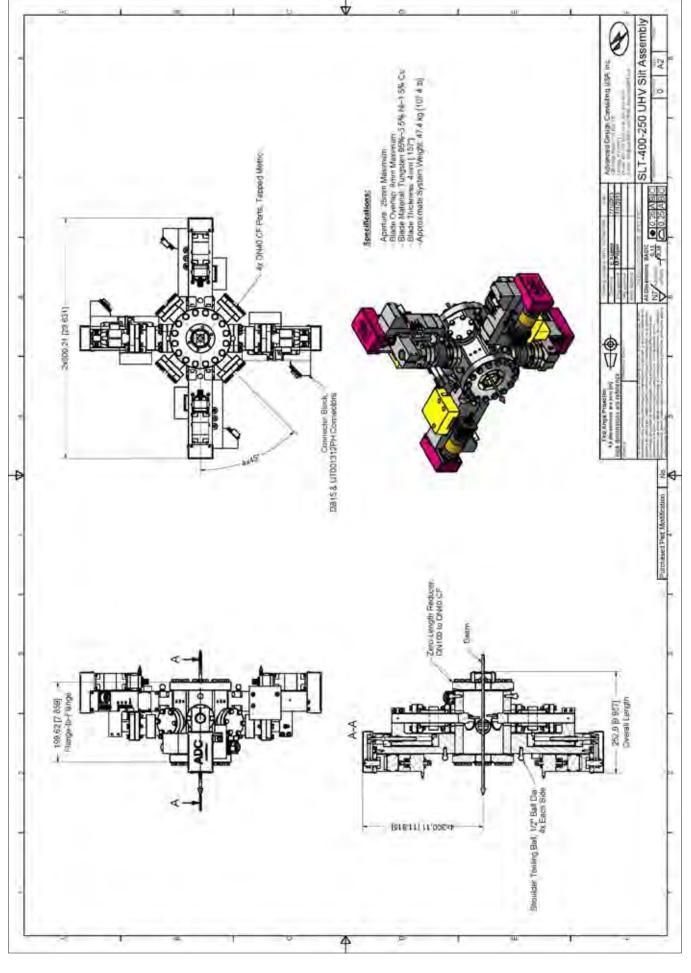


### **UHV PRECISION SLIT SYSTEM UNCOOLED**

#### SLT-400-250


For more information please visit the following website: http://www.adc9001.com/SLT-600-Monochromatic-Slit


The SLT 400-250 slit system is designed for UHV and can be used for apertures up to 25mm x 25mm. Blades are actuated independently by 4 actuators mounted on the slit body. This slit system was designed to be robust and easily serviceable. All of the actuator components (bearing rails, ballscrews, limit switches, encoders, and ballscrews) are located outside of the UHV chamber. This eliminates the need for special lubricants on the actuator bearings. It also allows for the actuators to be adjusted, aligned, and serviced with the system installed on the beamline. A rigid connection between the slit blade and the actuator guarantees that encoder readings at the actuator are accurate. Modal analysis with FEA and physical tests were done during the design to make sure there are no resonant frequencies below 200 Hz at the blade. The UHV chamber has 4 spare DN40 CF ports for connecting pumping and diagnostics. Edge-welded UHV bellows connect the chamber to the blade actuator. Blades can be removed through the inside diameter of the bellows. The bellows themselves can be removed with the unit still installed on the beamline. Water-cooled options and beam position monitoring are also available with the SLT 400-250. There are four fiduciary marks provided per slit unit. All UHV sections are vacuum rated for better than 5x10-10 mbar and have a leak rate of less than 1x10-9 mbar-l/s.


| Aperture size                                                                                   | 25 mm                                                                                                                                                                 |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Resolution                                                                                      | <0.16µm precision*                                                                                                                                                    |  |
| Accuracy                                                                                        | ± 2 juti                                                                                                                                                              |  |
| Blade material                                                                                  | Tungsten or Tantalum, Tungsten Carbide, Cadmium, Boron,<br>cupper, Nitride, or custom<br>Blades can go "past closed" without clashing (Overlapping/Zero<br>beam ~6mm) |  |
| Blade Thickness                                                                                 | Standard 2 mm<br>Thicker blade available: 5, 7 and 10 mm thick blade upon request.                                                                                    |  |
| Blade Options                                                                                   | Knife-edge profile (2 degrees slope)<br>Or round blade edge<br>Roughness of the jaw edge surface: <0.2µm (rms)                                                        |  |
| Vacuum                                                                                          | Vacuum rated to better than 5x10 <sup>-10</sup> mbar and have a leak rate of<br>less than 1x10 <sup>-0</sup> mbar-l/s.                                                |  |
| Gearhead Options                                                                                | Motors come with optional gearhead to increase resolution, 5:1,<br>10:1                                                                                               |  |
| Blade Beam Monitoring                                                                           | Each blade is isolated to have the ability to monitor the current off                                                                                                 |  |
|                                                                                                 | the blade                                                                                                                                                             |  |
| Encoder Options Standard Renishaw (Incremental or Absolute)<br>By request Heidenhain, Other     |                                                                                                                                                                       |  |
| Motor Options Standard: Bi-polar 2-phase steppers<br>By request: 5-phase stepper and IMS motors |                                                                                                                                                                       |  |
| Image Screen Options                                                                            | Using fluorescent screen fixed to vertical upper and lower blade,<br>single crystal YAG (Yttrium Aluminum Garnet)                                                     |  |

#### SLT-310 X-Ray UHV Slit System Specification:





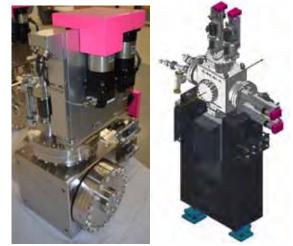




SLT-400-250

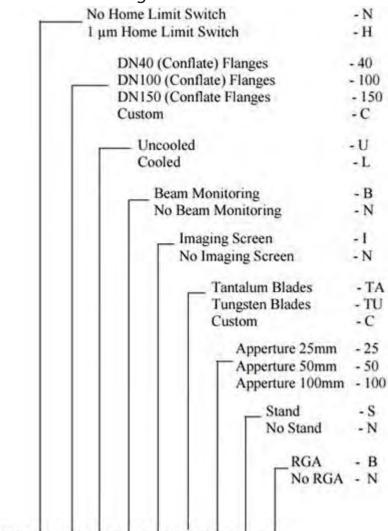
## UHV HIGH PRECISION X-RAY SLIT SYSTEM (COOLED & UNCOOLED)

For more information please visit the following website: http://www.adc9001.com/products/view/650

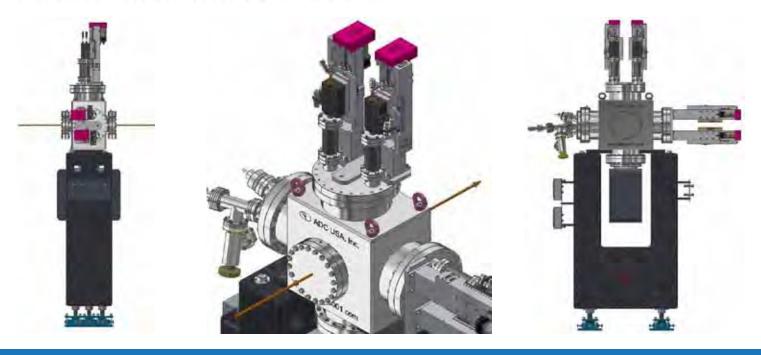

- 0.1 µm Resolution
- Renishaw Encoder (Incremental or Absolute)
- High Accuracy Ball Screw Drive
- Cross Roller Bearing
- 1 µm Home Limit Switch (Optional)
- Ability to monitor the beam (Optional)
- Imaging Screen (Optional)
- Designed for heat load 680 W
- Best slit blade edges in the synchrotron community
- Blade material; Tungsten or Tantalum, Tungsten Carbide, Cadmium, Boron Nitride, or custom
- Roughness of the jaw edge surface

The SLT-600 slit system is designed for UHV and can be used for apertures from 25mm x 25mm all the way up to 100mm x 100mm. Blades are actuated independently by 4 actuators mounted on the slit body. This slit system was designed to be robust and easily serviceable. All of the actuator components (bearing rails, limit switches, encoders, and ballscrews) are located outside of the UHV chamber. This eliminates the need for special lubricants on the actuator bearings. It also allows for the actuators to be adjusted, aligned, and serviced with the system installed on the beamline. A rigid connection between the slit blade and the actuator guarantees that encoder readings at the actuator are accurate. Modal analysis with FEA and physical tests were done during the design to make sure there are no resonant frequencies below 200 Hz at the blade. The UHV chamber has 4 spare DN40 CF ports for connecting pumping and diagnostics. Edge-welded UHV bellows connect the chamber to the blade actuator. Blades can be removed through the inside diameter of the bellows. The bellows themselves can be removed with the unit still installed on the Beamline within an hour not days!! The SLT-600 slits unit consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, connected to the individual blades, micro stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for drain current measurement system. As an optional feature Imaging Screen: is Scintillation crystals processed to a thin flat surface plate that serves as excellent imaging screens with high spatial resolution. There are eight fiduciary marks provided per slit unit. All UHV sections are vacuum tested to better than 5x10–10 mbar and have a leak rate of less than 2x10–10 mbar l-1 s -1. Water-cooled options and beam position monitoring are also available with the SLT-600.

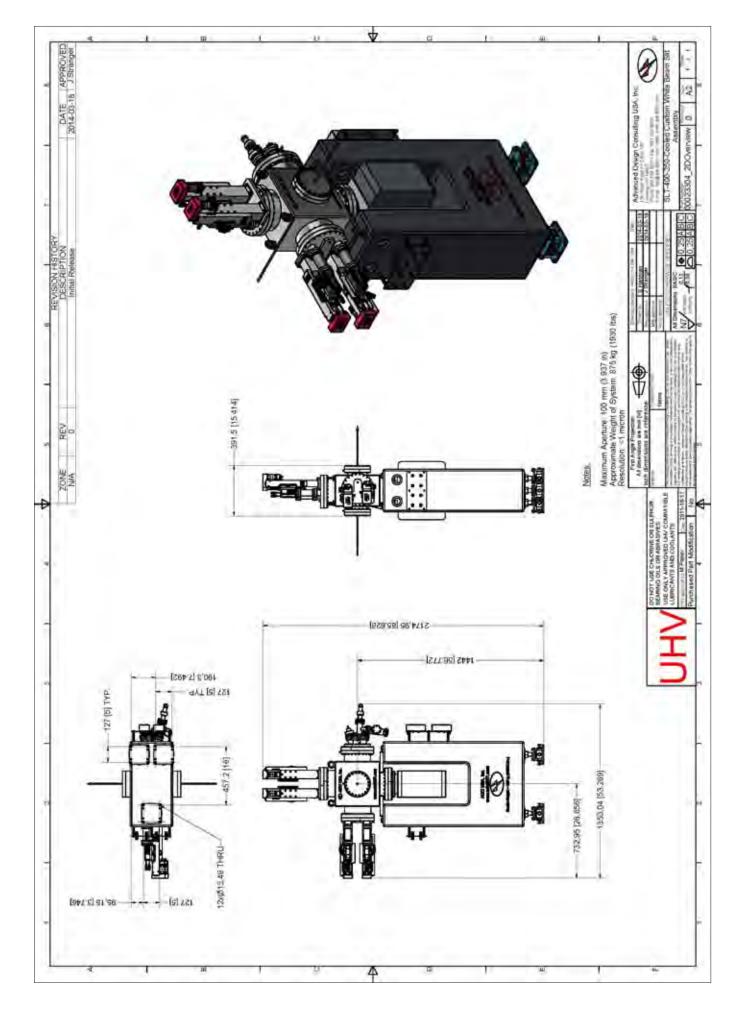
#### Standard Key Specifications:


| Parameter                | Value                                     |
|--------------------------|-------------------------------------------|
| Maximum Aperture         | 25mm, 50mm, 100mm                         |
| Blade Overlap            | 20mm, 30mm, 50mm                          |
| Blade Material           | Tungsten 95%~3.5% Ni~1.5% Cu*             |
| Blade Thickness          | 4mm [0.16"]*                              |
| Cooling Connection       | 1/4" Swagelok                             |
| Total Heat Load          | 680 W                                     |
| Maximum Heat Flux        | 44.85 W/mm <sup>2</sup>                   |
| Recommended Cooling Flow | 1.9 l/m [0.5 g/m]                         |
| Flange-to-Flange Length  | 400mm [15.41"]                            |
| Vacuum Level             | < 5x10-10 mbar (UHV)                      |
| Beamline Connection      | DN150, DN100 (6") CF to DN40 (2 3/4") CF* |




### **ORDERING INFORMATION**


The SLT-310 can be ordered with different configurations, please use the codes provided below when ordering







SLT-600



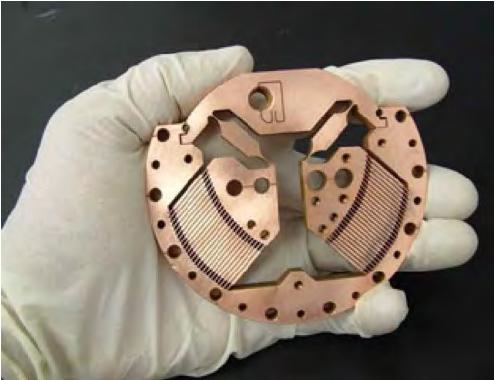

UHV Flexure Design White/Pink Beam Exit Slit System For more information please visit the following website: http://www.adc9001.com/SLT-800

- 0.1 μm Micron precision
- Renishaw Encoder
- High Accuracy Ball Screw Drive
- 1 µm Home Limit Switch
- Ability to monitor the beam
- Best slit blade edges in the synchrotron community!!!
- Blade material; Tungsten or Tantalum, Tungsten Carbide, Cadmium, Boron Nitride
- Roughness of the jaw edge surface:

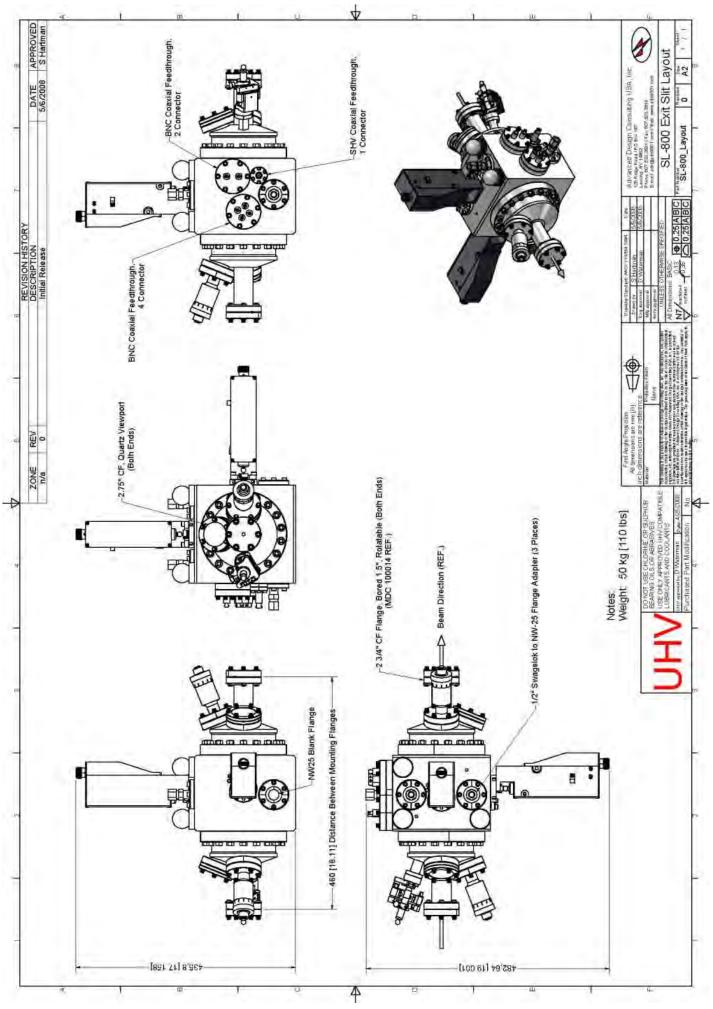
The flexure design slits unit consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, connected to the individual blades, micro stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for drain current measurement system. The total slit size is adjustable from 2000 microns to 0 microns in both vertical and horizontal directions. The actuation is such that the blade pairs move symmetrically about a central point. The slit will go to a completely closed position. The slit has a flat bottom and is firmly attached to a horizontal plate. There are three fiduciary marks provided per slit unit. A common heat sink with individual blades connected to the sink through "heat bridges/copper braids" is incorporated. The total power can be as high as 60W total or (6W/mm2) using water-cooling. A common heat sink with individual blades connected to the sink through "heat bridges" is also incorporated. Each pair of slit blades is motorized by a single micro stepper motor drive system with a linear encoder as well as end of stroke limit switches. Please note the linear encoder is UHV type from Renishaw and is located inside the chamber and measures directly the actual blade movement. All UHV sections are vacuum tested to better than 5x10–10 torr and have a leak rate of less than 2x10–10 mbar l-1 s.






#### Stand Motion Specification

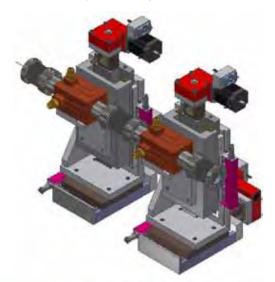
|               | <b>Horizontal Motions</b> | Vertical Motions |
|---------------|---------------------------|------------------|
| Range         | -10mm to +10mm            | -6mm to +6mm     |
| Resolution    | <0.1µm                    | <0.1µm           |
| Repeatability | <0.4µm                    | <0.4µm           |
| Accuracy      | <1µm                      | <1µm             |


This extremely fine, accurate flexture design is rigidly mounted inside a solid StainlessSteel Chamber. Please note this chamber is specially designed and is machines from a solid piece for rigidity, good vacuum and excellent damping frequencies.

The total flexure slits system design is mounted on a special vertical jack. This jack/stage series is for high-precision, high-load vertical positioning tasks. This stage features a precision-machined base of high-density, stress-relieved aluminum for exceptional stability. Precision--cross-roller guided wedges and low-friction lead screws provides incremental motion down to 0.2  $\mu$ m and maintenance-free positioning. Total travel is 12.5 mm. The flexure slits system + the high-precision jack/stage is then mounted on precise linear stage that is designed specially to mount on a solid granite system as shown below for specifically damping application. This complete state of the art extreme precise system has the option of mounting on the floor by grouting a plate.






### SLT-800



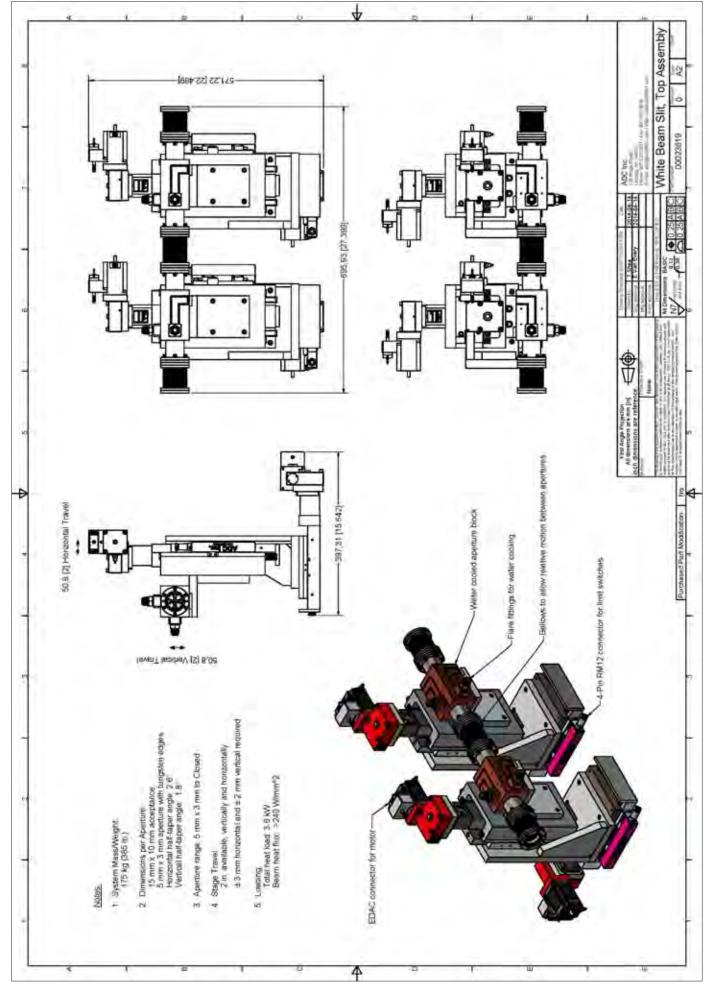
#### SLT-1200 UHV HIGH HEAT LOAD OFHC-GLIDCOP DESIGN HIGH PRECISIONSLIT for Superior Strength & Thermal Performance

For more information please visit the following website: http://www.adc9001.com/products/view/649

This slit system is designed to accommodate a 3 mm x 5 mm white beam with heat fluxes of >240 W/mm2 (for a total heat load of 3.6 kW with the slit closed) from an undulator at a machine energy of 5.3 GeV and current of 250 mA. The system is placed downstream of a series of three apertures (termed primary, secondary, and tertiary) which guard and trim the beam, with the tertiary aperture defining a beam size of 3 mm x 5 mm. These apertures upstream of the slit assembly were also designed by ADC and technical information for these devices is available from ADC. The apertures upstream serve primarily to guard against improper steering of the beam and only trim it slightly, while this slit system trims the beam significantly and absorbs a large portion of the heat from the beam before final beam definition is accomplished by another slit closer to the sample. The slit consists of two water cooled aperture blocks made of OFHC Copper mounted on high precision motion stages which drive the apertures in planes perpendicular to the beam. Each block has a fixed 3 mm tall by 5 mm wide downstream aperture, with four tungsten edges to sharply define the beam, and is cooled by a single water circuit which connects to the facility cooling system. The effective aperture is adjusted from the full size down to closed by controlling the position of the two aperture blocks relative to each other. The motion stages are ball screw driven and guided by crossed roller bearings.



| Aperture Block Dimensions     |         |                    |       |  |
|-------------------------------|---------|--------------------|-------|--|
| Dimension                     | Nominal | Tolerance per Edge | Units |  |
| Acceptance Width              | 15      | +0.127 / -0        | [mm]  |  |
| Acceptance Height             | 10      | +0.127 / -0        | [mm]  |  |
| Aperture Width with Tungsten  | 5       | +0.025 / -0.025    | [mm]  |  |
| Aperture Height with Tungsten | 3       | +0.025 / -0.025    | [mm]  |  |
| Horizontal Half-Taper Angle   | 2.6     | n/a                | [°]   |  |
| Vertical Half-Taper Angle     | 1.8     | n/a                | [°]   |  |
| Diameter of Cooling Channel   | 12.7    | n/a                | [mm]  |  |
| Length of Block               | 121.5   | n/a                | [mm]  |  |


### **ORDERING INFORMATION**

The SLT-1200 can be ordered with altered configurations. ADC can easily provide a cost and schedule estimate with the answers to several questions in the table below.

|   |                                              | Needs to be filled by customer |
|---|----------------------------------------------|--------------------------------|
| 1 | Machine Energy                               |                                |
| 2 | Total Heat Load (kW)                         |                                |
| 3 | Power Density/Heat Load (W/mm <sup>2</sup> ) |                                |
| 4 | Beam Size                                    |                                |
| 5 | Beam Pipe Size                               |                                |
| 6 | Any Space Constraint                         |                                |
| 7 | Any Specific Requirements                    |                                |

| Connections    |                                 |  |
|----------------|---------------------------------|--|
| Vacuum         | 2 ¾" CF Flanges                 |  |
| Cooling        | ½" Tube 45° Flare X ½" NPT Male |  |
| Motor Control  | EDAC                            |  |
| Limit Switches | 4-pin circular (Hirose RM12)    |  |

| Range                | Ranges of Motion |                    |                       |
|----------------------|------------------|--------------------|-----------------------|
| Axis                 | Travel [mm]      | Resolution<br>[µm] | Repeatability<br>[µm] |
| Horizontal Required  | ±3               |                    |                       |
| Vertical Required    | ± 2              | 100 <del>3</del> 0 |                       |
| Horizontal Available | 50               | 0.1                | 2                     |
| Vertical Available   | 50               | 0.1                | 2                     |



### SLT-1200

### **NEUTRON SLITS**

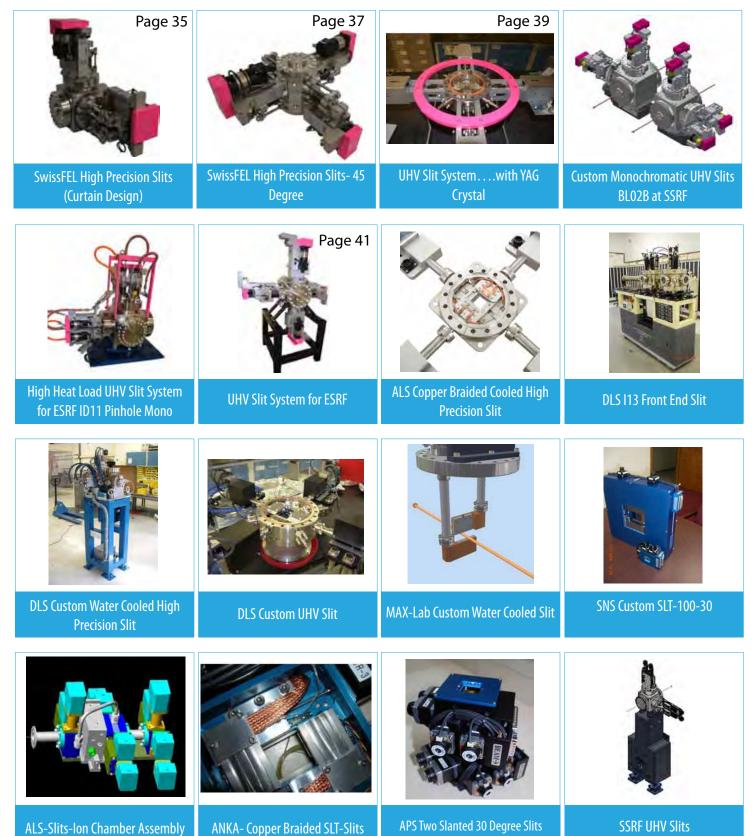
#### New High Precision Neutron Scattering Slits

For more information please visit the following website: http://www.adc9001.com/products/show\_list/id/111

ADC has developed the most complete set of high-precision slits for Neutron applications.

- Air or Vacuum
- Micron precision
- High radiation resistance components such as motors, brake, and encoders
- Blade material; (Cadmium, Boron Nitride, Boron Carbide and/or composite structure consisting of several materials)
- Blades can go "past closed" without clashing (Overlapping/Zero beam).
- Customized to Customer Specifications; size, blade material, etc.

All of these slits use standard micro stepped stepper motors that could be controlled with a wide array of controllers/drivers available on the market. Our slits are being used in many Neutron facilities including: Los Alamos National Lab (LANL), Spallation Neutron Source (SNS), Rutherford Appleton Laboratory (CCLRC), ANSTO and Indiana University Cyclotron Facility

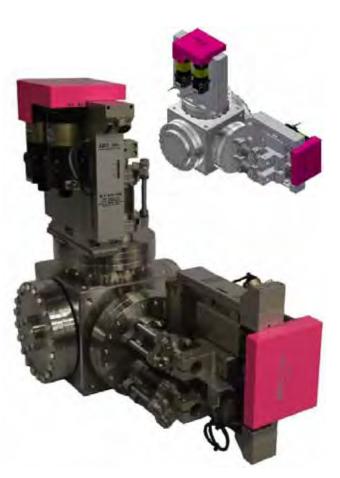





### **CUSTOM SLITS**

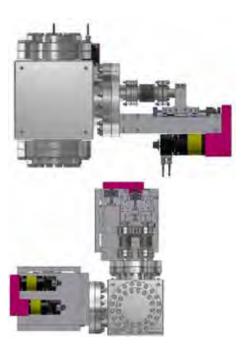
For more information please visit the following website: http://www.adc9001.com/products/show\_list/id/142

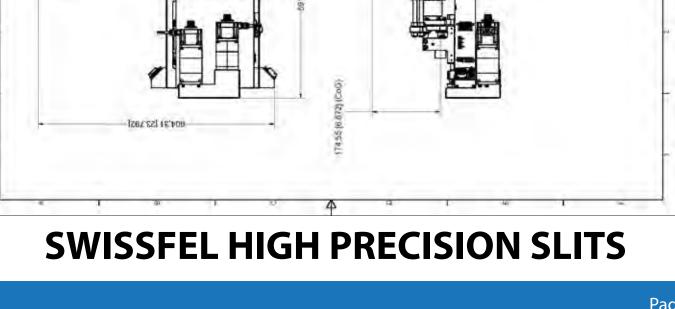
ADC designs and builds custom, one-of-a-kind slits for countries all over the world. Below are just a few of our examples of the custom slits we have designed, built, and shipped to different facilities

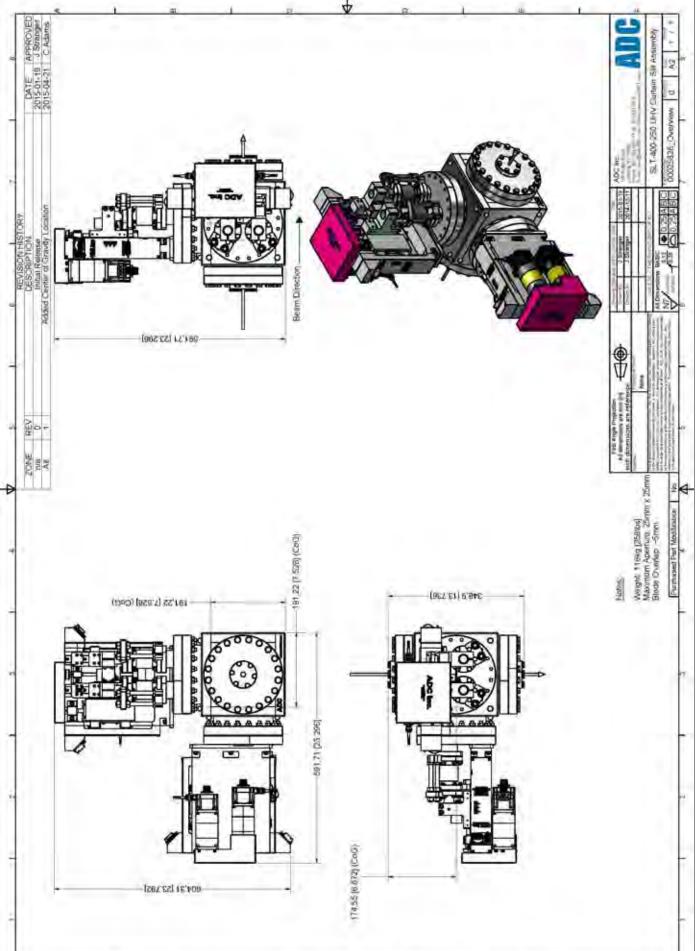



| SLT-800-1 UHV Flexure Design<br>White/Pink Beam Exit Slit System | SLT-700 High Heat Load Water<br>Cooled Slit | LSU/CAMD Water Cooled UHV Slits | Page 43 |
|------------------------------------------------------------------|---------------------------------------------|---------------------------------|---------|
|                                                                  |                                             |                                 |         |
| PAL UHV Slit System                                              | APS UHV, high precision slit                |                                 |         |

### **SWISSFEL HIGH PRECISION SLITS**


#### Curtain Design


For more information please visit the following website: http://www.psi.ch/swissfel/swissfel




The SwissFEL baseline design produce FEL pulses covering the wavelength range 1 Å to 70 Å (0.1-7 nm) with a compact and economic design. These custom high precision slits for SwissFEL were designed for UHV that can be used for apertures up to 25mm x 25mm. This curtain slit allows a gap to be set and allows that set gap to be scanned across the full travel. The full range of scan motion allowable for the slit is 25mm. The allowable gap for the slit is 25mm max with 5mm allowable blade overlap. Both the gap and scan axes feature burgess limit switches. Each axis is also encoded using a Renishaw incremental encoder. All of the actuator components (bearing rails, ballscrews, limit switches, encoders, and ballscrews) are located outside of the UHV chamber. This eliminates the need for special lubricants on the actuator bearings. It also allows for the actuators to be adjusted, aligned, and serviced with the system installed on the beamline. A rigid connection between the slit blade and the actuator guarantees that encoder readings at the actuator are accurate.

| Description                 | Value                       | Units    |
|-----------------------------|-----------------------------|----------|
| Maximum Aperture            | 25 [~1]                     | mm ["]   |
| Blade Overlap               | 5 [~.2]                     | mm ["]   |
| Blade Materials             | Tungsten, Tantalum, Copper- |          |
| Blade Thickness             | 4 [~.16]                    | mm [**]  |
| Scan Range of Motion        | +/- 12.5 [~.5]              | mm ["]   |
| Gap Range of Motion         | +25 [~1] / -10 [~.4]        | mm ["]   |
| Scan Resolution (unit/step) | ~ 0.000182                  | mm/step  |
| Gap Resolution (unit/step)  | ~ 0.000179                  | mm/step  |
| Weight                      | 120 [265]                   | Kg [lbs] |
| Encoder Manuf.              | Renishaw                    | -        |
| Encoder Resolution          | 0.1                         | μm       |
| Vacuum Level                | < 10-9                      | mbar     |
| Beamline Connection         | DN100 (6") CF               |          |



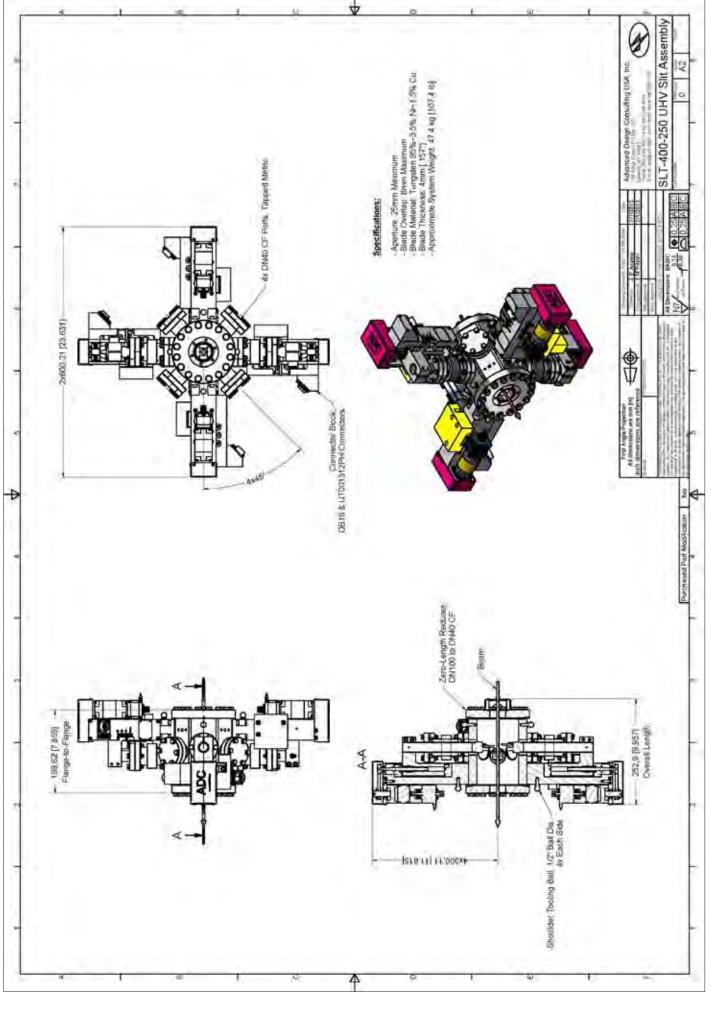




# **SWISSFEL HIGH PRECISION SLITS**

# 45 Degree

The SwissFEL baseline design produce FEL pulses covering the wavelength range 1 Å to 70 Å (0.1–7 nm) with a compact and economic design.


These custom high precision slits for SwissFEL were designed for UHV that can be used for apertures up to 25mm x 25mm. This curtain slit allows a gap to be set and allows that set gap to be scanned across the full travel. The full range of scan motion allowable for the slit is 25mm. The allowable gap for the slit is 25mm max with 5mm allowable blade overlap. Both the gap and scan axes feature burgess limit switches. Each axis is also encoded using a Renishaw incremental encoder. All of the actuator components (bearing rails, ballscrews, limit switches, encoders, and ballscrews) are located outside of the UHV chamber. This eliminates the need for special lubricants on the actuator bearings. It also allows for the actuators to be adjusted, aligned, and serviced with the system installed on the beamline. A rigid connection between the slit blade and the actuator guarantees that encoder readings at the actuator are accurate.

To find more please follow the link:

http://www.adc9001.com/products/view/540

#### **Key Specifications:**

| Description                 | Value                       | Units    |
|-----------------------------|-----------------------------|----------|
| Maximum Aperture            | 25 [~1]                     | mm ["]   |
| Blade Overlap               | 5 [~.2]                     | mm ["]   |
| Blade Materials             | Tungsten, Tantalum, Copper- |          |
| Blade Thickness             | 4 [~.16]                    | mm ["]   |
| Scan Range of Motion        | +/- 12.5 [~.5]              | mm ["]   |
| Gap Range of Motion         | +25 [~1] / -10 [~.4]        | mm ["]   |
| Scan Resolution (unit/step) | ~ 0.000182                  | mm/step  |
| Gap Resolution (unit/step)  | ~ 0.000179                  | mm/step  |
| Weight                      | 120 [265]                   | Kg [lbs] |
| Encoder Manuf.              | Renishaw                    | -        |
| Encoder Resolution          | 0.1                         | μm       |
| Vacuum Level                | < 10 <sup>-9</sup>          | mbar     |
| Beamline Connection         | DN100 (6") CF               | -        |

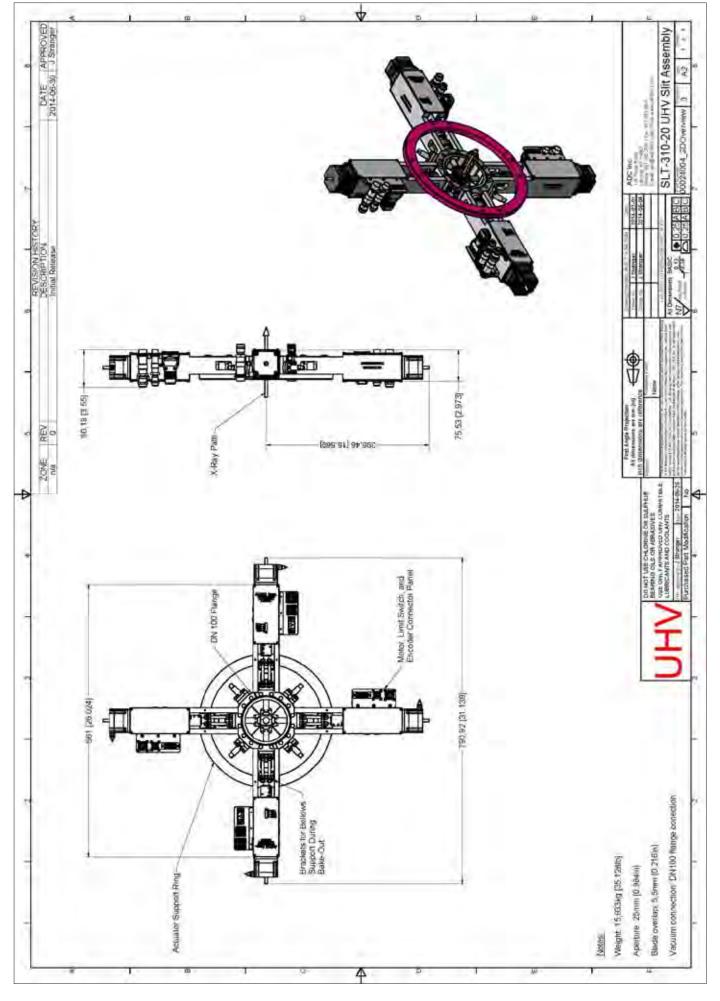


# **SWISSFEL HIGH PRECISION SLITS – 45 DEGREE**

# **UHV SLIT SYSTEM WITH YAG CRYSTAL**

#### To find more please follow the link:

#### http://www.adc9001.com/products/view/540


The high precision UHV slit system was designed for DLS I05 Nano ARPES Beamline. http://www.diamond.ac.uk/Beamlines/Surfaces-and-Interfaces/I05.html

The total apertures is 25mm x 25mm. Each blade is actuated independently by the 4 actuators mounted to the slit body. This slit system is designed to be especially easy to service. There are no bearing rails, limit switches, encoders, or drive screws within the slit chamber. This eliminates the need for special lubricants and allows the actuators to be adjusted, aligned, and serviced with the system installed in the beamline. This slits application required using fluorescent screen fixed to vertical upper and lower blade, that was single crystal YAG (Yttrium Aluminum Garnet). Each slit unit has 4 fiduciary marks provided. All UHV sections are vacuum tested to better than 5x10-10 torr and have a leak rate of less than 2x10–10 mbar l -1 s-1. Blades are available in Tungsten, Tantalum, and Copper.



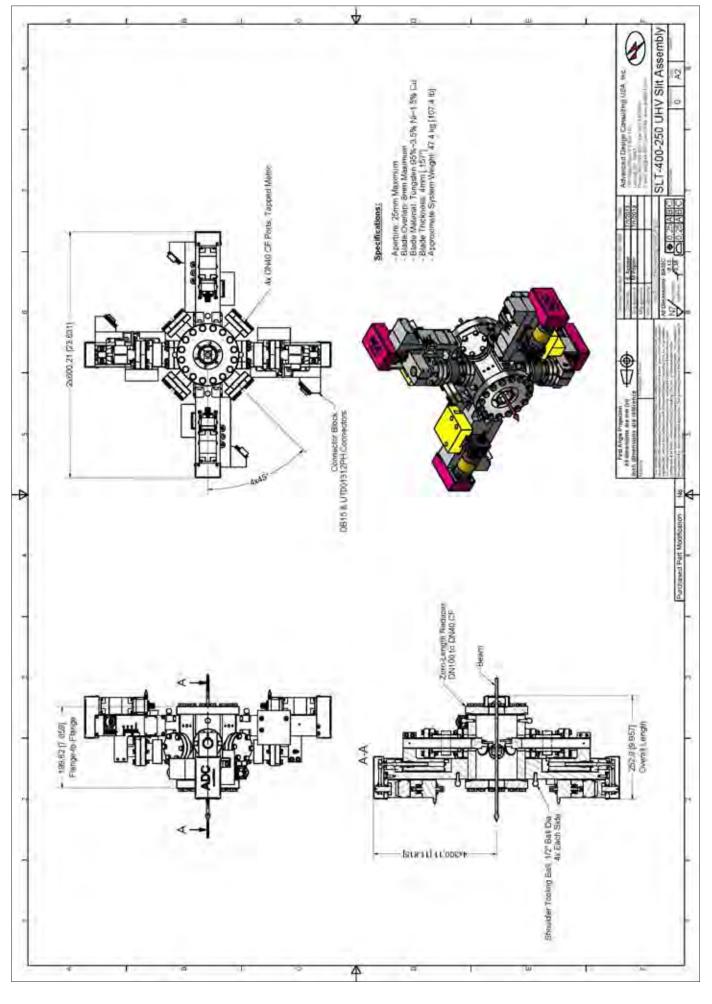
#### **Key Specifications:**

| Description            | Value     | Units    |
|------------------------|-----------|----------|
| Maximum Aperture       | 25 [~1]   | mm ["]   |
| Blade Overlap          | 5 [~.2]   | mm ["]   |
| Blade Thickness        | 2 [~.08]  | mm ["]   |
| Resolution (unit/step) | ~0.001588 | mm/step  |
| Weight                 | 16 [35]   | Kg [lbs] |
| Encoder Manuf.         | Renishaw  | 11-1-1-0 |
| Resolution             | 0.1       | μm       |



# **HIGH HEAT LOAD FOR ESRF**

#### To find more please follow the link:


#### http://www.adc9001.com/products/view/538

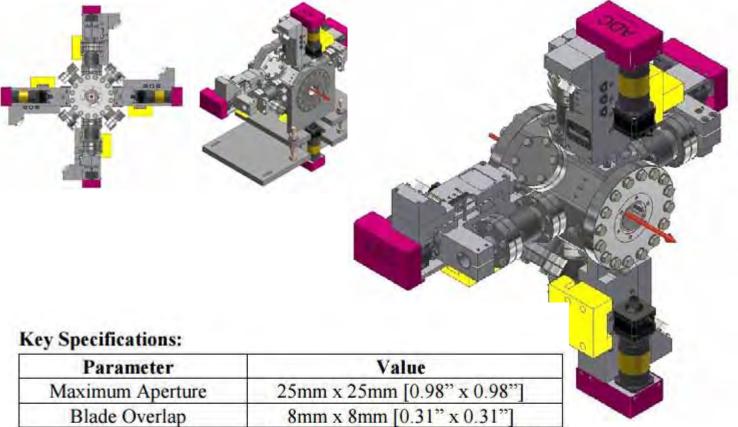
The high precision slit system is designed for UHV and can be used for apertures up to 25mm x 25mm. Blades are actuated independently by 4 actuators mounted on the slit body. This slit system was designed to be robust and easily serviceable. All of the actuator components (bearing rails, limit switches, encoders, and ballscrews) are located outside of the UHV chamber. This eliminates the need for special lubricants on the actuator bearings. It also allows for the actuators to be adjusted, aligned, and serviced with the system installed on the beamline. A rigid connection between the slit blade and the actuator guarantees that encoder readings at the actuator are accurate. Modal analysis with FEA and physical tests were done during the design to make sure there are no resonant frequencies below 200 Hz at the blade. The UHV chamber has 4 spare DN40 CF ports for connecting pumping and diagnostics. Edge-welded UHV bellows connect the chamber to the blade actuator. Blades can be removed through the inside diameter of the bellows. The bellows themselves can be removed with the unit still installed on the Beamline within an hour not days.

Specification:

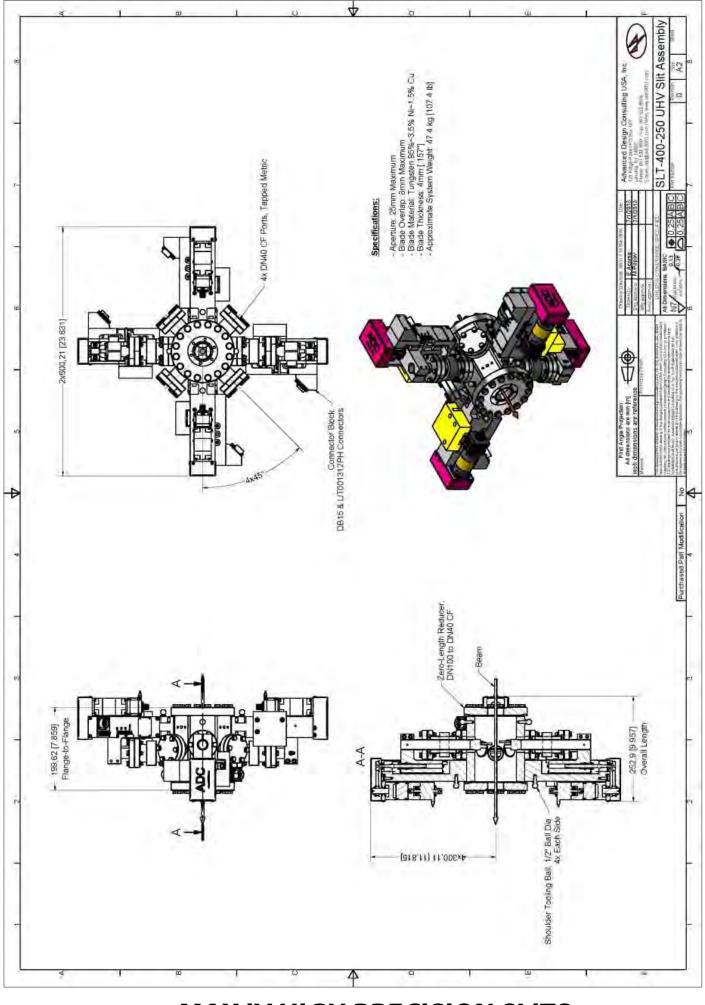
- 0.09 µm precision
- Renishaw Encoder (Absolute)
- High Accuracy Ball Screw Drive
- 1 µm Home Limit Switch Ability to monitor the beam
- Blade material; Tungsten
- Roughness of the jaw edge surface:






# **ESRF HIGH HEAT LOAD**

# **MAX IV HIGH PRECISION SLITS**


#### For more information please visit

#### http://www.adc9001.com/products/view/542

ADC engineered a new family of custom UHV, high precision, slit for MAX IV. The slit has 4 independent blades with a maximum aperture of 25mm x 25mm. Description: These slit system were designed for UHV and can be used for apertures up to 25mm x 25mm. Blades are actuated independently by 4 actuators mounted on the slit body. This slit system was designed to be robust and easily serviceable. All of the actuator components (bearing rails, ballscrews, limit switches, encoders, and ballscrews) are located outside of the UHV chamber. This eliminates the need for special lubricants on the actuator bearings. It also allows for the actuators to be adjusted, aligned, and serviced with the system installed on the beamline. A rigid connection between the slit blade and the actuator guarantees that encoder readings at the actuator are accurate. Modal analysis with FEA and physical tests were done during the design to make sure there are no resonant frequencies below 200 Hz at the blade. The UHV chamber has 4 spare DN40 CF ports for connecting pumping and diagnostics. Edge-welded UHV bellows connect the chamber to the blade actuator. Blades can be removed through the inside diameter of the bellows. The bellows themselves can be removed with the unit still installed on the beamline.



| Parameter               | Value                         |  |
|-------------------------|-------------------------------|--|
| Maximum Aperture        | 25mm x 25mm [0.98" x 0.98"]   |  |
| Blade Overlap           | 8mm x 8mm [0.31" x 0.31"]     |  |
| Blade Material          | Tungsten 95%~3.5% Ni~1.5% Cu* |  |
| Blade Thickness         | 4mm [0.16"]*                  |  |
| Flange-to-Flange Length | 200mm [7.87"]                 |  |
| Vacuum Level            | < 10 <sup>-9</sup> mbar (UHV) |  |
| Beamline Connection     | DN40 (2 3/4") CF*             |  |



# **MAX IV HIGH PRECISION SLITS**

# **GENERAL SLIT INFORMATION**

The following section will highlight the common information shared between the high precision slit systems. For more information please contact ADC or visit our website at:

#### http://www.adc9001.com/SLITS

#### **Motors**

Custom High Precision Systems are provided with motors and limit switches for the equipment. ADC uses standard Lin Engineering NEMA bi-polar (2-phase) stepper motors with 200 steps/rev (1.8°/step) and Micromo Motors with gearboxes on the SLT-50 slits. Depending upon the application and customer requirements, stepper motors of sizes 17 or 23 may be used. For more information please contact ADC.

These motors could be controlled with the majority of off the shelf controller/drivers on the market. Planetary gear boxes from CGI are provided on slits achieve high resolution and load capacity. ADC also offers the option of using a 5 phase stepper motor or servo motor on the Custom High Precision Systems. All axis of motion are equipped with limit switches to prevent failure in case of a problem.

#### **Limit Switches**

All axes are fitted with mechanical limit switches. The in all but the SLT-50 the standard limit switchis made by Burgess PN: F4T7Y1 with a lever modification. These limit switches are located outside of UHV and protected by an aluminum cover. They are calibrated and tested by ADC's engineers to ensure proper operation and travel. Limit switches are mounted in slots so they can be adjusted if a different travel is required.

### **Home Switches**

The SLT-310 and SLT-400 series have the option of a high precision Baumer MY-COM home switch. With a repeat accuracy of 1 micron, the My-Com<sup>®</sup> remains undisputedly the most accurate and most compact mechanical switch in the world. With its extremely compact design it can be placed in many arrangements.



# Linear Incremental Encoders

Linearincremental encoders are available as an additional option for slits. Al uses high resolution Renishaw TONiC series encoders. TONiC is Renishaw's ne super-compact non-contact optical encoder that offers speeds up to 10 m/s a resolutions down to 1 nm for both linear and rotary applications. Offeri significant enhancements to Renishaw's existing range of high spe non-contact optical encoders, TONiC also gives improved signal stability a long-term reliability, low cost of ownership and refreshing simplicity.

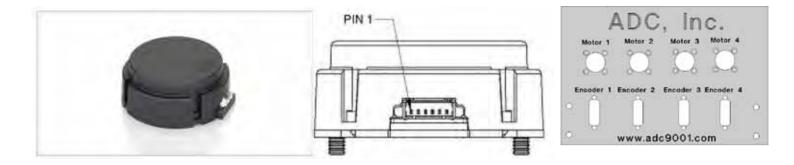
### Linear Absolute Encoders

Linear absolute encoders are also available on most of the ADC's slits T... Renishaw RESOLUTE is a true absolute, fine pitch optical encoder system that has excellent dirt immunity, and an impressive specification that breaks new ground in position feedback. It is the world's first absolute encoder capable of 1 r resolution up to 100 m/s.

### **Rotary Incremental Encoders**

In the two small slits series (SLT-50 and SLT-100) a US Digital miniature encode designed to provide digital quadrature encoder feedback.

#### Features:

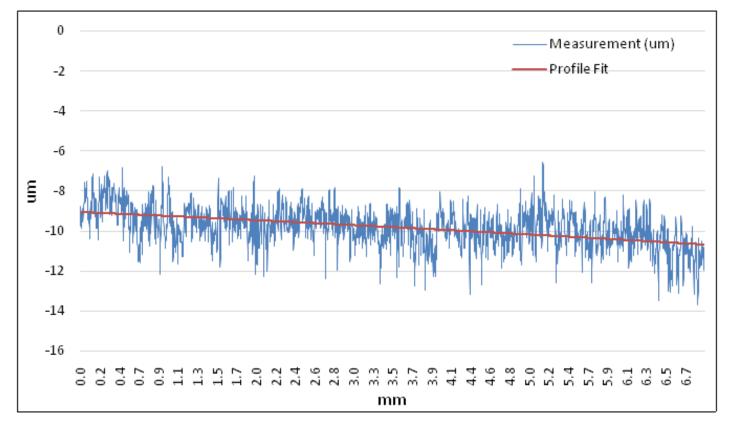

- 200 cycles per revolution (CPR)
- 800 pulses per revolution (PPR)
- Single +5V supply
- Maximum CPR of 18,000

## **Cabling & Connectors**

To ensure proper operation of the system, all cabling, wiring and connectors supplied comply with the EMC and NEC directive. To meet these criteria, all conductors and connectors used have sufficient and appropriate shielding capacity. The shielding efficiency is affected by a number of factors such as the overall cable installation and the components employed. Therefore, continuous and homogeneous shielding is done by the use of screened conductors.

The connectors are firmly mounted on the overall equipment frame by the use of patch panels/bulkhead plates. This provides a safe and easy connection and disconnection of all field/control cables to the equipment. ADC provides a customized connector panel that exactly matches the type of connectors and wiring used at the customer's facility. This facilitates ease of installation and operation at a customer's site.

ADC provides a proper routing and grouping of cables installed. Consideration is given to the design of the cable management system, so practical assembly/disassembly of individual sub-assemblies is not affected during installation or maintenance.



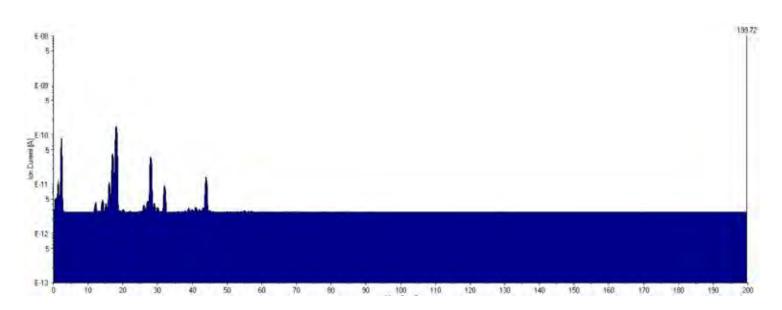





## **Testing & Quality Control**

ADC thoroughly tests all relevant aspects of the slit systems to ensure the highest quality for our customers. Using state-of-the-art equipment, ADC verifies the accuracy, repeatability, and parallelism of each set of blades. Our technicians then generate reports to be presented to the customer with the completed system.



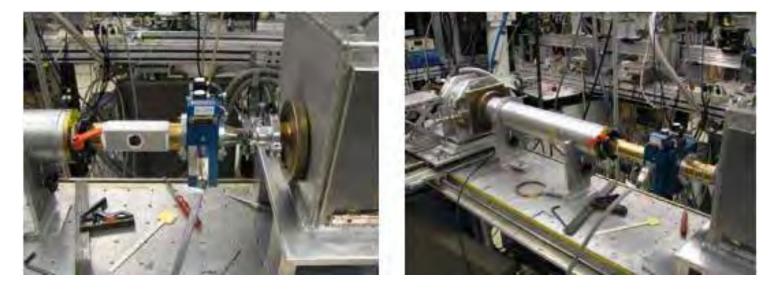

Sample Flatness Record Flatness = 0.72mm over a 6.7mm distance



SAMPLE REPEATABILITY RECORD UNI-DIRECTIONAL ERROR = 0.004 MM / BI-DIRECTIONAL ERROR = 0.009 MM

### **RGA System**

For ultra-high vacuum compatible equipment, ADC has the ability performs a bake-out and RGA for each system. The output of the RGA is documented and presented with the final product. ADC uses a Pfeiffer VacuumQMS 220 M2, PrismaPlus Compact Mass Spectrometer with a mass range 1 - 200 amu. The PrismPlus use secondary electron multiplier C-SEM and Faraday detectors.




## **Blade Polishing**

ADC has worked with the Cornell High Energy Synchrotron Source (CHESS) for many years developing a polishing process that produces the best slit blade knife-edges in the synchrotron community. We have collaborated in the design and test of slit blades in tungsten and tantalum with lessons learned that could be applied to other materials.

Recently we delivered 8 sets of slits to CHESS and we decided to go through another round checking our polishing process. ADC would polish different blade with small process modification. We would then have Cornell do the scattering test for us and compare the results.

The tests were conducted on a rotating anode source at Cornell University's lab with an evacuated flight path and a CCD.

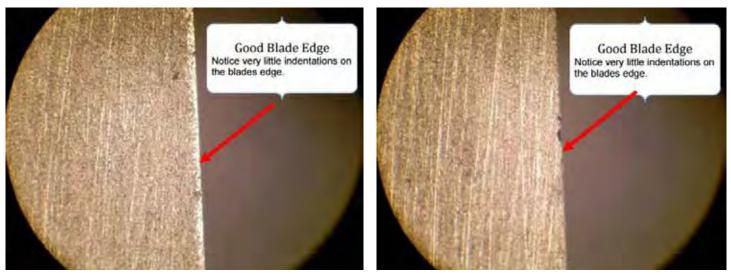


This is a small-angle setup on a laboratory source with an approximately 1 meter path length, the wavelength was about 1.5 A. Based on this typical configuration one would expect at least down to q = 0.01 (2Pi Sing(theta)/lambda) or equivalently (d-spacing of maybe 600 A).

The setup already has beam defining slits and guard slits in place. We place a single blade half way in the direct beam (in vacuum) after the guard slits and compare the scattering with what we see without the blade. We know that the blade cuts through 1/2 the beam due to PIN diode readings in the beamstop.

#### **Results:**

These tests were conducted on the same material but different polishing process. Here are the photos of the blades.

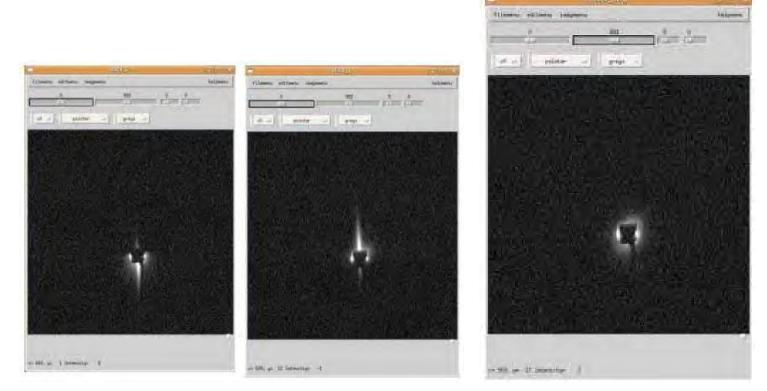

**Material:** Tungsten 95%~3.5% Ni~1.5% Cu which is Tungsten Alloy Product Standard: ASTM B 777 Class Using an Olympus microscope at a power.



Blade 1

Blade 2

Notice the large indentations on the bad blades located at the edge. These cause the "rounding affect" on the x-ray.








Presented below is a x-ray scattering document showing the beam with no slit, photos of a set of bad blades (1 & 2), and a set of good blades (3 & 4). These tests were done at Cornell for a comparison purposes so that one can see what is really meant by a "bad" polished blade and a "good" polished blade.

**Notes:** intensity in flares is 6000 cts Exposure 2 x 100 sec

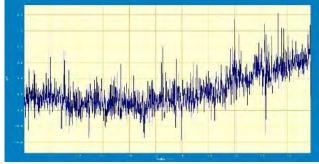


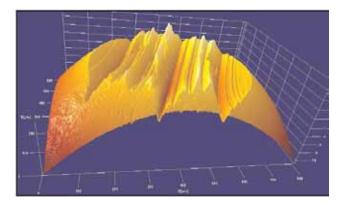
Bad Blades (1 & 2)

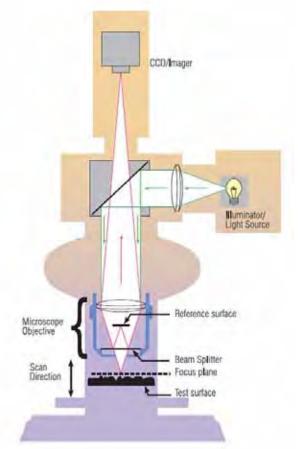
Good Blades (3 & 4)

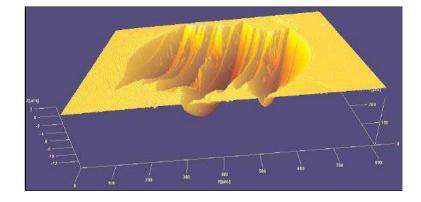


Related Pulication: Slit Blade Surface Roughness http://adc9001.com/data/Surface\_Roughness\_Measurements.pdf


## **Non-Contact Surface Mapping of Slit Blades**


The high brilliance of third-generation synchrotron radiation sources necessitates the use of small beam sizes, extendingbelow 10  $\mu$ m. This is of great interest for probing micrometer-sizedobjects, for diffraction at very smallangles orfor speckle and coherent scattering experiments. In x-ray diffraction experiments, imperfections of the optics makeit necessary to useslits (or pinholes), either to limit thebeam size or to reduce background scattering.


ADC has worked with the Cornell High Energy Synchrotron Source (CHESS) for many years developing a polishing process that produces the best slit bladeknife-edges in the synchrotron community. We have recently developed the capabilities to do "Non-Contact Surface Mapping of Slits Blade profile". We now can measure roughness, finish and texture of surfaces of slits blade tip.

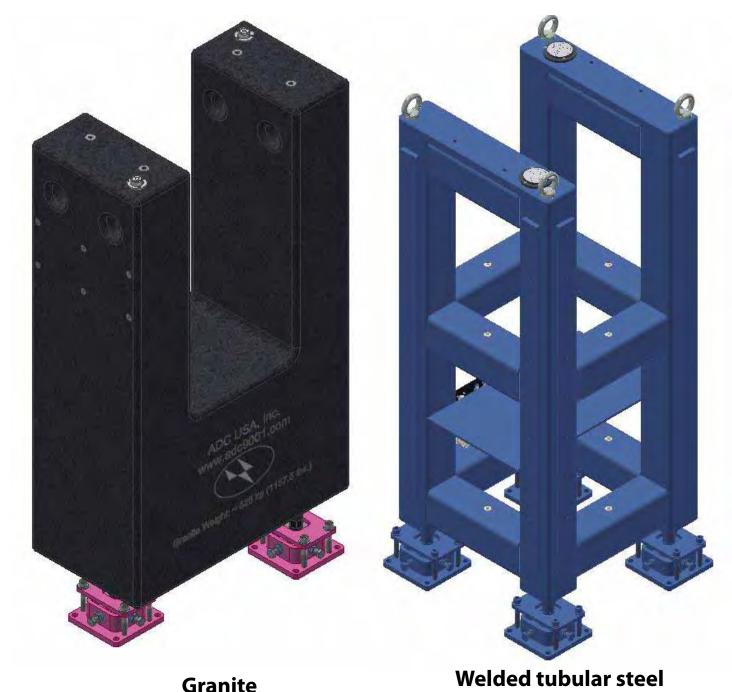

Using a powerful mapping and analysis software we are able to provide our customers, surface information (3-D interferometric profiling) which provide information on the texture, shape andfinish of surfaces. Complete mapping options allow three-dimensional pictures to bedrawn, profiles examined and color output to be printed. Our surface mapping system has RMS repeatability (standard mode): 1 nm; RMS repeatability (precision mode): 0.1 nm and RMS repeatability (single wavelength): 0.05 nm












### **Blade Beam Monitoring**

The blades of the slits are independently, electrically isolated and have a connector and wire to enable beam monitoring. This is used to determine the position of the beam. Four independent electrical connections are typically used. The minimum DC resistance between the blade and earth is >110 ohms or 10 gigaohms.

#### **Slit Stand**

The stand is available for slit models SLT-600, SLT-700 and SLT-800.



The system base is comprised of welded tubular steel (can also be Aluminum) with a powder coated finish or granite better for vibrational dampening. The tubular structure has holes in the steel tubes so it can easily be filled with sand for added stability. Kinematic mounts on the base offer fine adjustment when lining up the slit to the beamline

## **Floor Mounting**

ADC's slit stand comes with the ability to anchor to the floor and adjust and lock the parallelism of the slit stand with respect to the floor (pitch and roll) within ±50 µrad. The slit stand can be aligned in height and transverse position with an accuracy of 0.25mm. The frame is fitted with x-y-z adjustable shoes and bubble levels for adjusting roll, pitch, and yaw, x, y, and z position.



Permanent floor mounting options are also available with ADC optical tables. This is typically done by first grouting a precision flat plate to the facility floor. Before grout is poured, the plate is leveled and can be tied into the floor using threaded inserts. The grouted plate provides a permanent and extremely stable floor mount for the optical table.

#### **Electronics and Instrumentation**

AADC has several electrical/software engineers and techs capable of providing custom circuit design and complete turn-key control systems. Some of our skills include integrated PLC design and programming, analog and digital circuit design, logic design (including PLA and FPGA programming), stepper and servo motor applications, microprocessor, RFID, serial and RF communications, and system controllers.

Our design tool set includes National Instruments (NI) MultiSim for schematic capture and NI UltiBoard for circuit board design, Xilinx ISE for FPGA design, ModelSim for simulation, and StateCad. Non-circuit board Schematics are drawn on various platforms with output to DXF. Microprocessor experience is broad but recent projects focus on the PIC Micro Family from MicroChip. ICE units and code simulation for the PIC microprocessors are in-house. Software skills and development platforms include Microsoft Visual C++, PERL, LabView, Visual Basic, CNC, and generic PLC (AB, NAIS, GE-Fanuc, Schneider, etc.) and Parker 6K and 9K (Accroloop).

Our standard motor controls and driver that we offer is the Aerotech Ensemble<sup>™</sup> series controllers as described in this document. However, many of our customers have requirements for custom integration of these components into a functioning system, fully debugged, documented, and ready for operation.

We have provided mostly stepper motors but also servo motors on occasion. We have applied incremental and absolute linear and rotary encoders. A brake on all axes is standard. Limits consist of mechanical switches. For close repeatability at small gaps or near the beam pipe, ADC uses high repeatability (< 1 um) mechanical limit switches.



Software skills and development platforms include Microsoft Visual C++, LabView, EPICS, Visual Basic, CNC, and generic PLC (AB, NAIS, GE-Fanuc, Schneider, etc.) and Parker ACR and Accroloop. Our primary skill, however, is the integration of these components into a functioning system, fully debugged, documented, and ready for operation.



# REFERENCES

The following is a list of the world class facilities that work with ADC creating cutting edge instrumentation. To see more information, follow the link to our reference page on our website. http://www.adc9001.com/REFERENCES



|                                                                         |                                                                   | National Institute of<br>Standards and Technology           | National Nuclear Security Administration                  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|
| Michigan State University (MSU)                                         | United States Navy (USN)                                          | National Institute of Standards and<br>Technology (NIST)    | National Nuclear Security<br>Administration (NNSA)        |
| NSRRE                                                                   | CAK RIDGE                                                         | PAL                                                         | PAUL SCHERRER INSTITUT                                    |
| National Synchrotron Radiation<br>Research Center (NSRRC)               | Oak Ridge National Laboratory<br>(ORNL)                           | Pohang Accelerator Laboratory (PAL)                         | Paul Scherrer Institute (PSI)                             |
| SLACE<br>NATIONAL ACCELERATOR LABORATORY                                | SPALLATION NEUTRON SOURCE                                         |                                                             |                                                           |
| SLAC National Accelerator<br>Laboratory                                 | Spallation Neutron Source (SNS)                                   | Special Operations Command<br>(USSOCOM)                     | SOLARIS National Synchrotron<br>Radiation Centre          |
| SSRF Shanphai Synchrotron<br>Radiation Facility                         | CLINIC<br>C                                                       | Cornell University<br>Department of Astronomy               | Bar-Ilan University                                       |
| Shanghai Synchrotron<br>Radiation Facility (SSRF)                       | Mayo Clinic                                                       | Cornell University Department of<br>Astronomy               | Bar-Ilan University                                       |
| Argonne<br>Lasotatoky<br>The Advanced Photon Source (APS)               | CAMD (LSU Lousiana State<br>University                            | CINS<br>Canadian Institute for Neutron<br>Scattering (CINS) | elettra Sincrotrone Trieste                               |
| institute of High Linergy Physics<br>Once Academs of Solvers            | Jefferson Lab                                                     |                                                             |                                                           |
| Institute of High Energy Physics,<br>Chinese Academy of Sciences (IHEP) | Thomas Jefferson National<br>Accelerator Facility (Jefferson Lab) | Brazilian Synchrotron Light<br>Laboratory (LNLS)            | National Oceanic and Atmospheric<br>Administration (NOAA) |
| SINAP                                                                   | SPring- 8                                                         |                                                             |                                                           |
| Shanghai Institute of Applied<br>Physics (SINAP)                        | SPring-8<br>(Super Photon ring-8 GeV)                             | National Science Foundation                                 |                                                           |







ISO 9001:2008 Certified



ADC USA, Inc.126 Ridge Rd., PO Box 187, Lansing, NY 14882 Telephone: (607) 533-3531 Fax: (607) 533-3618 Website: www.adc9001.com Email: adc@adc9001.com