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Abstract— Lower back pain is considered to be one of the 

major health issues in industrial countries. Statistics show that 

around 80% of the populations do have back pain at least once 

in their lifespan. A report from National Institute of 

Neurological Disorders and Stroke (NINDS) says that the 

growth rate of number of patients having back pain or some 

sort of intervertebral disk disorder is much higher than the 

growth rate of the radiologists. It is also reported that around 

12 million MRI scans are done every year in USA alone on 

spine. The workload of radiologists has been increasing 

drastically over the years. In order to reduce the workload of 

radiologists there has been an increasing demand for computer 

aided diagnosis system. Computer aided diagnosis (CAD) 

system is one of the recent and major research areas in the 

sciences of medical imaging and radiology. In this paper 

texture analysis of MR images of intervertebral discs have 

been analyzed which can in turn help in developing a 

Computer aided diagnosis system for intervertebral disc 

disorders.  

Keywords— Intervertebral Discs, Texture analysis, MRI, 

GLRLM, SVM. 

I.  INTRODUCTION 

Spine serves as crucial central axis for the musculoskeletal 
system and a soft defensive shell surrounding the most 
important neural pathway in the body, the spinal cord [1]. The 
capability of a human being to stand erect, bend, and twist is all 
possible because of the human spine. It is possible because 
human spine consists of almost all kinds of tissues, like, bones, 
cartilage, ligaments and muscles [2].And if any kind of strain, 
injury or disease perturbs any of the parts of the spine, it causes 
severe pain. 

A normal human spine in total has 33 vertebrae. The upper 
24 are eloquent vertebrae and are separated by intervertebral 
discs, while the lower 9 are merged: five in the sacrum, and 
four in the coccyx. Intervertebral discs have 3 parts: (1) the 
nucleus pulposus classically described as a central gelatinous 
mass; (2) the annulus fibrosus, a fibrous outer ring; and (3) the 
vertebral end plate, constituting a cartilaginous layer covering 
the superior and inferior surfaces of the intervertebral disc [3]. 
There is no distinct demarcation between the nucleus pulposus 
and annulus fibrosus, and this area is sometimes referred to as 
the transitional zone. In intervertebral disc of young, healthy 
adults, the nucleus pulposus is a semifluid mass of mucoid 
material. Histologically, it consists of a few cartilage cells and 

some irregularly arranged collagen - fibers, dispersed in a 
medium of semifluid ground substance. Biomechanically, the 
nucleus pulposus can deform under pressure but cannot be 
expanded or compressed. The annulus fibrosus surrounding the 
nucleus pulposus acts as a response to that pressure. The 
annulus fibrosus consists of collagen - fibers in a highly 
ordered pattern arranged in concentric rings[4]. 

Spine diseases being very common, affecting up to 80% of 
population worldwide, causing pain, disability and economic 
loss [5][6]. Back pain is considered to be the second highest 
health issue after common cold and is regarded as the second 
most common reason why patients visit doctors’ clinic in USA 
and its global burden is estimated to increase distinctly in the 
next few decades, causing lot of disruption in peoples’ lives, 
psychologically as well as economically [7][8][9][10]. Spine 
poses additional challenges to quantitative image analysis, 
because of its structure, as it consists of an array of vertebrae 
and discs, where the individual vertebrae and disc show 
complex shape, even the shape of the individual vertebrae and 
disc changes necessarily throughout the spine, mostly 
neighboring vertebras and discs look very similar and are 
difficult to distinguish [11]. Such diversity brings challenges on 
multiple levels to the conventional vertebra and disc 
recognition and segmentation methods. For diagnosis and 
treatment of many spine related diseases, imaging is often 
required and different imaging modalities provide 
complementary information regarding both anatomy and 
physiology. 

Aging, trauma, genetic disorders, nutritional disorders 
usually result in the change in the gross anatomy, 
ultrastructure, and boundaries of these regions, resulting in the 
degeneration of the intervertebral discs [12]. 

In this paper we have used GLRLM texture analysis for 
classifying MR images of normal and degenerated 
intervertebral discs. 

In section II literature review is discussed, in section III 
Methodology and in section IV Implementation and in section 
V results and discussion then in section VI Conclusion. 

II. EASE OF USE 

Mir et al. [13] have used Spatial Grey Level Dependence 
Matrix (SGLDM), Grey Level Run Length Matrix (GLRLM), 
Grey Level Difference Matrix (GLDM) for detection of 
abnormalities in CT images that are beyond visual perception. 
Wang et al. [14] have utilized texture features based on First 
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Order Statistics (FOS), spatial gray level dependence matrix 
(SGLDM), gray level run length matrix (GLRLM) and gray 
level difference matrix (GLDM) for classification of hepatic 
tissues from CT images. Kim et al. [15] have used SGLDM, 
GLRLM, GLDM, for the detection of microcalcifications in 
digitized mammograms. Vince et al. [16] have used five 
different texture analysis techniques, namely: first order 
statistics, Haralick’s method, Laws’ texture energy method, the 
neighborhood grey–tone difference matrix, and texture 
spectrum features, on intravascular ultrasound images and 
concluded that GLCM method gave much more satisfying 
results. Gibbs et al. [17] have used GLCM texture features and 
have concluded that there are momentous differences between 
benign and malignant lesions in the breast MRI. Valavanis et 
at. [18] used SGLDM and GLDM for retrieving texture 
features to classify hepatic tissue non-enhanced CT images into 
four classes. Guillermo et al. [19] have used GLCM, GLDM 
and GLRLM techniques for classification of abdominal aortic 
aneurysm after endovascular repair. Claudia et al. [20] have 
exploited statistical and spectral texture features for automatic 
segmentation of intervertebral discs of scoliotic spines from 
MRI. Khawla et al. [21] explored GLCM for detection of 
abnormalities in MR images of spine. Ghosh et al. [22] have 
proposed fully automated lumber herniation diagnosis system 
on MR images. Intensity and texture features have been 
generated and fed into five different classifiers and have taken 
majority voting scheme into consideration and have achieved 
94.85% accuracy, 95.9% specificity and 92.45% sensitivity for 
35 clinical cases. 

In this study the capacity of GLRLM for the classification 
of degenerated intervertebral disc and normal disc is analyzed. 
For this Region of Interest (ROI) is extracted. The features of 
the extracted ROI are fed into SVM classier for automatic 
classification. 

III. METHODOLOGY 

A. Region of interest (ROI) 

It is very important to know the exact region of which the 
features are to be extracted, which is called as the region of 
interest (ROI). In the selection of ROI, one has to balance 
between the need to capture appropriate textural information 
for classification purposes with the desire to avoid multiple 
tissue categories [23]. The method used for determining the 
ROI in medical images is still an active research area. The 
method used can be either manual or automatic [24]. Selection 
of ROI not only helps in fast and efficient processing but also 
minimizes noise and artifacts and hence in increasing 
diagnostic accuracy [25]. 

B. Feature Extraction Using GLRLM 

GLRLM is a matrix from which we can extract higher order 
statistical texture features. In GLRLM we define run length as 
maximal set of pixels having same grey level. In this matrix the 
grey level runs are described by the grey level of the run, the 
length of the run and the direction of the run.  For a given 
image, GLRLM is a two- dimensional matrix in which each 
element x(i, j/θ) represents the total number of runs with pixels 
of grey value i , ( 0 ≤ i ≤ Ng , Ng is the utmost grey level) and 
run length j (0≤ j ≤ Rmax , Rmax is the maximum length) in a 

certain direction θ (0 °, 45°, 90° & 135°). Therefore, in a given 
direction, run length matrix measures how many times there 
are runs of, for example, 2 or 3 or 4 consecutive pixels with the 
same value for each acceptable grey level value, and hence for 
each direction many different run length matrices can be 
computed for a single image. The number of the grey levels is 
minimized by re-quantization before the build-up of the matrix 
[26][27].  

Figure 1(a) below shows a matrix of size 4*4 pixel image with 
4 gray values and Figure 1(b) is the representation matrix 
GLRL (gray level run length) in the direction of 0° [x(i, 
j/θ=0°)]. 

 

 

 

 

 

 

 

Figure 1 a) 4*4 Matrix of Image   Figure 1 b) GLRL Matrix    

 

 

Figure 2 Run Direction 

The Gray Level Run Length Matrix (GLRLM) was initially 
developed by Galloway in 1975 [27] and suggested 5 texture 
features based on GLRLM namely: Shot Runs Emphasis 
(SRE), Long Runs Emphasis (LRE), Gray Level Non-
uniformity (GLN), Run Length Non-Uniformity (RLN), and 
Run Percentage (RP). Chu et al. added two more features 
called Low Gray Level Run Emphasis (LGRE) and High Gray 
Level Run Emphasis (HGRE) and later Asarathy and Holder 
added 4 more features extracted from the GLRLM, namely: 
Short Run Low Gray-Level Emphasis (SRLGE), Short Run 
High Gray-Level Emphasis (SRHGE), Long Run Low Gray-
Level Emphasis (LRLGE), and Long Run High Gray-Level 
Emphasis (LRLGE). 

C. Classification Using SVM 

SVM is a state-of-art classifier initially introduced by Boser 
et al. [28] in the year 1992 for binary classification. The basic 
concept of SVM is to develop a hyper-plane that helps in 
defining the boundaries used in the decision making of the 
classification. And with this concept of hyper-plane SVMs are 
able to deal with both linearly separable data as well non 
separable data (nonlinear) in simple as well as complex 
classification assignments. In SVM the original data points are 
mapped from the input space to a high dimensional feature 
space. The mapping is done using a kernel function [29]. For 
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this reason SVM tends to generalize better [5]. With the basic 
design of Support Vector Machines, it can   only   discriminate   
between   two classes.  Support  Vector  Machines  in  their  
simple  form, are  called  linear  classifiers. It  is  possible 
however  to  create  a nonlinear SVM by increasing the 
dimensionality of the feature space,  and  by  using  the  so-
called  "kernel-trick".  It  is  thus possible  to  find  a  separating   
hyper  plane  in  a  higher dimensions where such a hyper plane 
would not exist in lower dimensions. There are many choices 
for which kernel, to use. The standard choices are the linear 
kernel (which is otherwise called as dot-product kernel), the 
polynomial kernel and the Gaussian Kernel.  The Gaussian 
Kernel is the special case of Radial Basis Function (RBF) 
kernel [30]. In the standard case, the distance used, is the 
Euclidean distance.  In the RBF kernel, the parameters 
determine, the width of the kernel, and d(x, y) is the distance 
metric. RBF is a reasonable first choice among other Kernels 
due to its generality and computational efficiency [31]. We 
have used LS-SVM  [32]. 

IV. IMPLEMENTATION 

A. Database  

The dataset used contains clinical MRI scans of 99 

symptomatic patients having back pain, 12000 numbers of 

scans, and almost 4800 to 6000 numbers of discs, and these 

images are mostly from lumbar region of the spine, few are 

from thoracic and cervical region as well. The patients being 

examined demonstrate number of radiologically defined 

abnormalities, but in this thesis only disc herniation is being 

studied and diagnosed. The MR images if 99 patients/cases 

used for evaluation range from age group of 16 to 78 years. 

MEDICARE, a private diagnostic center at Srinagar, India has 

provided the data set used. The MR images provided by 

MEDICARE were in DICOM format, having matrix resolution 

mostly of 240*240 and 256*205, slice thickness ranging from 

1.7 mm to 6 mm and slice gap ranging from 20 to 300 percent, 

TR ranging from 3.3 milliseconds to 7.8 milliseconds and TE 

ranging from 1.27 milliseconds to 3.69 milliseconds and flip 

angle ranging from 8 degrees to 20 degrees. The simulation 

platform used is MATLAB 2010. 

B. Selection of the ROI  

In this study the ROI is manually selected. First and 
foremost slice analysis is done, in which the proper slice that 
gives almost all the details about the structure for 
characterization and diagnosis is selected. For disc herniation 
diagnosis mid-sagittal, T2- weighted slices are being used [5] 
[33]. The ROI in this work is limited to the region that includes 
the interface of the vertebrae, intervertebral disc and that of 
spinal cord and the size of the ROI is a window of 33×33 
pixels. 

C. Feature extraction using GLRLM 

In this study all the eleven GLRLM features have been 
extracted and they are mentioned in table 1. 

 

 

Feature 

 

Formula 

 

Short Run Emphasis  SRE = 1/nr∑ ∑ 𝑥(𝑖, 𝑗)/𝑗2𝑅𝑚𝑎𝑥
𝑗=1

𝑁𝑔
𝑖=1  

Long Run Emphasis  LRE =1/nr∑ ∑ 𝑥(𝑖, 𝑗) ∗ 𝑗2𝑅𝑚𝑎𝑥
𝑗=1

𝑁𝑔
𝑖=1  

Grey-Level Non-uniformity  GLN =1/nr∑ [∑ 𝑥(𝑖, 𝑗)𝑅𝑚𝑎𝑥
𝑗=1 ]

2𝑁𝑔
𝑖=1  

Run Length Non-uniformity  RLN =1/nr∑ [∑ 𝑥(𝑖, 𝑗)𝑁𝑔
𝑖=1 ]

2𝑅𝑚𝑎𝑥
𝑗=1  

Run Percentage  RP = 
nr

𝑥(𝑖,𝑗)∗𝑗
 

Low Grey-Level Run 

Emphasis  
LGRE =1/nr∑ ∑ 𝑥(𝑖, 𝑗)/𝑖2𝑅𝑚𝑎𝑥

𝑗=1
𝑁𝑔
𝑖=1  

High Grey-Level Run 

Emphasis  
HGRE =1/nr∑ ∑ 𝑥(𝑖, 𝑗) ∗ 𝑖2𝑅𝑚𝑎𝑥

𝑗=1
𝑁𝑔
𝑖=1  

Short Run Low Grey-Level 

Emphasis  
SRLGE =1/nr∑ ∑ 𝑥(𝑖, 𝑗)/(𝑖2 ∗ 𝑗2)𝑅𝑚𝑎𝑥

𝑗=1
𝑁𝑔
𝑖=1  

Short Run High Grey-Level 

Emphasis  
SRHGE =1/nr∑ ∑ 𝑥(𝑖, 𝑗) ∗ 𝑖2/𝑗2𝑅𝑚𝑎𝑥

𝑗=1
𝑁𝑔
𝑖=1  

Long Run Low Grey-Level 

Emphasis  
LRLGE =1/nr∑ ∑ 𝑥(𝑖, 𝑗) ∗ 𝑗2/𝑖2𝑅𝑚𝑎𝑥

𝑗=1
𝑁𝑔
𝑖=1  

Long Run High Grey-Level 

Emphasis  
LRHGE = 1/nr∑ ∑ 𝑥(𝑖, 𝑗) ∗ (𝑖2 ∗ 𝑗2)𝑅𝑚𝑎𝑥

𝑗=1
𝑁𝑔
𝑖=1  

Table 1 Eleven features of GLRLM Matrix 

 

The size of the feature vector extracted from GLRLM is 
44D, from 11 GLRLM features evaluated initially along just 
one direction and that is 0 °, and then along 4 directions with 
inter-pixel distance of 1(in this thesis all the features have been 
calculated at a distance of 1 due to reduced size of the samples) 
and out of 11 features only 3 features namely, Gray-Level 
Non-uniformity (GLN), High Gray-Level Run Emphasis 
(HGRE), Long Run High Gray-Level Emphasis (LRHGE) 
along 4 directions have been used for classification, making 
feature vector dimension equal to 12D (Figure 3). 

 

Figure 3. Selection of the Feature vector from GLRLM 

 

The 12D GLRLM feature vector is fed to SVM classifier as 

shown in the figure 4. 



IJRECE VOL. 7 ISSUE 1 (JANUARY- MARCH 2019)                 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  761 | P a g e  

 

 
Figure 4.12D GLRLM Feature Vector fed to SVM 

 
 

V. RESULTS AND DISCUSSION 

A. Performance Parameters used  

i) Accuracy: 

The accuracy of a test is its ability to differentiate the 

patient and healthy cases correctly. To estimate the accuracy 

of a test, we should calculate the proportion of true positive 

and true negative in all evaluated cases. Mathematically, this 

can be stated as: 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 

ii) Specificity: 

The specificity of a test is its ability to determine the 

healthy cases correctly. To estimate it, we should calculate the 

proportion of true negative in healthy cases. Mathematically, 

this can be stated as: 

Specificity = TN/(TN+FP) 

iii) Sensitivity 

The sensitivity of a test is its ability to determine the 

patient cases correctly. To estimate it, we should calculate the 

proportion of true positive in patient cases. Mathematically, 

this can be stated as: 

Sensitivity = TP/(TP+FN) 

Where TP is true positive rate, TN is true negative rate, FP 

is false positive rate and FN is false negative rate. 

Experimental results are presented in order to validate the 

discussed methodology and the performance of the 

methodology is evaluated on the discussed database. 

The table 2 illustrates Average and Standard Deviation and 

the Confidence Interval at 95% of confidence level, extracted 

from the selected features of GLRLM.  

 

Features 

 

Normal IVD Abnormal IVD 

Average 
Standard 

deviation 
CI Average 

Standard 

deviation 
CI 

Direction = 0°, Distance = 1 

Gray-

Level 

Non-

uniformity 

(GLN) 

43.5987

6 

21.0156

9 

36.2660   

50.9315 

39.9675

2 

14.8925

3 

34.7713   

45.1638 

High 

Gray-

Level Run 

Emphasis 

(HGRE) 

71.7011

6 

37.5513

9 

58.5989   

84.8035 

73.9697

8 
40.7879 

59.7382   

88.2014 

Long Run 

High 

Gray-

390.289

7 

147.160

4 

338.943

0  

324.362

9 

134.110

2 

277.569

6  

Level 

Emphasis 

(LRHGE) 

441.636

4 

371.156

2 

Direction = 45°, Distance = 1 

Gray-

Level 

Non-

uniformity 

(GLN) 

93.2103

5 

41.3960

4 

78.7666  

107.654

1 

69.3925

1 

23.3777

5 

61.2356   

77.5494 

High 

Gray-

Level Run 

Emphasis 

(HGRE) 

20.1263

1 

9.50775

4 

16.8089   

23.4437 
29.3093 

13.9707

4 

24.4347   

34.1839 

Long Run 

High 

Gray-

Level 

Emphasis 

(LRHGE) 

112.864

3 

33.7668

3 

101.082

5  

124.646

1 

125.650

1 
50.9695 

107.866

0  

143.434

2 

 

Direction = 90°, Distance = 1 

Gray-

Level 

Non-

uniformity 

(GLN) 

56.3050

7 

29.2149

4 

46.1115   

66.4986 

43.1525

4 

19.8852

2 

36.2143   

50.0908 

High 

Gray-

Level Run 

Emphasis 

(HGRE) 

32.7140

4 
14.3287 

27.7145   

37.7136 

39.1334

7 

18.0334

1 

32.8413   

45.4256 

Long Run 

High 

Gray-

Level 

Emphasis 

(LRHGE) 

177.443

3 

43.4053

8 

162.298

4  

192.588

2 

173.252

4 

57.6287

7 

153.144

8  

193.360

0 

Direction = 135°, Distance = 1  

Gray-

Level 

Non-

uniformity 

(GLN) 97.43459 39.39931 

83.6875  

111.1817 

71.60749 25.91095 

62.5667   

80.6482 

High 

Gray-

Level Run 

Emphasis 

(HGRE) 18.41801 7.973935 

15.6358   

21.2002 

22.07736 9.070759 

  18.9124   

25.2423 

Long Run 

High 

Gray-

Level 

Emphasis 

(LRHGE) 104.1605 27.8056 

94.4587  

113.8623 

98.91255 28.85089 

88.8460  

108.9791 

Table 2 Tabulated average and standard deviation feature values for normal 
IVD and abnormal IVD extracted from GLRLM 

 

The GLRLM features fed to the classifier where 

selected on the basis of the values of average, standard 
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deviation and the Confidence Interval at 95% of confidence 

level.   

It is obvious from the table 2 that the values of the 

average, standard deviation and Confidence Interval of both 

the normal and the abnormal classes are overlapping and the 

classification cannot be performed linearly. 

In this study we have used Receiver Operating 

Characteristic graph, i.e. ROC, as it has very extensive 

assessment capacity (r). ROC is a graph between sensitivity 

and 1-specificity, i.e. true positive fraction (TPF) as a function 

of false positive fraction.   

 

                  
Figure 5 a) ROC plot for GLRLM along four directions 

   

 
Figure 5 b) ROC plot for GLRLM along one directions 

 

The accuracy, specificity and sensitivity values are given in 

the table 3 below. 

 
TEXTURE 

FEATURES 

EXTRACTED 

DIRECTION SVM 

ACC SPEC SEN 

GLRLM (3 features) 0° 0.555 0.555 0.555 

GLRLM (3 features) 0°, 45°, 90°, 

135° 

0.8333 1 0.666 

Table 3 Accuracy, specificity and sensitivity values 

 In disc degeneration diagnosis, specificity is of more 
importance than sensitivity, i.e. the rate at which the cases 
without diseases are identified is of more importance than the 
rate of the diseased cases, and otherwise the patient may 
undergo unnecessary treatment procedure. 

VI. CONCLUSION 

In this study, I have analyzed the discriminative 

capability of GLRLM texture features for classifying normal 

intervertebral disc and degenerated intervertebral disc. Only 

three features selected on the bases of the average, standard 

deviation and the Confidence Interval at 95% of confidence 

level where fed to SVM classifier. The results obtained allow 

us to assert that the normal intervertebral discs and 

degenerated intervertebral discs correspond to different texture 

parameters. 
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