
Optimal Thresholds for Intrusion Detection Systems

Aron Laszka
University of California, Berkeley

laszka@berkeley.edu

Waseem Abbas
Vanderbilt University

waseem.abbas@vanderbilt.edu

S. Shankar Sastry
University of California, Berkeley

sastry@eecs.berkeley.edu

Yevgeniy Vorobeychik
Vanderbilt University

yevgeniy.vorobeychik@vanderbilt.edu

Xenofon Koutsoukos
Vanderbilt University

xenofon.koutsoukos@vanderbilt.edu

ABSTRACT
In recent years, we have seen a number of successful at-
tacks against high-profile targets, some of which have even
caused severe physical damage. These examples have shown
us that resourceful and determined attackers can penetrate
virtually any system, even those that are secured by the
“air-gap.” Consequently, in order to minimize the impact of
such attacks, defenders have to focus not only on strength-
ening the first lines of defense but also on deploying effec-
tive intrusion-detection systems. Intrusion-detection sys-
tems can play a key role in protecting sensitive computer
systems, as they give defenders a chance to detect and stop
attacks before they could cause substantial losses. However,
an over-sensitive intrusion-detection system, which produces
a large number of false alarms, imposes prohibitively high
operational costs on a defender since every alarm needs to
be manually investigated. Thus, defenders have to strike the
right balance between maximizing security and minimizing
costs. Optimizing the sensitivity of intrusion detection sys-
tems is especially challenging in the case when multiple in-
terdependent computer systems have to be defended against
a strategic attacker, who can target computer systems in
order to maximize losses and minimize the probability of
detection. We model this scenario as an attacker-defender
security game and study the problem of finding optimal in-
trusion detection thresholds.

CCS Concepts
•Security and privacy → Intrusion detection systems;
Economics of security and privacy; •Theory of compu-
tation → Algorithmic game theory and mechanism design;

Keywords
Intrusion detection system; game theory; economics of secu-
rity; Stackelberg equilibrium; computational complexity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotSoS’16 April 19–21, 2016, Pittsburgh, PA, USA
c© 2016 ACM. ISBN .

DOI:

1. INTRODUCTION
After successfully compromising a system, attackers often

aim to keep intrusions covert in order to benefit from the de-
fenders’ lack of awareness. For example, in cyber-espionage,
an attacker’s goal is to continue extracting secrets and cre-
dentials from its target, which is possible only as long as the
intrusion remains undetected. Stealthiness is also crucial to
attacking cyber-physical systems in which inalterable char-
acteristics of physical processes can prevent attackers from
causing damage immediately after compromising a system.
This delay enables defenders to detect and mitigate attacks
before the compromised systems suffer significant damage.

However, as attackers strive to be stealthy, security breach-
es can remain undetected for extended periods of time. For
example, the infamous Stuxnet worm reportedly ruined one-
fifth of Iran’s nuclear centrifuges by subtly increasing the
pressure on spinning centrifuges, while showing the control
room that everything was normal [13, 16, 14]. As another
example, the Maroochy Shire water-services incident lasted
several months and was discovered only by accident [2].

To detect stealthy attacks, defenders can deploy intru-
sion detection systems (IDS). An IDS can monitor a com-
puter system or network for signatures of known attacks
(e.g., known exploits) or for anomalies (i.e., suspicious ac-
tivities). For example, an IDS can monitor the system-call
traces of critical processes and look for abnormal sequences
of system calls, which may be the sign of an intrusion [12,
11]. When an IDS detects suspicious activity, it raises an
alarm, which can then be investigated by system operators
or security experts.

Unfortunately, practical intrusion detection systems are
imperfect. On the one hand, they cannot raise alarms for
attacks that do not result in sufficiently suspicious activity
and whose signatures are not known. On the other hand,
they might raise false alarms for unusual but non-malicious
activities. Consequently, the sensitivity of an IDS must be
carefully chosen, since too low sensitivity results in excessive
losses due to undetected attacks, while too high sensitivity
results in wasting resources on investigating false alarms. In
an anomaly-based IDS, sensitivity corresponds to a detec-
tion threshold : activities that are more suspicious than the
threshold result in an alarm, while activities that are less
suspicious do not.

Finding an optimal detection threshold can prove to be
a challenging problem even for a single IDS. However, this
problem is much more challenging when IDSes are deployed
on multiple computer systems that are independent from
a security point of view, but are interdependent with re-

spect to the damage that could be caused by compromising
them. For example, in spatially-distributed cyber-physical
systems, such electrical grids and water-distribution net-
works, multiple independent computer systems have control
over the same physical process. Since a strategic attacker
target will target a subset of these systems by taking into
account not only the damage that could be inflicted, but also
the probability of remaining undetected, detection thresh-
olds have to be chosen strategically.

In this paper, we study the problem of finding detection
thresholds for multiple IDSes in the face of strategic at-
tacks. 1 We model strategic (i.e., rational) attacks against
a set of computer systems that are equipped with IDSes as
a two-player game between a defender and an attacker. We
study the computational complexity of finding optimal at-
tacks and defenses (i.e., optimal detection thresholds) and
propose efficient heuristics. Finally, we compare our heuris-
tic IDS thresholds to two baselines using numerical examples
based on real-world intrusion detection data. The first base-
line, which we call locally optimal, is configuring each IDS
optimally but independently of the other IDSes. The sec-
ond baseline, which we call uniform, is configuring all the
IDSes in the same way, that is, having the same threshold.
Our numerical results show that our approach, which opti-
mizes multiple thresholds at the same time, outperforms the
baselines, which optimize only one threshold at a time.

The remainder of this paper is organized as follows. In
Section 2, we introduce our game-theoretic model and de-
fine optimal detection thresholds. In Section 3, we provide
theoretical results on our model, and we introduce heuris-
tic algorithms for finding attacks and detection thresholds.
In Section 4, we evaluate these algorithms using numerical
examples based on real-world intrusion detection data. In
Section 5, we discuss related work on intrusion detection
thresholds against strategic attacks. Finally, we offer con-
cluding remarks in Section 6.

2. MODEL
In this section, we introduce our game-theoretic model of

intrusion detection systems and strategic attacks. For a list
of symbols used in this paper, see Table 1.

Table 1: List of Symbols

Symbol Description

S set of computer systems to be defended

FPs(fs) false-positive rate for system s given that
its false-negative probability is fs

Cs cost of false alarms for system s

D(A) damage caused by an undetected attack
against the systems in A

L(f , A) defender’s loss for false-negative probabili-
ties f when the attacker targets A

P(f , A) attacker’s payoff for targeting A when the
false-negative probabilities are f

1Note that IDSes for distributed cyber-physical systems
pose other challenging problems as well, e.g., scheduling in-
trusion detection on resource-bounded devices [1]; however,
these problems are beyond the scope of this paper.

2.1 Intrusion Detection and Attacker Models
We assume that a defender has to protect a set of com-

puter systems S, each of which is equipped with a host-based
intrusion detection system (IDS). These IDSes are imperfect
in two ways: on the one hand, they might raise an alarm for
unusual but normal system behavior, which we call a false-
positive error ; on the other hand, they might fail to raise
an alarm when an attack did happen, which we call a false-
negative error. By changing the detection threshold of an
IDS, the defender can decrease the rate of false positives
and increase the probability of false negatives, or vice versa.

We represent the attainable false-positive rate and false-
negative probability pairs for system s ∈ S as a function
FPs : [0, 1] → R+, where FPs(fs) is the false-positive rate
when the false-negative probability is fs. We assume that
FPs is a decreasing function, which is indeed true for any
practical IDS. Consequently, we will use the terms“detection
threshold” and “false-negative probability” interchangeably.
Finally, we let vector f denote the false-negative probabili-
ties of all the systems.

When an IDS raises an alarm, the defender has to investi-
gate the system to determine whether an attack has actually
taken place. To perform an investigation of system s, the de-
fender has to spend resources (e.g., manpower), which cost
her Cs. Consequently, in order to attain false-negative prob-
ability fs for system s, the defender has to waste Cs ·FPs(fs)
on false positives.

We assume that the attacker is capable of mounting an
attack against an arbitrary subset of systems (e.g., she has
a zero-day vulnerability). The defender will detect and mit-
igate this attack if the IDS of at least one targeted system
raises an alarm. Hence, the probability that an attack tar-
geting a set A of systems will not be detected is

Pr[attack against set A is not detected]

= Pr

[∧
s∈A

attack against system s is not detected

]
(1)

=
∏
s∈A

Pr[attack against system s is not detected] (2)

=
∏
s∈A

fs. (3)

Finally, an undetected attack will enable the attacker to
cause D(A) damage, where D : S → R+ is a non-decreasing
submodular set function.

2.2 Attacker-Defender Game
Next, we formulate the conflict between the defender and

the attacker as a leader-follower game and define optimal
detection thresholds.

Strategic Choices.
The defender’s strategic choice is to select a false-negative

probability fs for each system s by setting the detection
threshold (i.e., sensitivity) of its IDS. Recall that the result-
ing false-positive rate for system s is FPs(fs). The attacker’s
strategic choice is to select a set A of systems to attack.

Defender’s Loss and Attacker’s Payoff.
When the defender selects false-negative probabilities f

and the attacker targets set A, the defender’s loss (i.e., in-

verse payoff) is

L(f , A) = D(A)
∏
s∈A

fs +
∑
s∈S

Cs · FPs(fs), (4)

that is, the expected amount of damage caused by unde-
tected attacks (i.e., false-negative errors) and the amount
of resources wasted on investigating false alarms (i.e., false-
positive errors).2

For the same strategies (f , A), the attacker’s payoff is

P(f , A) = D(A)
∏
s∈A

fs, (5)

that is, the attacker benefits from causing damage. The
rationale behind this payoff function is the assumption of a
worst-case attacker, whose goal is to maximize damage.

Best-Response Attack and Optimal Thresholds.
Following Kerckhoffs’s principle, we assume that the at-

tacker knows the defender’s algorithms, implementation, etc.
and can thus compute the defender’s strategy (i.e., the false-
negative probabilities chosen by the defender). Hence, the
attacker will play a best response to the defender’s strategy,
which is defined as follows.

Definition 1. The attacker’s strategy is a best response
if it maximizes the attacker’s payoff, taking the defender’s
strategy as given. Formally, an attack A is a best response
to a given defense strategy f if it maximizes P(f , A).

On the other hand, the defender cannot respond to the at-
tacker’s strategy, and must choose her strategy anticipating
that the attacker will play a best response. As is typical in
the security literature, we formulate the defender’s optimal
strategy using a refinement of subgame perfect equilibria,
called strong Stackelberg equilibria [15].

Definition 2. We call a defense strategy optimal if it mini-
mizes the defender’s loss given that the attacker always plays
a best response with tie-breaking in favor of the defender.
Formally, an optimal defense is

argmin
0≤f≤1,

A∈bestResponses(f)

L(f , A), (6)

where bestResponses(f) is the set of best-response attacks
against f .

Note that the effect of the tie-breaking rule is negligible
in practice, its sole purpose is to avoid pathological mathe-
matical cases where no optimal strategy would exist.

3. ANALYSIS
Now, we present theoretical results on our model. First,

we study best-response attacks in Section 3.1. Then, we
investigate optimal detection thresholds in Section 3.2.

3.1 Best-Response Attack
We begin our analysis by studying the computational com-

plexity of finding a best-response attack. To this end, we
formulate the problem of finding a best-response attack as
a decision problem.

2Note that we do not explicitly account for resources spent
on investigating actual attacks since the cost of these can be
incorporated into D.

Definition 3. Best-Response Attack Problem (Decision Ver-
sion) Given a set of computer systems S, false-negative
probabilities f , a polynomial-time damage function D, and
a threshold payoff P∗, determine whether there exists an at-
tack A ⊆ S that attains at least P∗ payoff for the attacker.

The following theorem establishes the computational com-
plexity of finding a best-response attack.

Theorem 1. Best-Response Attack Problem is NP-hard.

We prove the above theorem using a reduction from a
well-known NP-hard problem, the Maximum Independent
Set Problem.

Definition 4. Maximum Independent Set Problem (Deci-
sion Version) Given an undirected graph G = (V,E) and a
threshold cardinality k, determine whether there exists an
independent set of nodes (i.e., a set of nodes such that there
is no edge between any two nodes in the set) of cardinality k.

Proof. Given an instance of the Maximum Independent
Set Problem (MIS), that is, a graph G = (V,E) and a
threshold cardinality k, we construct an instance of the Best-
Response Attack Problem (BRA) as follows:

• Let the set of systems be S := V .

• Let the false-negative probability for every system s ∈
S be fs := e

−1
k .

• Let the damage function D be the following. First,
establish an arbitrary strict ordering of the set of sys-
tems S. Then, for any set A, let D be the number of
systems in A that are independent of the systems in A
that precede them.3

• Finally, let the threshold payoff be P∗ := k · e−1.

Clearly, the above reduction can be performed in poly-
nomial time. Furthermore it is also easy to verify that
the function D defined by the reduction is submodular and
polynomial-time computable. Hence, it remains to show
that the constructed instance of BRA has a solution if and
only if the given instance of MIS does.

First, suppose that MIS has a solution, that is, there exists
an independent set A of k nodes. We claim that the set A
is also a solution to BRA. Since A is independent, the value
of D(A) is equal to the number of systems is A, which is
equal to k. Consequently, we have

P(f , A) = D(A)
∏
s∈A

fs (7)

= k
∏
s∈A

e
−1
k (8)

= k · ek
−1
k (9)

= P∗, (10)

which proves that A is a solution to BRA.
Second, suppose that MIS has no solution, that is, every

set of at least k nodes is non-independent. Then, we have

3Note that this function can easily be computed in polyno-
mial time: iterate through the elements of set A according to
the ordering, and for each element, test for every preceding
element whether an edge exists in the graph.

that D(A) < k for every A; otherwise, there would exist a set
of at least k nodes in A that are independent of each other,
which would contradict our supposition. Now, we show that
for every A ⊆ S, P(f , A) < P∗. Firstly, for any A such that
|A| ≥ k, we have

P(f , A) = D(A)
∏
s∈A

fs (11)

< k
∏
s∈A

e
−1
k (12)

≤ k · ek
−1
k (13)

= P∗. (14)

Note that the inequality is strict. Secondly, for any A such
that |A| < k, we have

P(f , A) = D(A)
∏
s∈A

fs (15)

≤ |A|
∏
s∈A

e
−1
k (16)

= |A|e
−|A|

k . (17)

The first derivative of |A|e
−|A|

k with respect to |A| is

d

d|A| |A|e
−|A|

k = e
−|A|

k

(
1− 1

k
|A|
)
. (18)

It is easy to see from the above derivative that the maximum

of |A|e
−|A|

k is attained at |A| = k. Consequently, we have
that for any A such that |A| < k,

P(f , A) = |A|e
−|A|

k < k · e
−k
k = P∗. (19)

Since the inequality is again strict, we have that BRA cannot
have a solution, which concludes our proof.

As a consequence, unless P = NP, we cannot find a best-
response attack in polynomial time. To obtain a near best-
response attack, we propose the greedy approach outlined
in Algorithm 1. This algorithm starts with an empty set A,
and adds systems to the set iteratively. In each iteration,
the algorithm chooses an element from S \A that maximally
increases the attacker’s payoff. If no element increases the
attacker’s payoff, the algorithm terminates.

Algorithm 1 Greedy Attack

1: Input S,f ,D
2: Initialize: A← ∅, P ∗ ← 0
3: while doA 6= S
4: s← argmaxi∈S\A P(f , A ∪ {i})
5: if P(f , A ∪ {s}) > P ∗ then
6: A← A ∪ {s}
7: P ∗ = P(f,A)
8: else
9: return A

10: end if
11: end while
12: return A

Our numerical results show that the greedy algorithm
works exceptionally well in practice (see Section 4.2.2). How-
ever, in theory, the output of the greedy algorithm could be
arbitrarily worse than the best-response attack, as shown by
the following proposition.

Proposition 1. For any γ > 0, there exists an instance
of the Best-Response Attack Problem such that

P(f , AG)

P(f , A∗)
< γ (20)

where AG is the output of Algorithm 1 and A∗ is a best-
response attack.

Proof. Consider a set S = {1, 2, . . . , N,N + 1} with

fs =

{
1 if i = {1, . . . , N}
1/N if i = N + 1,

(21)

and for any A ∈ S, let D(A) =
∑
i∈A

vi, where

vi =

{
1 if i = {1, . . . , N}
N + 1 if i = N + 1.

(22)

The greedy approach (Algorithm 1) adds system (N +
1) to AG first, since this increases P to (N + 1)/N > 1,
while adding any other system would increase P to only 1.
Then, the algorithm adds all other systems to AG as well,
since each addition increase P by 1/N . Hence, the greedy
approach returns the set AG = S, for which the attacker’s
payoff is P(f , AG) = (2N + 1)/N = 2 + 1/N .

However, the best-response attack is set A∗ = {1, 2, . . . ,
N}, for which the attacker’s payoff is P(f , A∗) = N ·1 = N .
Hence, the ratio between the payoffs is

P(f , AG)

P(f , A∗)
=

2 + 1
N

N
<

2

N
. (23)

For any γ > 0, we can let N =
⌈

2
γ

⌉
, so that the ratio is

strictly less than γ.

Next, we introduce another linear-time greedy algorithm
for finding an attack, adapted from [5], in Algorithm 2. This
algorithm starts with two initial solutions, one containing
no element (X = ∅), and the other containing all elements
(Y = S). In each iteration, an element i ∈ S is either added
to X, or removed from Y , based on the marginal gains in
the attacker’s payoff due to adding or removing i. After |S|
iterations, the solutions, i.e. X and Y , coincide and a near
best-response attack is obtained. Similarly to the previous
heuristic, this algorithm also works quite well for practical
applications. In fact, it is shown in [5] that this deterministic
algorithm gives a 1/3-approximate solution if the objective
function is submodular. We note here that the attacker’s
payoff defined in Equation (5) is not submodular in general,
even if D(A) is submodular function of A.

Algorithm 2 Alternate Linear-Time Attack

1: Input S,f ,D
2: Initialize: X ← ∅, Y ← S,
3: Arrange elements of S in an arbitrary order
4: for i = 1 to |S| do
5: xi ← P(f , X ∪ {i}) − P(f , X)
6: yi ← P(f , Y ∪ {i}) − P(f , Y)
7: if xi ≥ yi then
8: X ← X ∪ {i}
9: else

10: Y ← Y \ {i}
11: end if
12: end for
13: A← X (or equivalently Y since X = Y)
14: return A

3.2 Optimal Detection Thresholds
Now, we study the problem of finding detection thresholds

for the defender. First, we provide a necessary condition on
the optimal detection thresholds.

Proposition 2. Let f be optimal false-negative probabil-
ities. Then, for every system s, there exists a set A such
that s ∈ A and A is a best response to f .

Proof. We prove the claim by contradiction. Suppose
that there exists an optimal f such that a system t is not tar-
geted by any best-response attack. Let P∗ be the attacker’s
payoff for a best response, and let A be a set that contains
t and maximizes the attacker’s payoff. Then, consider the
strategy f ′ in which ft is replaced by P∗

P(f ,A)
ft. Since FPt

is an increasing function, we have that
∑
t∈S Ct · FPt(ft) >∑

t∈S Ct · FPt(f
′
t), that is, the total cost of false positives is

lower for f ′ than for f . It is also easy to see that every best
response to f is also a best response to f ′. Consequently, the
expected amount of losses due to attacks cannot be higher
for f ′ than for f , which implies that the defender’s loss L is
lower for f ′ than for f . However, this contradicts our initial
assumption that f is optimal. Therefore, the original claim
must hold.

Next, we present an algorithm for finding detection thresh-
olds (i.e., false-negative probabilities). In Section 4, we will
compare our approach with the two baseline strategies: uni-
form and locally optimum thresholds. In the uniform strat-
egy, all systems are assigned the same false-negative prob-
ability, i.e. fs = f, ∀s ∈ S. The value of f is chosen so
that the defender’s loss (see Equation (4)) is minimized. In
the locally optimum strategy, for each system s, the false-
negative probability fs is individually optimized. That is,
for each system s, the false-negative probability fs is chosen
to minimize L(fs, {s}) = D({s})fs + Cs · FP (fs).

As an alternative to these baselines, we propose here an
algorithm based on a metaheuristic to find a strategy f that
outperforms both the uniform and locally optimum thresh-
old strategies. In particular, we use simulated annealing to
find a near-optimal solution f . The basic idea of this ap-
proach is to start with an arbitrary solution f , which we then
improve iteratively. In each iteration, we generate a new so-
lution f ′ in the neighborhood of f . If the new solution f ′ is
better in terms of minimizing the defender’s loss, then the
current solution is replaced with the new one. However, in
the case f ′ increases the defender’s loss, the new solution
replaces the current solution with only a small probability.
This probability depends on the difference between the two
solutions in terms of loss as well as a parameter commonly
referred to as the “temperature,” which is a decreasing func-
tion of the number of iterations. These random replacements
prevent the search from “getting stuck” in a local minimum.
The algorithm is presented below as Algorithm 3.

In Algorithm 3, Perturb(f , k) defines the neighborhood
of f in the kth iteration, from which f ′ is randomly chosen.
More precisely, in our algorithm, Perturb(f , k) means that
each fs in f is replaced by f ′s = fs + ∆fs. Here, for each
s ∈ S, ∆fs is randomly picked from the uniform distribu-

tion over
[
−α

(
kmax−k
kmax

)
, α
(
kmax−k
kmax

)]
for some α ∈ (0 1).

Moreover, since f ′s is a probability, we replace it with 0
if f ′s < 0, and replace it with 1 if f ′s > 1. Similarly,
Best Response Attack(f) is a routine that computes the at-
tacker’s best response for a given f , such as Algorithms 1 or

Algorithm 3 Simulated Annealing Algorithm for Defender

1: Input S, D, C, kmax

2: Initialize: f , k ← 1, T0, β
3: A← Best Response Attack(f)
4: L← L(f , A)
5: while k ≤ kmax do
6: f ′ ← Perturb(f , k)
7: A′ ← Best Response Attack(f ′)
8: L′ ← L(f ′, A′)

9: c← e(L
′−L)/T

10: if (L′ < L) ∨ (rand(0, 1) ≤ c) then
11: f ← f ′, L← L′

12: end if
13: T ← T0 · e−βk
14: k ← k + 1
15: end while
16: return f

2. In line 13, T is decreasing exponentially with k. We men-
tion here that T could be a linear (or some other) decreasing
function of k, but for our application, the exponential func-
tion with small values of β (e.g., 10−3 for kmax = 104) works
quite well. Finally, we note that a simpler algorithm could
also be obtained, in which f is updated with f ′ in each it-
eration only if f ′ is strictly better than f . This heuristic
search, commonly known as hill climbing, also works well
for our problem; however, Algorithm 3 gives better results.

4. NUMERICAL ILLUSTRATION
In this section, we evaluate our approach numerically us-

ing an IDS based on a real-world dataset and two example
instances of our model. Please note that the goal of this
effort is not to devise an IDS that performs better than ex-
isting ones, since our model assumes that the IDS (with the
attainable false-positive rates and false-negative probabili-
ties) is given. In other words, the IDS presented below serves
only the purpose of comparing different threshold strategies.

4.1 Intrusion Detection Dataset
We used the ADFA-LD intrusion detection dataset to train

and evaluate a host-based IDS [7, 8, 6]. The ADFA-LD
dataset is a publicly available collection of system-call traces,
which are representative of modern attack structure and
methodology, as well as normal system behavior. The dataset
consists of three subsets:

• Training data: 833 traces of system calls collected dur-
ing normal operation, with activities ranging from web
browsing to LaTeX document preparation.

• Normal data for validation: 4373 traces of system calls
collected the same way as the training data.

• Attack data for validation: 747 traces of system calls
collected from various attacks, ranging from exploit-
ing a PHP remote-file inclusion vulnerability to brute-
forcing passwords for an SSH service.

Using the ADFA-LD dataset, we trained an IDS based on
a simple variant of the approach proposed by Hofmeyr et
al. [12]. First, we extracted short, fixed-length sequences of
system calls from the training data by sliding a fixed-length
window over the system-call traces. Then, we discarded all

duplicate sequences, and used the unique sequences from
the training data to define the set of normal sequences. Fi-
nally, for each system-call trace in the validation sets, we
extracted fixed-length sequences of system calls by again
sliding a window over the trace, and calculated the ratio of
sequences that were abnormal (i..e, sequences that did not
appear in the set of normal sequences). If the ratio of abnor-
mal sequences was over a detection threshold, we reported
the trace as an attack; otherwise, we reported it as normal
behavior. By varying the detection threshold, we could at-
tain various false-positive and false-negative error rates.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

FN

F
P

Sequence length = 4

Sequence length = 5

Sequence length = 6

Sequence length = 7

Figure 1: Trade-off between false-negative and false-
positive errors in the ADFA-LD dataset for various
system-call sequence lengths.

Figure 1 shows the attainable false-positive and false-neg-
ative error rates (i.e., fractions of misreported normal and
attack traces, respectively) of the IDS for various sequence
lengths. The error rates are higher than for IDSes based on
more sophisticated algorithms; however, they are compara-
ble [8]. Since our goal is not to devise a novel IDS, but to
study the choice of detection thresholds, the curves shown
in Figure 1 are suitable for our numerical illustrations. Note
that we do not consider sequences longer than 7 because
they lead to negligible improvement over shorter sequences.

4.2 Example Systems
Now, we compare the detection thresholds obtained from

our approach (Algorithm 3) with the näıve baselines, uni-
form and locally optimum thresholds, using two examples.

4.2.1 Basic Example
First, we study a basic example, which consists of only

three computer systems. In this example, we instantiate
our model as follows:
• S = {a, b, c},
• D(A) = 1{a∈A∨b∈A} + 2{a∈A∨c∈A} + 4{b∈A∨c∈A},

where xcondition is equal to x if the condition holds and zero
otherwise. Since this example consists of only three systems,
we can find the best-response attack for any f using an
exhaustive search.

Figure 2 shows the defender’s loss in Algorithm 3 as a
function of the number of iterations. Note that in Figures 2

0 1,000 2,000 3,000

2

3

4

5

Iterations k

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 4

0 1,000 2,000 3,000

2

3

4

5

Iterations k

Sequence length = 5

0 1,000 2,000 3,000
1

2

3

Iterations k

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 6

0 1,000 2,000 3,000
1

2

3

Iterations k

Sequence length = 7

Figure 2: Defender’s loss in Algorithm 3 as a func-
tion of the number of iterations in the basic example
for IDSes based on various sequence lengths.

and 3, we let Cs = 1 for every s ∈ S. We can see that there
is practically no improvement in loss after 2,000 iterations,
which suggests that the solutions are very close to optimal.

0 0.2 0.4
1

2

3

4

FN probability f

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 4

0 0.2 0.4
1

2

3

4

FN probability f

Sequence length = 5

0 0.2 0.4
1

2

3

4

FN probability f

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 6

0 0.2 0.4
1

2

3

4

FN probability f

Sequence length = 7

Figure 3: Defender’s loss with uniform strategy as a
function of false-negative probability in the basic ex-
ample for IDSes based on various sequence lengths.

Figure 3 shows the defender’s loss with the uniform strat-
egy as a function of the false-negative probability f . We
can see that even the best uniform strategies perform sig-

nificantly worse than the strategies found by Algorithm 3,
whose loss values are marked by the dashed lines. More
specifically, the defender’s loss is at least 8% higher for the
best uniform strategy than for the output of Algorithm 3.

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

Cost of false alarms Cs

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 6

Locally optimal

Uniform

Algorithm 3

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

Cost of false alarms Cs

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 7

Figure 4: Defender’s loss using three different
strategies (uniform, locally optimal, and Algo-
rithm 3) as a function of the cost of false alarms
in the basic example for IDSes based on various se-
quence lengths.

Finally, Figure 4 compares the loss values of uniform strate-
gies, locally optimal strategies, and the strategies found by
Algorithm 3. We can see that the strategies found by our
approach perform substantially better than the baselines.

4.2.2 Water Distribution Network
We consider the example of water distribution networks,

in which pressure sensors are deployed at various nodes (rep-
resenting junctions of pipes) to detect changes in pressure
owing to pipe leakages and bursts. An attacker may com-
promise a subset of sensors and alter their true observations.
Altering observations enables the attacker to suppress the
detection of failures (i.e., pipe bursts), which can result in
physical damage and monetary losses, or to fake failures,
which can lead to the wastage of resources. To detect in-

trusions, host-based intrusion detection systems can be in-
stalled on the nodes containing pressure sensing devices.

In the distance based threshold model used in the context
of sensor placement in water networks [9], the network is rep-
resented as a graph, in which nodes correspond to junctions
of pipes and links correspond to pipes between junctions. In
this model, a sensor deployed at a node can detect the burst
of pipes that are at most D distance away from the sensor.
The distance between a node and a link is defined as fol-
lows: if the link is connected to the node, their distance is 1;
otherwise, their distance is 1 plus the length of the shortest
path to the node from the end of the link which is closer
to the node. In our example, we assume D = 3, that is,
sensors can detect bursts that are at a distance of at most
three from the sensor.

Figure 5: Example water distribution network.
Nodes with sensors are highlighted.

In Figure 5, we present a benchmark water distribution
network from [19] containing 126 nodes, 168 pipes, one reser-
voir, one pump, and one storage tank. In our example, sen-
sors at 18 nodes (which are highlighted in the figure) are
sufficient to monitor all the pipes. In the case of an attack
against a subset A of sensor nodes, correct monitoring of a
portion of the network could be compromised. More pre-
cisely, pipes that are monitored by the attacked sensors A
could not be observed correctly by the sensors in A. We mea-
sure the severity of the attack (i.e., D(A)) using the number
of pipes whose monitoring is compromised. Formally, we let
• S: set of sensor nodes that need to be defended,
• D(A): number of pipes (links) that are monitored by

the sensors in A ⊆ S,
• Cs: cost of investigating a false alarm on sensor s.

We note here that since D is a coverage function, it is
submodular (as we assume in our model in Section 2).

Greedy Attack.
Since the number of systems is higher in this example, we

have to use a heuristic algorithm to find an attack instead of
an exhaustive search. Here, we demonstrate that the greedy
approach presented in Algorithm 1 works well in practice.
For this purpose, given some n ∈ {2, 3, · · · , 10}, we select a
set S of n sensors in a greedy manner such that they monitor
the maximal number of links in the network.

First, we set a uniform false-negative probability for all

Table 2: Comparison Between Best-Response At-
tacks and the Output of Algorithm 1

n Fraction of instances
where greedy and best-
response payoffs are equal

Worst case ratio
between greedy and
best-response payoffs

2 100% 100%

3 99.9% 97.99%

4 99.5% 93.41%

5 98.2% 86.03%

6 98.1% 85.62%

7 96.1% 75.27%

8 94.9% 82.72%

9 95.2% 82.7%

10 95.7% 77.32%

of the n IDSes. Then, we compute the best-response attack
using exhaustive search and compare it with the output of
Algorithm 1. We find that for every n, the best-response
and greedy attacks’ payoffs are exactly the same.

Second, we repeat the same steps, but instead of selecting
uniform false-negative probabilities, we pick random f . In
particular, for each n ∈ {2, 3, · · · , 10}, we generate 1000 in-
stances and compute the best-response and greedy attacks’
payoffs for each instance. The results are summarized in
Table 2. Again, we observe that for each n, the greedy pay-
off is equal to the best-response payoff for an overwhelming
majority of the instances.

Detection Thresholds.
Next, for the problem of finding detection thresholds, we

assume that 18 sensors are deployed in the network to mon-
itor all of the links, and IDSes are deployed on all the nodes
with sensors. As before, the objective is to select the thresh-
olds (i.e., false-negative probabilities) of these IDSes to mini-
mize the defender’s loss as defined in Equation (4), assuming
that the attacker will respond using a greedy attack.

Figure 6 shows the defender’s loss in Algorithm 3 as a
function of the number of iterations. Note that in Figures 6
and 7, we assume the cost of false alarms to be 1 for every
sensor (i.e., Cs = 1).

Figure 7 shows the defender’s loss with uniform strategies
as a function of the false-negative probability f . The dashed
line in each plot marks the minimal loss achieved using Al-
gorithm 3. We can see that in every case, the defender’s loss
with the uniform strategy is at least 18% higher than using
the strategy output by Algorithm 3.

Finally, Figure 8 shows a comparison between the näıve
strategies and our approach (Algorithm 3) in terms of the
defender’s loss. We see that our approach clearly outperfs
both the uniform and the locally optimal strategies for all
values of Cs.

5. RELATED WORK
The problem of setting the sensitivity of an IDS in the

presence of strategic attackers has been studied in a vari-
ety of different ways in the academic literature. However, to
the best of our knowledge, prior work has not considered the
problem of simultaneously setting the sensitivity of multiple
IDSes that monitor separate but interdependent computer
systems. For example, Alpcan and Basar study distributed

0 0.5 1

·104

10

15

20

Iterations k

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 4

0 0.5 1

·104

10

15

Iterations k

Sequence length = 5

0 0.5 1

·104

10

15

20

Iterations k

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 6

0 0.5 1

·104

10

15

Iterations k

Sequence length = 7

Figure 6: Defender’s loss in Algorithm 3 as a
function of the number of iterations in the water-
distribution network for IDSes based on various se-
quence lengths.

0 0.2 0.4 0.6
5

10

15

20

FN probability f

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 4

0 0.2 0.4 0.6
5

10

15

20

FN probability f

Sequence length = 5

0 0.2 0.4 0.6
5

10

15

20

FN probability f

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 6

0 0.2 0.4 0.6
5

10

15

20

FN probability f

Sequence length = 7

Figure 7: Defender’s loss with uniform strategy as
a function of false-negative probability in the water-
distribution network for IDSes based on various se-
quence lengths.

intrusion detection in access control systems as a security
game between an attacker and an IDS, using a model that
captures the imperfect flow of information from the attacker
to the IDS through a network [3, 4]. The authors investi-

2 4 6

10

20

30

Cost of false alarms Cs

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 6

Locally optimal

Uniform

Algorithm 3

2 4 6

10

20

30

Cost of false alarms Cs

D
ef
en

d
er
’s

lo
ss
L

Sequence length = 7

Figure 8: Defender’s loss using three different
strategies (uniform, locally optimal, and Algo-
rithm 3) as a function of the cost of false alarms
in the water-distribution network for IDSes based
on various sequence lengths.

gate the existence of a unique Nash equilibrium and best-
response strategies under specific cost functions, and analyze
long-term interactions using repeated games and a dynamic
model. As another example, Dritsoula et al. consider the
problem of setting a threshold for classifying an attacker into
one of two categories, spammer and spy, based on its intru-
sion attempts [10]. They give a characterization of the Nash
equilibria in mixed strategies, and show that the equilibria
can be computed in polynomial time. More recently, Lisỳ
et al. study randomized detection thresholds using a general
model of adversarial classification, which can be applied to
e-mail filtering, intrusion detection, steganalysis, etc. [18].
The authors analyze both Nash and Stackelberg equilibria
based on the true-positive to false-positive curve of the clas-
sifier, and find that randomizing the detection threshold may
force a strategic attacker to design less efficient attacks.

The strategic selection of thresholds for filtering spear-
phishing and other malicious e-mail is also closely related to
the problem considered in this paper. Laszka et al. study

a single defender who has to protect multiple users against
targeted and non-targeted malicious e-mail [17]. The au-
thors focus on characterizing and computing optimal filter-
ing thresholds, and they use numerical results to demon-
strate that optimal thresholds can lead to substantially lower
losses than näıve ones. Zhao et al. study a variant of the pre-
vious model: they assume that the attacker can mount an
arbitrary number of costly spear-phishing attacks in order
to learn a secret, which is known only by a subset of the
users [20, 21]. They also focus on the computational aspects
of finding optimal filtering thresholds; however, their vari-
ant of the model does not capture non-targeted malicious
e-mails, such as spam.

6. CONCLUSION
Intrusion detection systems play a key role in securing

computer systems against stealthy attacks. In this context,
optimizing the sensitivity of IDSes by tuning their detec-
tion thresholds is crucial to maximizing security while min-
imizing costs, which might be incurred as a consequence of
raising false alarms or ignoring actual attacks. In this direc-
tion, we modeled strategic attacks and optimal intrusion de-
tection strategies using the game-theory nomenclature. We
then proposed heuristic algorithms to find strategic attacks
and to select detection thresholds for IDSes. Using a ba-
sic example as well as a case study of a water distribution
network, we compared our algorithm for selecting detection
thresholds with the two baseline strategies, optimal uniform
strategy and locally optimal strategy. The numerical results
showed that our approach outperforms the baseline strate-
gies in terms of minimizing the defender’s overall losses.

In future work, we aim to extend this work by consider-
ing other classes of damage functions, such as supermodular
and additive functions, to accommodate a wider variety of
applications. Another direction we wish to pursue is to ex-
ploit the application-specific characteristics of the systems to
optimize the deployment of IDSes and tune their detection
thresholds to maximize security while minimizing losses.

7. REFERENCES
[1] W. Abbas, A. Laszka, Y. Vorobeychik, and

X. Koutsoukos. Scheduling intrusion detection systems
in resource-bounded cyber-physical systems. In
Proceedings of the 1st ACM Workshop on
Cyber-Physical Systems Security and Privacy
(CPS-SPC), pages 55–66, October 2015.

[2] M. Abrams and J. Weiss. Malicious control system
cyber security attack case study – Maroochy Water
Services, Australia. http:
//csrc.nist.gov/groups/SMA/fisma/ics/documents/
Maroochy-Water-Services-Case-Study report.pdf, Jul
2008.

[3] T. Alpcan and T. Basar. A game theoretic approach
to decision and analysis in network intrusion
detection. In Proceedings of the 42nd IEEE
Conference on Decision and Control (CDC),
volume 3, pages 2595–2600. IEEE, 2003.

[4] T. Alpcan and T. Başar. A game theoretic analysis of
intrusion detection in access control systems. In
Proceedings of the 43rd IEEE Conference on Decision
and Control (CDC), volume 2, pages 1568–1573.
IEEE, 2004.

http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf
http://csrc.nist.gov/groups/SMA/fisma/ics/documents/Maroochy-Water-Services-Case-Study_report.pdf

[5] N. Buchbinder, M. Feldman, J. S. Naor, and
R. Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. SIAM
Journal on Computing, 44(5):1384–1402, 2015.

[6] G. Creech. Developing a high-accuracy cross platform
Host-Based Intrusion Detection System capable of
reliably detecting zero-day attacks. PhD thesis,
University of New South Wales, 2014.

[7] G. Creech and J. Hu. Generation of a new IDS test
dataset: Time to retire the KDD collection. In
Proceedings of the 2013 IEEE Wireless
Communications and Networking Conference
(WCNC), pages 4487–4492, 2013.

[8] G. Creech and J. Hu. A semantic approach to
host-based intrusion detection systems using
contiguousand discontiguous system call patterns.
IEEE Transactions on Computers, 63(4):807–819,
2014.

[9] A. Deshpande, S. E. Sarma, K. Youcef-Toumi, and
S. Mekid. Optimal coverage of an infrastructure
network using sensors with distance-decaying sensing
quality. Automatica, 49(11):3351–3358, 2013.

[10] L. Dritsoula, P. Loiseau, and J. Musacchio. Computing
the Nash equilibria of intruder classification games. In
Proceedings of the 3rd International Conference on
Decision and Game Theory for Security (GameSec),
pages 78–97. Springer, Nov 2012.

[11] S. Forrest, S. Hofmeyr, and A. Somayaji. The
evolution of system-call monitoring. In Proceedings of
the 24th Annual Computer Security Applications
Conference (ACSAC), pages 418–430, 2008.

[12] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 6(3):151–180, 1998.

[13] Kaspersky Lab. Kaspersky Lab provides its insights
on Stuxnet worm. http://www.kaspersky.com/about/
news/virus/2010/Kaspersky Lab provides its insights
on Stuxnet worm, Sep 2010. Accessed: January 20th,
2016.

[14] M. B. Kelley. The Stuxnet attack on Iran’s nuclear
plant was ‘far more dangerous’ than previously
thought. Business Insider,
http://www.businessinsider.com/
stuxnet-was-far-more-dangerous-than-previous-thought-2013-11,
Nov 2013. Accessed: June 21st, 2015.

[15] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in security games:
An extended investigation of interchangeability,
equivalence, and uniqueness. Journal of Artificial
Intelligence Research, 41(2):297–327, 2011.

[16] D. Kushner. The real story of Stuxnet. IEEE
Spectrum, 50(3):48–53, 2013.

[17] A. Laszka, Y. Vorobeychik, and X. Koutsoukos.
Optimal personalized filtering against spear-phishing
attacks. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI), pages 958–964, Jan
2015.

[18] V. Lisỳ, R. Kessl, and T. Pevnỳ. Randomized
operating point selection in adversarial classification.
In Proceedings of the 2014 European Conference on
Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD),

Part II, pages 240–255. Springer, Sep 2014.

[19] A. Ostfeld, J. G. Uber, E. Salomons, J. W. Berry,
W. E. Hart, C. A. Phillips, J.-P. Watson, G. Dorini,
P. Jonkergouw, Z. Kapelan, et al. The battle of the
water sensor networks (bwsn): A design challenge for
engineers and algorithms. Journal of Water Resources
Planning and Management, 134(6):556–568, 2008.

[20] M. Zhao, B. An, and C. Kiekintveld. An initial study
on personalized filtering thresholds in defending
sequential spear phishing attacks. In Proceedings of
the 2015 IJCAI Workshop on Behavioral, Economic
and Computational Intelligence for Security, Jul 2015.

[21] M. Zhao, B. An, and C. Kiekintveld. Optimizing
personalized email filtering thresholds to mitigate
sequential spear phishing attacks. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence
(AAAI), Feb 2016.

http://www.kaspersky.com/about/news/virus/2010/Kaspersky_Lab_provides_its_insights_on_Stuxnet_worm
http://www.kaspersky.com/about/news/virus/2010/Kaspersky_Lab_provides_its_insights_on_Stuxnet_worm
http://www.kaspersky.com/about/news/virus/2010/Kaspersky_Lab_provides_its_insights_on_Stuxnet_worm
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11

	Introduction
	Model
	Intrusion Detection and Attacker Models
	Attacker-Defender Game

	Analysis
	Best-Response Attack
	Optimal Detection Thresholds

	Numerical Illustration
	Intrusion Detection Dataset
	Example Systems
	Basic Example
	Water Distribution Network

	Related Work
	Conclusion
	References

