
IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 103 | P a g e

Enhanced Code Clone Detection and Analysis using Neural

Network Algorithm
Jagjit Singh1, Sukhpreet Kaur2

1M.Tech (Scholar), 2Assistant Professor

Department of computer science & engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib,

Punjab

Abstract - Duplicated code proves easy and cheap during

the software development phase, but it makes software

maintenance much harder. Software clone has a number of

negative effects on the quality of the software. So there is a

need to detect the clones to figure out the problems and to

help better software understandability and maintenance. This

paper propose a hybrid method that combines neural network

with metric based method to yield structurally meaningful

near-miss clones and implemented using MATLAB. It is a

new clone detection method that has been shown to yield get
high precision and high recall in detecting near-miss

intentional clones.

Keywords - Code Cloning, Similarity, Neural Network,

and Metric based Functions.

I. INTRODUCTION

Reusing of code with minor changes is common thing in

today’s era in software Development Company [1, 2, 3]. As a
result a software consists of various fragments that are very

similar to each other. From previous results it has been shown

that from 7% to 20% it has been seen that code cloning has

been done on the code. Code cloning is always intentional and

there are numerous ways of doing code cloning [4, 5]. Code

cloning also leads to difficulty in code maintenance. Duplicate

code also leads to complexity when some enhancement or

modification is going to be done [6]. Code detection is very

important in software industry due to following reasons:

 Plagiarism detection

 Code mining

 Copyright Protection and ;

 Code Compaction

Over the last years many techniques has been

recommended for code cloning [7, 8, 9]. In this paper, code

cloning optimization will be done using neural network

algorithm in addition with metrics based technique to enhance

the accuracy of code cloning system. This algorithm will find

out various types of code like type-1, type-2 etc. [10]. The

remainder of the paper is organized as Section 2, 3 will

discuss the proposed techniques basic concept. Section 4 will

discuss the proposed work methodology. Section 5 contains
the results and analysis. Finally section 6 contains the

conclusion.

II. METRIC BASED TECHNIQUE

In metric based method, various metrics are used to find
code clones to find the actual quantity of clones [11]. These

metrics are related to each other on the basis of code class,

function, method etc. The source code is mainly parsed into

tree to get the maximum number of software metrics. There

are several metrics that has been used to analyze code cloning.

Various available metrics are Lines of Code (LOC) metric,

CBO (Coupling between Object classes). In addition to this

there are more metrics that has can be used for code cloning as

shown below:

III. NEURAL NETWORK (NN)

 LOC (Lines of Code) calculates the lines of code of a specified unit.

 NOM (Number of Methods) calculates the methods in a class.

 LCOM-CK (Lack of Cohesion of Methods) describes the lack of cohesion between the methods of a class.

 CBO (Coupling between Object classes) gives the number of classes to which a class is coupled.

 NOC (Number of Children) is the number of subclasses to a certain class in its block.

 RFC (Response for a Class) reflects the number of methods which can executed in response to an object of the

class.

 DIT (Depth of Inheritance Tree) represents the maximum inheritance path from the class to the main root

class.

 WMC (Weighted Methods per Class) it is the total of weights for the methods of a class.

 LCOM-HS (Lack of Cohesion of Methods, proposed by Henderson-Sellers) describes the lack of cohesion

between the methods of a class.

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 104 | P a g e

A typical neural network consists of various number of

neurons called units that are arranges in form of layers and

each of which is connected to next layer via layers. Neural

network mainly used for training. Usually, BPNN is used for

solving many problems by using the simple output elements

[13]. It is the mostly used learning algorithm in the neural
network. BPNN is used with fuzzy encoder for understanding

the human like reasoning activities of the fuzzy logic system.

BPNN consists of three layers that are: Input layer, Hidden

layer and the output layer. The basic use of training the BPNN

is for adjusting the weights among the layers for producing the

expected output. The activation function of the hidden and the

output layer with the sigmoid function and is given by:

𝑓(𝑥) =
1

1 + 𝑒−𝑥

The value ranges from 0 to 1 for every unit range.

Fig.1: Neural Network Working Model

IV. CLONE DETECTION

Cloning mainly occurs because programmers find that it is

cheaper and quicker to use the copy and paste feature than

writing the code from scratch [14,15]. Sometimes

programmers intent on implementing new functionality find

some working code that performs a computation nearly

identical to the one desired copy it entirely and then modify in

place. Thus it is very important to understand the meaning of

code cloning and various terms related to it [16].

4.1 Clone Relation Terms

Clone is mainly find out from main class or clone class.

These mainly focus on similarity between two classes and

their relation can be described on the basis of relations (i.e., a

reflexive, transitive, and symmetric relation).

 Clone Pair: Two fragments are considered to be clone

pair if two classes have some same properties. E.g. there

are two code fragments ; fragment 1 & fragment 2so now

it can be represented as:

(𝐺1(𝑎), 𝐺2(𝑎)), (𝐺1(𝑏), 𝐺2(𝑏))

If we assume to extend the granularity size of cloned

fragments, we get basically two clone pairs,

(𝐺1(𝑎 + 𝑏), 𝐺2(𝑎 + 𝑏))
And if we consider the granularity not to

(𝐺1(𝑎), 𝐺2(𝑎)), (𝐺1(𝑏), 𝐺2(𝑏)), (𝐺1(𝑎 + 𝑏), 𝐺2(𝑎 + 𝑏)) ;
Each of these fragments is termed as a simple clone.

 Clone Class: It is the maximum of sets that contains

similar data in same class. We get a clone class of

(𝐺1(𝑏), 𝐺2(𝑏)) where the three code portions

𝐺1(𝑏), 𝐺2(𝑏) form clone pairs with each other

(𝐺1(𝑏), 𝐺2(𝑏)), (𝐺2(𝑏), 𝐺3(𝑎)) and (𝐹1(𝑏), 𝐹3(𝑎)) res

ult in three clone pairs.

 Clone Communities: it is termed as clone communities

that have maximum aggregation of similar data.

 Clone Class Family: It is the class of clones that have

similar data domain.

V. PROPOSED WORK

5.1 Implemented Metrics

Below Figure shows some of these metrics that has been

proposed in our work.

Fig.2: Various proposed metrics

Clone detection is concerned with finding similar pattern

in source code, interpreting and using them in design, testing

and other software engineering problems [17,18,19]. They can
be based on text, lexical or syntactic structure, or semantics. A

piece of code, A, is semantically similar to another piece of

code, B, if B subsumes the functionality of A, in other words,

they have “similar” condition. Duplicated fragments will be

significantly increase the work to be done when enhancing or

adapting code, and increases the maintenance cost.

5.2 Methodology

In this work NN and metric based approach will be used

for clone detection. The whole implementation will take place

in following manner:

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 105 | P a g e

1. Input data

2. Apply Metric based method to get features extraction. Clone

detection first parses the source code and then performs the

program analysis on the parsed code. All similar code

segments are identified and then inconsistency detection is

performed. The entire procedure is executed and the results
are stored in database. As first part of the analysis through

parsing of source code, they find the similarity and in the

second phase the metrics are calculated and finally they are

detected.

In textual analysis all types of codes fragments are

detected. Each metrics values are stored in a particular

database. The input source is identified using metrics and the

similarities of code are detected. The metrics values the

possible potential clone pairs are extracted. The metrics are

computed for each of the methods identified and the values

are stored in the database. The various metric values for the

code fragment. The descriptive statistics of the metric values
obtained for the various methods. While computed metrics

values, the method pairs with equal or similar set of values are

identified by comparison of the records in the database. In

proposed method various metrics has been taken like Public

Variables, Private Variables, No. of variables, Function

Overloading, No. of functions. Metrics are calculated from

names, layout, and expression and (simple) control flow of

functions and clones is defined as a pair of whole function

bodies with similar metrics values

3. After feature extraction, next step will be the classification of

code clones using Neural Network. For the prediction of code
clone, data is collected and normalized. Then a single layer

perception neural network is created and trained with the

given dataset. After training, the network is tested using the

testing dataset and it predicts whether the software project

classes have the code clones or not.

4. Now we test and validate the neural network implementation

using FAR, FRR, Precision, Recall and accuracy parameter.

5.3 Work Model

Fig.3: Proposed Flowchart

5.4 Algorithm

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 106 | P a g e

VI. RESULTS AND DISCUSSION

a. Analysis

Below figures represent the code cloning analysis using

proposed technique in MATLAB 2010a. Clone cloning was

estimated for 3 code clone manuals. Three clone pairs were

rated for different manuals named as software manual-1,
software manual-2, and software manual-3 in terms of

accuracy.

Fig.4: Software 1 Manual (Accuracy)

This work proposed a technique to detect tree types of

clones in software. Through an empirical study on a dataset

that includes over code lines, they revealed that approximately

95% code clones are found to be of type-1, for type-2 it has

found to be 96.7% and for type-3 it has found to be 97% using

proposed algorithm. Below table shows the empirical obtained

values for proposed as well as traditional manual method of

finding code clones in the software.

Table 1: Software 1 Manual Accuracy

CATEGORY
SOFTWARE 1 MANUAL

(ACCURACY)

SOFTWARE

(ACCURACY)

TYPE 1 99 95

TYPE 2 98.7 96.7

TYPE 3 98.8 97

Fig.5: Software 2 Manual(Accuracy)

A clone detector algorithm must try to find pieces of code

of high similarity in a system’s source text. The main problem

is that it is not known beforehand which code fragments may

be repeated. Above figure shows the accuracy for code

detection in software manual-2 and it has been shown that

approximately 97% code clones are found to be of type-1, for
type-2 it has found to be 96.7% and for type-3 it has found to

be 98% using proposed algorithm. Below table shows the

empirical obtained values for proposed as well as traditional

manual method of finding code clones in the software.

Table 2: Software 2 Manual Accuracy

CATEGORY
SOFTWARE 2 MANNUAL

(ACCURACY)

SOFTWARE

(ACCURACY)

TYPE 1 98 97.2

TYPE 2 99 96.8

TYPE 3 98.3 98

Fig.5: Software 3 Manual (Accuracy)

Above figure shows that after extracting the original

source code, clones are subjected to a manual analysis where

false positive clones are filtered out by a human expert as well

as automatically and it has been found out that 97% code

clones are found to be of type-1, for type-2 it has found to be

97.7% and for type-3 it has found to be 98% using proposed
algorithm. Below table shows the empirical obtained values

for proposed as well as traditional manual method of finding

code clones in the software.

Table 3: Software 3 Manual Accuracy

CATEGORY SOFTWARE 3

MANNUAL(ACCURACY)

SOFTWARE

(ACCURACY)

TYPE 1 97.5 97

TYPE 2 98.3 97.9

TYPE 3 99 98.3

92

94

96

98

100

TYPE 1 TYPE 2 TYPE 3

SOFTWARE 1 MANUAL (ACCURACY)

SOFTWARE(ACCURACY)

95

96

97

98

99

100

TYPE 1 TYPE 2 TYPE 3

SOFTWARE 2 MANNUAL(ACCURACY)

SOFTWARE(ACCURACY)

96

96.5

97

97.5

98

98.5

99

99.5

TYPE 1 TYPE 2 TYPE 3

SOFTWARE 3 MANNUAL(ACCURACY)

SOFTWARE(ACCURACY)

IJRECE VOL. 4 ISSUE 2 APR.-JUNE 2016 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 107 | P a g e

VII. CONCLUSION AND FUTURE SCOPE

Cloning of code has become one of the easiest ways to

complete a project, who does not want to invest their time on

doing programming their project. It’s a loss for those who

really works hard for the project coding. The date no such

method has present who can evaluate the cloning for several
languages with one piece of code. The purpose research work

has overcome the drawbacks of the previous attempts by

removing the bar of the language which follows the

architecture of C++. The results have been verified using

FEED FORWARD BACK PROPOGATION NEURAL

NETWORK over the metrics. A successful accuracy of 97.9%

have been achieved. Through the current research quite

effective, but still there is a scope of improvement in it. The

future research workers may try their hand in enhancing the

current algorithm for NON OBJECT ORIENTED

PROGRAMMING architecture.

VIII. REFERENCES

[1] R. Koschke, Survey of research on software clones, in:

Proceedings of Dagstuhl Seminar 06301: Duplication,
Redundancy, and Similarity in Software,

2006, p. 24.

[2] N. Kraft, B. Bonds, R. Smith, Cross-language clone

detection, in: Proceedings of the 20th International

Conference on Software Engineering and

Knowledge Engineering, SEKE 2008, 2008, p. 6.

[3] J. Krinke, Identifying similar code with program

dependence graphs, in: Proceedings of the 8th Working

Conference on Reverse Engineering, WCRE2001, 2001,

pp. 301_309.

[4] I. Landwerth, Clone Detective. Last Accessed November

2008. URL http://www.codeplex.com/CloneDetectiveVS.
[5] F. Lanubile, T. Mallardo, Finding function clones in web

applications, in: Proceedings of the 7th European

Conference on Software Maintenance andReengineering,

CSMR 2003, 2003, pp. 379_386.

[6] S. Lee, I. Jeong, SDD: High performance code clone

detection system for large scale source code, in:

Proceedings of the Object Oriented ProgrammingSystems

Languages and Applications Companion to the 20th

Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems,Languages, and Applications,

OOPSLA Companion 2005, 2005, pp. 140_141.
[7] A. Leitão, Detection of redundant code using R2D2,

Software Quality Journal 12 (4) (2004) 361_382.

[8] H. Li, S. Thompson, Clone detection and removal for

erlang/OTP within a refactoring environment, in:

ACM/SIGPLAN Workshop Partial Evaluationand

Semantics-Based Program Manipulation, Proceedings of

the 2009 ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation,2009, pp.
169_178.

[9] C. Liu, C. Chen, J. Han, P. Yu, GPLAG: Detection of

software plagiarism by program dependence graph

analysis, in: Proceedings of the 12th ACMSIGKDD

International Conference on Knowledge Discovery and

Data Mining, KDD 2006, 2006, pp. 872_881.

[10] B. Baker, R. Giancarlo, Sparse dynamic programming for

longest common subsequence from fragments, Journal

Algorithms 42 (2) (2002) 231_254.

[11] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, K.

Kontogiannis, Measuring clone based reengineering

opportunities, in: Proceedings of the IEEE Symposium on
Software Metrics, METRICS 1999, 1999, pp. 292_303.

[12] D. Wang, “Pattern recognition: neural networks in

perspective, ”IEEE,vol. 8, 1993, pp.5-60.

[13] H.A. Rowley, S. Baluja, T. Kanade,“Neural Network-

Based Face Detection, ” PAMI, 1998, pp. 23 – 28.

[14] S. Bellon, Vergleich von

technikenzurerkennungdupliziertenquellcodes, Diploma

Thesis, University of Stuttgart, 2002.

[15] S. Bellon, R. Koschke, Detection of software clone: Tool

comparison experiment, December 2007.

http://www.bauhaus-stuttgart.de/clones/.
[16] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo,

Comparison and evaluation of clone detection tools,

Transactions on Software Engineering 33(9) (2007)

577_591.

[17] M. Bruntink, A. Deursen, R. Engelen, T. Tourwe, On the

use of clone detection for identifying crosscutting concern

code, Transactions on SoftwareEngineering 31 (10)

(2005) 804_818.

[18] P. Bulychev, M. Minea, Duplicate code detection using

anti-unification, in: Spring Young Researchers

Colloquium on Software Engineering, SYRCoSE2008,

2008, p. 4.
[19] P. Bulychev, CloneDigger K. Church, J. Helfman,

Dotplot: A program for exploring self-similarity in

millions of lines for text and code, Journal of American

Statistical Association (2) (1993) 153_174.

http://www.bauhaus-stuttgart.de/clones/

