
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 57 | P a g e

Novel approach for software defect classification by support

vector machine with kernel approch

Preeti Sharma, Mr Mohan Singh

Abstract - The approach is based upon a quality improvement

paradigm that addresses the role of experimentation and
process improvement in the context of industrial development.

The paper outlines a classification scheme for characterizing

such experiments. Progress in any discipline depends on our

ability to understand the basic units necessary to solve a

problem. It involves the building of models1 of the application

domain, e.g., domain specific primitives in the form of

specifications and application domain algorithms, and models

of the problem solving processes, e.g., what techniques are

available for using the models to help address the problems. In

order to understand the effects of problem solving on the

environment, we need to be able to model various product

characteristics, such as reliability, portability, efficiency, as
well as model various project characteristics Developing a

defect free software system is very difficult and most of the

time there are some unknown bugs or unforeseen deficiencies

even in software projects where the principles of the software

development methodologies were applied care-fully. Due to

some defective software modules, the maintenance phase of

software projects could become really painful for the users

and costly for the enterprises. In previous work , original data

was taken with 21 features and 21 features are having high

dimension features which increases the complexity of

processing. Ignored the boundary decision for software default
predictor because boundary condition is not detected by

previous used classifier. Features of compaction were not

considered because of that information is overlapped and

prediction error is increased. They are not able to trained the

component based classifier which results in more prediction

error

Keywords: SVM, classification, prediction

I. INTRODUCTION

A software process is a model that describes an approach to

the production and evolution of software. Software process

models are frequently called “life-cycle” models, and the
terms are interchangeable. A good process model will help

minimize the problems associated with each translation. A

software process also provides for a common software

development framework both within a project and across

projects. The process allows for productivity improvements

and it provides for a common culture, a common language,

and common skills among organizational members. These

benefits foster a high level of traceability and efficient

communication throughout the project. In fact, it is very
difficult to apply correct project management principles when

an appropriate process model is not in place.

 Software Defect Prediction

Progress in any discipline depends on our ability to
understand the basic units necessary to solve a problem[1]. It

involves the building of models1 of the application domain,

e.g., domain specific primitives in the form of specifications

and application domain algorithms, and models of the

problem solving processes, e.g., what techniques are

available for using the models to help address the problems.

In order to understand the effects of problem solving on the

environment, we need to be able to model various product

characteristics, such as reliability, portability, efficiency, as

well as model various project characteristics such as cost and

schedule. However, the most important thing to understand is
the relationship between various process characteristics and

product characteristics[3],

II. RELATED STUDY

States distinct software metrics that are used for defect

prediction and defines the set of metrics that are most

significant for predicting the defectiveness in the software

module. The two more metrics i.e. number of developers and

the source code quality are defined other than the promise data

set. Experiments outcomes that lines of code and lack of

coding quality are the most systematic metrics whereas

coupling among objects and lack of cohesion of techniques are

less adequate metrics on defect proneness [1]. AhmetOkutan

developinga defect free software system is very difficult and

most of the time there are some unknown bugs or unforeseen

deficiencies even in software projects where the principles of
the software development methodologies were applied care-

fully. Due to some defective software modules, the

maintenance phase of software projects could become really

painful for the users and costly for the enterprises. That is

why, predicting the defective modules or files in a software

system prior to project deployment is a very crucial activity,

since it leads to a decrease in the total cost of the project and

an increase in overall project success rate [2].

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 58 | P a g e

Anapproach was proposed towards developing an

experimental component of such a paradigm. The approach

is based upon a quality improvement paradigm that addresses

the role of experimentation and process improvement in the

context of industrial development. The paper outlines a

classification scheme for characterizing such experiments.
Progress in any discipline depends on our ability to

understand the basic units necessary to solve a problem. It

involves the building of models1 of the application domain,

e.g., domain specific primitives in the form of 26

specifications and application domain algorithms, and

models of the problem solving processes,e.g., what

techniques are available for using the models to help address

the problems. In order to understand the effects of problem

solving on the environment, we need to be able to model

various product characteristics, such as reliability,

portability, efficiency, as well as model various project

characteristics such as cost and schedule [3].Predicting the
fault-proneness of program modules when the fault labels for

modules are inaccessible is a practical issue adaptively

confront in the software industry. Due to fault data

association to prior software version is not possible,

supervised learning perspective cannot be enforced, leading

to the requirement for new techniques, tools, or methods. In

this research, they suggest a clustering and metrics

thresholds on the basis of software fault prediction prospect

for this limitations issues and analyze it on three datasets,

gathered from a Turkish white-goods manufacturer

advancing fixed controller software. Experiments admit that
unsupervised software fault prediction can be automated and

understandable outcomes can be generated with methods on

the basis of metrics thresholds and clustering. The outcomes

of this research determine the performance of metrics

thresholds and display that the standalone uses of metrics

thresholds (one-stage) is existing easier than the clustering

and metrics thresholds on the basis of (two-stage) prospect

because the choice of cluster number is implement

heuristically in this clustering based technique [4].

Data mining is a part in the process of Knowledge

discovery from data (KDD). The enforcement of data

mining algorithms primarily builds upon the efficiency of
preprocessing algorithms. Dimensionality minimization

plays a crucial role in preprocessing. By research, many

techniques have been suggested for dimensionality

minimization, cutback the component subset choice and

feature-ranking techniques show important attainment in

dimensionality minimization by removing inappropriate

and repeated components in high-dimensional data. This

enhances the prediction accuracy of the classifier,

minimize the false prediction ratio and minimize the time

and space difficulty for building the prediction model. This

paper portrays an empirical study analysis on elements
subset evaluators Cfs, Consistency and Filtered, Feature

Rankers Chi-squared and Information-gain. The

performance of these methods is investigated with the

focal point on dimensionality minimization and

enhancement of categorization accuracy with the use of

broad range of test 27 datasets and categorization

algorithms particularly probability-based Naive Bayes,
tree-based C4.5(J48) and instance-based IBl [7].

David Gray et al have suggested the reason of important

preprocessing of data set for appropriate of defect

prediction. Researchers require investigating the data that

how it will be used by removal of steady attributes

repeated attributes, missing values and inpersistent

instances. The experiments that have been used on the

basis of NASA metrics data program that outcomes in

errors findings and finish that errors are mainly because of

repeated data points [8]. Automated software defect

prediction is a process where classification and/or
regression algorithms are used to predict the presence of

non-syntactic implementation errors (henceforth; defects)

in software source code. To make these predictions such

algorithms attempt to generalize upon software fault data;

observations of software product and or process metrics

coupled with a level of defectiveness value. This value

typically takes the form of a number of faults reported

metric, for a given software unit after a given amount of

time (post either code development or system deployment)

[9].

The prime expectation from dependable software is the

minimization of the number of failures that occur when the

program runs. Pertaining whether software modules are prone to

fault is necessary because doing so assists in recognizing

modules that require refactoring or detailed testing. Software

fault forecast is a discipline that predicts the fault proneness of

future modules by using necessary prediction metrics and

historical fault data. This study presents the first application of

the Adaptive Neuro Fuzzy Inference System (ANFIS) for the

software fault prediction problem. Furthermore non-natural

Neural Network (ANN) and maintain Vector Machine (SVM)

methods, which were knowledgeable formerly are built to
discuss the presentation of ANFIS. Data used in this study are

composed from the PROMISE Software Engineering

Repository, and McCabe metrics are elected because they

comprehensively address the programming effort. ROC-AUC is

used as a presentation measure [10].

III. PROPOSED WORK

Principle Component Analysis is an approach which is used to

emphasize the variation and bring out the strong patterns from

the dataset. It makes data easy to explore and visualize. PCA

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 59 | P a g e

is mainly used for dimension reduction in large dataset of

variables into low dimension small dataset. It changes the

correlated variables into uncorrelated variables which are

called as principal component. PCA is also similar to

multivariate procedure and also called as factor analysis

Step 1: Take the promise data set with 21 different features

like cyclomatic complexity, design

Complexity, effort, time estimator, line count etc for defect

prediction in software module.

Step 2: Implement feature extraction on promise data set by

using Principle component Analysis

(PCA). Feature Extraction is used to merge the data set. In

feature extraction merging process is

based on eigen values, having high eigen value means contain
more information.

Step 3: Take the different features x1, x2, x3.....................xn

and find out the status that whether

they are default or not default [+1, -1]. If the value is +1 that

means its 'default' and if -1 then it is'not default'.

Step 4: Implement Hybrid Adaptive Boost with SVM -RBF

Kernel for component learning and to remove compaction and

boundary error condition.

Step 5: Apply Classifier model to find out precision, recall

and accuracy of the software

Figure 1.1 Flow chart of proposed methodology

IV. RESULTS

In this paper work on software defect prediction by

machine learning model below tables and figures represent

comparison between SVM with different kernel approaches

and Adaptive boost with different features. For feature
extraction use Principle component analysis, which

transform the features according to its Eigen value and

Eigen vectors.

Figure 1.2 Comparison of Classifiers

In this Figure1 represent the different classifiers performance

on ten features. In this figure x-axis represent the different

classifiers and y-axis represent parameters value which is

taken by software itself. This figure describes the adaptive

boost with SVM that shows maximum precision, recall and

accuracy as compared to the other classifiers.

Figure 1.3 Comparison of Precision

In Figure1.3 represent the different classifiers performance

and comparison between ten, fifteen, twenty and twenty one

features. In this figure x-axis represent the different classifiers
and y-axis represent parameters value which is taken by

software itself. This figure describes the adaptive boost with

SVM that shows maximum precision, recall and accuracy as

compared to the other classifiers. In future work, new hybrid

model for intrusion detection can be built by optimizing the

different machine learning algorithms.

0
20
40
60
80

100

Classifiers------->

COMPARISION OF CLASSIFIERS

Accuracy

recall

Precision

0
10
20
30
40
50
60
70
80
90

R
ec

al
l(

10
)

A
cc

u
ra

cy
(1

5)

P
re

ci
si

o
n

(1
5

)

R
ec

al
l(

20
)

A
cc

u
ra

cy
(2

1)

P
re

ci
si

o
n

(2
1

)

P
re

ci
si

o
n

 V
al

u
e

Classifier

Linear

Polynomia
l

Quadratic

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 60 | P a g e

V. CONCLUSION

The test results proves the feature selection Software defect
prediction of get improved the selected features are used

alone instead of the all features. All features are produces

the redundancy, complexity in the system and decreases the

accuracy. But a selected feature increases the accuracy,

precision and recall for all the features set.

VI. REFERENCES

[1]. A.Okutan&Yıldız, O. T. (2014). Software defect prediction
using Bayesian networks. Empirical Software Engineering,

19(1), 154-181.
[2]. Ahmet,Okutan , and OlcayTanerYıldız."Software defect

prediction using Bayesian networks." Empirical Software
Engineering 19.1 (2014): 154-181.

[3]. Barry Boehm, Hans Dieter Rombach, and Marvin V. Zelkowitz,
eds. Foundations of empirical software engineering: the legacy
of Victor R. Basili. Springer Science & Business Media, 2005.

[4]. C. CatalandDiri, B. (2009). A systematic review of software

fault prediction studies. Expert Systems with Application,
36:7346–7354.

[5]. Catal, C., Sevim, U., &Diri, B. (2009, April). Clustering and
metrics thresholds based software fault prediction of unlabeled
program modules. In Information Technology: New
Generations, 2009. ITNG'09. Sixth International Conference on
(pp. 199-204). IEEE.

[6]. Catal, C., Sevim, U., &Diri, B. (2010). Metrics-driven software
quality prediction without prior fault data.In Electronic

Engineering and Computing Technology (pp. 189-199).Springer
Netherlands.

[7]. D. AsirAntonyGnanasingh, Balamurugan, S. A. A., &Leavline,
E. J. (2012, December). An empirical study on dimensionality
reduction and improvement of classification accuracy using
feature subset selection and ranking.In Emerging Trends in
Science, Engineering and Technology (INCOSET), 2012
International Conference on (pp. 102-108).IEEE.

[8]. David Gray et al. "The misuse of the NASA metrics data
program data sets for automated software defect prediction."
Evaluation & Assessment in Software Engineering (EASE
2011), 15th Annual Conference on.IET, 2011.

[9]. David Gray, Hall, T., Beecham, S., Bowes, D., &Counsell, S.
(2012). A systematic literature review on fault prediction
performance in software engineering. IEEE Transactions on
Software Engineering, 38(6), 1276-1304.

[10]. EzgiErturk, Mills, Software Metrics 1998, Tech. Rep., DTIC
Document.

