

Breeds – the raw material for genetic improvement

Breed Diversity

- It is important to preserve all our present breeds
- Minor or rare breeds are potential reservoirs for genes that may be important in the future.
- However, only a small number of breeds will be commercially important at any one time.
- Producers wishing to benefit the most from current commercial markets need to use breeds that best meet the criteria of those markets.

Rank	Breed	No. of registrations	% of total registrations
1	Suffolk	32,314	27.9
2	Hampshire	26,168	22.6
	Corriedale	12,448	10.7
4	Southdown	8,986	7.7
	Columbia	6,502	5.6
6	Shropshire	6,352	5.5
7	Dorset	6,070	5.2
8	Rambouillet	5,742	4.9
	Cheviot	3,274	2.8
10	Montadale	2,718	2.3
op 10 b	reeds	110,574	95.3
Il bree	ds	116,011	100.0

1

Rank	Breed	No. of registrations	% of total registrations	% change from 1965/60
1	Hampshire	8,238	12.2	-69
	Katahdin	8,037	11.9	NA
	Dorper	7,858	11.6	
4	Suffolk	6,751	10.0	-79
	Dorset	5,733	8.5	-6
	Southdown	5,125	7.6	-43
	Shropshire	2,258	3.3	-64
8	Rambouillet	2,039	3.0	-64
	Shetland			
	Polypay	1,389	2.0	NA
	Top 10 breeds	49,451	73.2	-55.3
	All breeds	67,596	100.0	-41.7

U.S. Hampshires: 1960 - 2015

1st Place Pen of Ram Lambs, Chicago International, 1960, University of Wisconsin

The popularity of a breed changes over time – and individuals within

mbs, 1960, sin

2015 model

Selection – determining which animals will be parents

Selection for Conformation is Effective – In Changing Conformation

U.S. Southdowns - Then and Now

However, conformation is not highly correlated with performance for most production traits.

Production Traits

Traits that result in improved lamb, wool, and/or milk production

Litter size, lamb survival, milk production, weaning weight, postweaning gain, loin eye area, fat thickness, fleece weight, disease resistance, etc.

Production Traits

Steps in selection of replacements for production traits

- 1. Initial selection on performance records or estimates of genetic value – without looking at the animals. Select 10 – 15% more animals than needed.
- 2. Visual appraisal of only the animals selected on the basis of records. Cull the poorest 10 15% on visual appraisal.

Selection of Replacement Ewe Lambs

Minimum record-keeping requirements:

- 1. Individual identification of ewes and lambs
- 2. Record birth date, lamb ID, dam ID, and sex of each lamb
- 3. Record number of lambs born and raised by each ewe and birthrearing type of each lamb
- 4. Weigh lambs at weaning and record date of weaning

Adjust litter size for age of the ewe.

Select replacement ewe lambs from dams with high average adjusted litter size.

Adjust Lamb Weaning Weight for Age at Weaning, Age of Dam, Sex of Lamb, and Type of Birth-Rearing of Lamb.

Item	Class	Adj. Factor	
Age of dam,	1	1.14	
yr.	2	1.08	
	3 - 6	1.00	
	7+	1.05	
Sex of lamb	Ram	.91	Select replacement ewe
	Wether	.97	lambs with highest
	Ewe	1.00	adjusted weights.
Type of birth-	Single - Single	1.00	
rearing of lamb	Single - Twin	1.17	
lamb	Twin - Single	1.11	
	Twin - Twin	1.21	
	Triplet+ - Single	1.19	
	Triplet+ - Twin	1.29	
	Triplet+ - Triplet+	1.36	

Selection of Replacement Rams

Most commercial flocks purchase their rams

Since fewer rams are selected than ewes, rams should have higher genetic values than ewes

Most of the genetic improvement in flocks is the result of ram selection rather than ewe selection

Select rams from flocks that are serious about genetic improvement for production traits

The most accurate estimate of genetic merit is the Estimated Breeding Value (EBV) or Expected Progeny Difference (EPD)

EBV and EPD

Adjust Litter Size for Age of Ewe

Estimated Breeding Value (EBV) = An estimate of the sum of the individual effects of all genes possessed by an animal that affect a particular trait.

Expected Progeny Difference (EPD) = The expected performance of a group of progeny from a sire or dam when the other parent is of average genetic merit.

Since a parent passes a sample half of its genes to its progeny, $EPD = \frac{1}{2} EBV$.

			EBVs							
	60-day weaning wt, lb.	120-day postweaning wt., lb.	Maternal milk, lb.	Milk + Growth, lb.	Number born, no. lambs / 100 ewes					
	+ 3.0	+ 8.2	+ 0.2	+ 2.2						
	Average for active adult rams:									
	+ 0.0	+ 0.2	- 0.2	- 0.2	- 4.8					
g g H a n la	enes that r 120 day w reater than Iampshire re expected nore at 120	expected to h esult in him h eight that is 8 n an average 1 ram, and his d to weigh 4.0 days of age t an average N ram.	aving k0 lb. NSIP lambs lb. han							

How much is a superior EBV/EPD worth?

50 commercial white-faced ewes mated to a Hampshire ram

Lambs sold at 180 days of age as market lambs

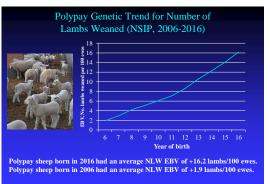
Average NSIP Hampshire ram: 50 ewes x 1.60 lambs/ewe x 122 lb. x \$1.50/lb. = \$14,640

SU7104

50 ewes x 1.60 lambs/ewe x 128 lb. x \$1.50/lb. = \$15,360

ISU7104 expected advantage = \$720/year, \$1,440 in 2 years, and \$2,160 in 3 years

Where Do I Get EBVs?


EBVs are obtained through the National Sheep Improvement Program (NSIP, <u>www.nsip.org</u>).

EBVs available for several reproductive, growth, carcass, and wool traits.

Several indexes are available that combine several traits.

Top NS	SIP P	oly	/pa	y 4	Act	iv	e I	Rai	ms	fo	r U	J.S	. N	/Iat	erna	al Index
Elite F	Report - I	Polyp	bay		- Ra	ims	with	2015	- 201	16 01	fspri	ng				
A TOTAL AND	Maternal														Augus	t 2016
ID Flock	Prg:Fiks Inbrd.Coef	BWt kg	MWW kg	kg	PWW kg	t YWt kg	NLW %	NLB %	PFEC	YGFV %	r YFD mc	PSC cm	PFAT mm	PEMD mm	USMAT	Sire Dam
6200612015155199 Uncompany Polypay Fai	23:1 m 0.03	0.27	3.10 43	1.69 77	3.54 79	1.79 65	24.9 35	13.5 39	0.0	-0.8 53	0.0	1.4 48	0.00	0.00	118.8	6200962014H14009 6200612012120385
6200072014140437 JCC Polypay	21:1 0.18	0,40 76	2,15 50	2.02 76	4.73 78	4.20 65	30.5 41	31.8 46	0.0	0.0	0.0	0.0	0.00	0.00	118.1	6200072013130343 6200072013130318
6200962015H15028 Housser Polypays	9:1	0.62 69	1.64	3.16 60	6.92 69	5.43 50	29.8 .39	23.8 40	0.0	8.9 52	0.0	0.0	0.00	0.00	117.4	6200952013K3047A 620962012H12034
6200782015015301 UW-Madison Polypay She	48 : 1 Mp Linit 0.12	0.76	1.14 57	2.23 83	3.38 85	3.39 72	33.8 50	17.6	0.0	0.0	0.0	0.0	0.00	0.00	117.4	6200782010P10190 6200782012P12349
6200742010PA0210	214:3	0.43 92	3.19 74	2.26 91	4.49 92	2.86	20.9	32.7	0.0	0.0	0.0	0.0	0.00	0.00	117.1	6200742007PA7146 62007420080P7820
6200782015015319 UW-Madson Polypay She		0.57 68	0.71 57	2.15	3.65 ap	3.21	36.7 57	28.2 55	0.0	0.0	0.0	0.0	0.00	0.00	117.0	6200782010P10190 6200782010P10416
6200752013E3082T Elli Creek Polypay	89:3 0.09	0.53 86	2.31 65	2.00 82	3.86 79	3.04 64	25.8 59	26.1 64	22.3 53	0.0	0.0	0.0	0.00	0.00	116.8	6200742011WA1041 6200752010E0063×
6200982015H51038 Henke Panely Polypay	25:1	0.19 76	1.89 47	2.20	6.42 77	5.83 64	28.0 39	27.6 42	0.0	0.0	0.0	0.0	0.00	0.00	116.7	6200072013130343 6200822012WP0281
6200782010P10190 UW-Madacer Polypay She		0.70	0.98 83	1.97 92	2.51 23	2.48	32.3 77	14.1 81	0.0	2.4 72	0.0	0.0	0.00	0.00	116.4	6200072009020909 6200782005005326
6200782015015398 UW-Madison Polypay She	40:1	0.72 81	0.80 53	2.17	3.22 75	2.15 63	32.8 47	26.4 51	0.0	0.0	0.0	0.0	0.00	0.00	115.8	6200782010P10190 6200782013P13357
6200072015150508 JCC Polynay	31 : 1 0.07	0.67	2.00	2.89 76	5.45 78	3.67 65	24.0 40	27.5 44	0.0	0.0	0.0	0.0	0.00	0.00	115.8	6200742010PA0210 6200072012120243
6200782014P14305 UW-Madson Polypay She	36 : 1 Nep Linit 0.01	0.42 78	2.10	0.76 77	0.59 79	0.62	25.9 45	23.0 48	0.0	0.0	0.0	0.0	0.00	0.00	115.7	6200752012E20508 6200782012P12429
6200982015H5027T Henke Family Polypay	31:1 0.03	0.42 73	2.67 43	1.73 70	3.37 68	2.39 54	20.8 36	25.8 40	0.0	0.0	0.0	0.0	0.00	0.00	115.6	6200982014H14022 6200822011WP0217
	Matern 406 x Ni										+ (1.	.200	x N	1WV	VT E	BV) 22

An average genetic change of +1.4 lambs weaned per 100 ewes lambing/year.

Performance of Crossbred Lambs Sired by NSIP and Non-NSIP Suffolk Rams

- 245 Suffolk x dairy lambs born at University of Wisconsin in 1999 and 2000
- 7 NSIP Suffolk sires (average 120-day wt. EPD = + 2.6 lb.) and 4 non-NSIP Suffolk rams
- Lambs raised in confinement on high-energy diets

Body weights (lb.) of lambs sired by NSIP and non-NSIP Suffolk rams in 1999 and 2000

Sire source	Number	Birth	60 d	120 d
NSIP	130	12.7	55.8	103.4
Non-NSIP	115	12.7	54.0	99.6

The Basics of Making Progress from Selection is Simple!! Collect performance information on individual sheep

Calculate estimates of genetic value - EBV

Select individuals for parents that have superior EBVs and physical soundness

The details (e.g. individual identification, maintaining pedigree records, recording performance, selecting on EBVs rather than on visual or phenotypic traits) may be less easy.

Quote from Dan Morrical, Sheep Extension Specialist, Iowa State University:

"There's been a switch in selection method," said Morrical. "Buyers used to look at phenotype, then see if the numbers backed up what they were seeing. Now it's the other way around. They select for numbers, then see if they look right."

From: Genetic Data Pays Off At Sale Barn. September 2016. Sheep Industry News, ASI. 20(9):10-11.

Crossbreeding – mating rams and ewes of different breeds

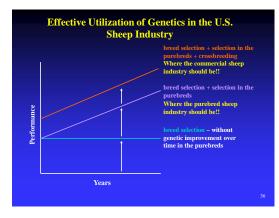
Crossbreeding – Why?

1. Breed complementarity – Utilize the strong points of two or more breeds in a crossbreeding system to maximize performance.

2. Hybrid vigor or heterosis – increased performance of crossbreds compared to the purebreds that make up the cross.

Hybrid Vigor Example - 60-day Weaning Weight Hampshire x Hampshire lambs = 60 lb. Hampshire x Dorset and Dorset x Hampshire lambs = 58 lb. Hybrid vigor = 58 - 55 = 3 lb. Average of purebred Hampshire and Dorset lambs = (60 + 50)/2 = 55 lb. % HV = ((crossbred – purebred) / purebred) x 100 $= ((58 - 55) / 55) \times 100 = (3 / 55) \times 100$ $= .05 \times 100 = 5 \%$ Dorset x Dorset lambs = 50 lb.

		0	Estimates of Hybrid Vigor						
Trait Ind., % Mat., % Pat., %									
			1.0 (30.0 if fall						
Conception rate	2.6	8.7	mating)						
Litter size	2.8	3.2	-1.0						
Lamb survival	9.8	2.7	2.0						
Lamb weaning wt.	5.0	6.3	3.0						
Lamb wt. wn./ewe mated	17.8	18.0	3.0						
Post-weaning wt.	6.6	5.0	0.0						
Carcass traits	0.0	0.0	0.0						



Crossbreeding Systems							
Performance of three breeds of sheep							
Breed	Fertility, %	Prolificacy, no.	Lamb survival, %	Lamb wean. wt., lb.	Wt. wean. per ewe, lb.		
Finnsheep	90	2.30	90	40	74		
Dorset	90	1.60	85	48	59		
Hampshire	90	1.45	80	55	57		
Average	90	1.78	85	48	63		

3-Breed Roto-Terminal Crossbreeding System					
Rotation	Rotation Terminal (25-35 ewes) (65-75 ewes)				
F rams x D ewes	(05-75 Circs)	Lambs All Hamp-sired			
D rams x FD ewes F rams x DF ewes	FD ewes x Hamp rams	lambs, all F- and D-sired male lambs, some F- and D-sired cull			
D rams x FD ewes (system	FD ewes x Hamp rams continues)	ewe lambs 95 lb. lamb weaned per ewe exposed			
Advantages:	at) and all lamba are seen				
	rt) and all lambs are cross naternal hybrid vigor (67%	0			
67% & 100% Ind					
2) Good breed comp Disadvantage: ?	Aementanty -	34			

Crossbreeding Summary Comments

- 1. Good crossbreds result from good purebreds.
- 2. Don't expect hybrid vigor to compensate for poor or inappropriate genetics.
- 3. Limit the number of breeds to those that have high levels of performance.
- 4. Hybrid vigor is maximized when no breeds are in common in the sire and dam.
- 5. More hybrid vigor is obtained when less related breeds are crossed.
- An organized crossbreeding system is needed to take best advantage of hybrid vigor and breed complementarity.

University of Wisconsin-Madison Department of Animal Sciences Sheep Research, Teaching, and Extension

